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Lecture 16
“Non-Parametric Kernel Regression”

Consider a general regression model

yi = g(xi) + ui

where g(x) = E(Y |X = x), in order to estimate g we may consider

E(Y |X = x) =

∫
y
f(x, y)

f(x)
dy

Now suppose we use Kernel density estimation to estimate both f(x, y) and f(x). This is the
basic idea of Nadaraya-Watson estimator. In the numerator we have

f̂(x, y) = n−1
∑

Kh1(x−Xi)Kh2(y − Yi)
then ∫

yf̂(x, y)dy = n−1
∑∫

Kh1(x−Xi)yKh2(y − Yi)dy

= n−1
∑

Kh1(x−Xi)

∫
y

h2
K

(
y − Yi
h2

)
dy

= n−1
∑

Kh1(x−Xi)

∫
(sh2 + Yi)K(s)ds

= n−1
∑

Kh1(x−Xi)Yi

Since
∫
sK(s)ds = 0 and

∫
K(s)ds = 1. Thus we have

ĝh(x) = n−1
∑
Kh(x−Xi)Yi

n−1
∑
Kh(x−Xi)

=
∑

wh1(x)Yi

where wh1(x) =
(nh)−1K((x−Xi)/h)

f̂h(x)
.

So at x the estimate of E(Y |X = x) is a weighted average of the Yi “near x”.

Performance of ĝ
Write ĝh(x) = r̂h(x)/f̂h(x) and consider the numerator,

Er̂h(x) = En−1
∑

Kh(x−Xi)Yi

= EKh(x−Xi)Yi

=

∫ ∫
yKh(x− u)f(y|u)f(u)dydu

=

∫
Kh(x− u)f(u)(

∫
yf(y|u)dy)du

=

∫
Kh(x− u)f(u)g(u)du

=

∫
Kh(x− u)r(u)du
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where we define r(u) = f(u)g(u) =
∫
yf(y, u)dy. Expanding, as in the kernel density case we

have,

Er̂h(x) = r(x) +
h2

2
r′′(x)µ2(K) + o(h2)

and whre the linear term in h vanishes due to the mean zero assumption on K just as in density
estimation,

V r̂h(x) = V (n−1
∑

Kh(x−Xi)Yi)

= n−1V (Kh(x−Xi)Yi)

= n−1{
∫
K2

h(x− u)σ2(u)f(u)du− (

∫
Kh(x− u)r(u)du)2}

= (nh)−1
∫
K2

h(u)σ2(x+ vh)f(x+ vh)dv + o((nh)−1)

= (nh)−1f(x)σ2(x) ‖ K ‖22 +o((nh)−1)

where σ(x) ≡ EY 2|X = x. So,

MSE(r̂h(x)) = (nh)−1f(x)σ2(x) ‖ K ‖22 +
h4

4
(r′′(x)µ2(K))2 + o(h4) + o((nh)−1)

and we obtain the following result by Slutsky.
Theorem: ĝh(x)→ g(x) if h→ 0 and (nh)→∞

Note these are the same conditions for convergence in probability for f̂h(x) so Slutsky really
applies here.

Bandwidth Selection
This is a large topic. Here is the simplest version of the theory:

ĝh(x)− g(x) =

(
r̂h(x)

f̂h(x)
− g(x)

)(
f̂

f
+

(
1− f̂

f

))

=
r̂ − gf̂
f

+ (ĝ − g)

(
f − f̂
f

)
= Op(n

−2/5) + op(1)Op(n
−2/5) = Op(n

−2/5)

where we have let h = O(n−1/5) to compute the orders in the last line. So we can focus on the
first term

f(x)−2E(ĝ − gf̂)2 = (nhf)−2E
∑[

K

(
x−Xi

h

)
(Yi − g)

]2
=

1

nh2f2
V

(
K

(
x−X
h

)
(Y − g)

)
+

1

h2f2
E2
[
K

(
x−X
h

)
(Y − g)

]
and this yields,

MSE(ĝh(x)) = (nh)−1
σ2(x)

f(x)
‖ K ‖22 +

h4

4
µ22(K)

(
g′′(x) + 2

g′(x)f ′(x)

f(x)

)2

+ o((nh)−1) + o(h4)

2



so
h = O(n−1/5)⇒MSE(x) = O(n−4/5).

Note that the first term in the bias involves the curvature and the second term is a first
derivative effect which may dominate at (or near) inflection points.

Practicalities
There are many details we have neglected here, for example, the preceding formulas suggest

that we should do adaptive bandwidth selection using larger bandwidth where the function g is
smooth or the variability is large and smaller bandwidth when g is rough. In R kernel regression
is implemented in the function ksmooth( ). See Härdle (1989, 1990) for many further details
of theory and implementation.

Locally Polynomial Regression
A variation on the kernel regression ideas introduced above is locally polynomial kernel

regression. Ordinary Nadaraya-Watson kernel regression may be viewed as a special, locally
constant, case. A good reference on this in the econometric literature is Cleveland, Devlin and
Gross (1988). A good reference in the statistics literature is Hastie and Loader, (1993). More
complete treatments are provided by Fan and Gijbels (1996) and Ruppert, Wand and Carroll
(2004).
The idea is very simple – we replace locally weighted means by locally weighted regressions.

Let wk(x) = W ((xk − x)/h) where W ( ) plays the role of the kernel. A favorite kernel in
[1] is

W (x) =

{
(1− |x|3)3 |x| ≤ 1

0 |x| > 1

Now for any x consider the problem

min
b∈<p+1

∑
wk(x)(yk − βo − β1(x− xk)− . . .− βp(x− xk)p)2

If we let
zk = (1, (x− xk), . . . , (p!)−1(x− xk)p)

we can write the model as
yi = z′iβ(x) + ui

and the problem is obviously just a garden variety WLS problem. Much of the standard LS
theory carries over in a nice way. But there are some slightly unsettling features as well. For
example, we may write the estimator as a linear operator, with L = (Z ′WZ)−1Z ′W

ĝ = Ly

so

û = (I − L)y

and

û′û =
∑

û2i = u′(I − L)′(I − L)u

So far this is familiar and comforting until we realize that neither L nor I −L are symmetric or
idempotent as in the usual LS case. So ĝ isn’t really a projection. However, we plunge ahead
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bravely anyway. Since

Eû′û = Ey′(I − L)′(I − L)y

= E(g + u)′(I − L)′(I − L)(g + u)

= g′(I − L)′(I − L)g + Eu′(I − L)′(I − L)u

= g′(I − L)′(I − L)g + σ2 Trace [(I − L)(I − L)′]

we have for any given choice of L (which obviously represents implicitly a degree of smoothing)
a method of estimating σ2. We will assume that the first term representing squared bias is
negligible; note that it would be identically zero if we were in a correctly specified regression
setting in which case g would be in the space spanned by L. (At this point you should be asking
yourself; why are we assuming homoscedasticity? The answer is we want to try to understand
crawling before we try to walk.) The trace term can be interpreted very much in the same way
as in ordinary regression as the “effective degrees of freedom” of the fitted model, ĝ. Recall that
in the usual case L = PX and so this trace is n−q, where obviously q depends on the bandwidth
of the kernel. We will follow the lead of many researchers and call q the effective dimension of
the fitted model. Oddly, since I − L isn’t idempotent q needn’t be an integer. Nevertheless it
is a number between p, the order of the locally polynomial model and ∞, since as bandwidth
increases without bound the solution approaches the global polynomial model. On the other
hand, as bandwidth shrinks the fitted function tends to interpolate all the observed points
eventually leading to a hopelessly rough ĝ. In the next lecture we will relate these quantities to
the standard AIC and BIC criteria and explain more about how they can be used and abused.

The CDG strategy for choosing a degree of smoothing is based on a variation of what is
usually called “nearest neighbors.” They suggest choosing hi such that r = [φn] and

r = #{k | |xk − xi| < hi}

This insures that the bandwidth at xi contains approximately the same fraction of points, φ,
for all i. They also suggest φ ≈ 2/3.

References

Green, P. and B. Silverman (1994). NP Regression and GLM’s, Chapman-Hall
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