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Lecture 15
“Introduction to Robustness”

In econometrics the word “robustness” has no fixed meaning and seems to be used as a term
of approval without any specific correlate. In statistics, since Hampel (1968), robustness means
something quite specific. We will give a very brief exposition of Hampel’s theory of qualitative
robustness and then discuss some practical aspects of robust methods as they have developed
over the last 30 years.1

Qualitative Robustness
It proves convenient to introduce a new way of representing estimators, rather than write

θ̂ = θn(y1, . . . , yn)

we will write
θ̂ = θn(Fn)

where Fn is the usual empirical distribution function,

Fn(y) = n−1
∑

I(yi ≤ y)

E.g.,

θn =

∫
ydFn(y) mean

θn = F−1n (1/2) median

θn =
1

1− 2α

∫ 1−α

α
F−1n (u)du trimmed mean

The mapping θn(·) induces a probability distribution for the estimator θ̂n under F which we
may denote by LF (θn). In general, Fn ⇒ F and θ̂n → θ∞(F ).

Def: LetA denote the Borel sets on < for anyA ∈ A and setAε = {x ∈ <| infy∈A|x−y| ≤ ε}
the Prokhorov distance between F and G is given by,

π(F,G) = inf {ε|F{A} ≤ G(Aε) + ε for all A ∈ A}

Robustness may now be defined as a continuity requirement on the mapping θn(·). An Esti-
mator, θ̂, is robust at F if small departures from F induce small departures in the distribution
of θ̂ measured by Prokhorov distance.

1I learned only recently that Bahadur and Savage (1956) anticipates some of the central criticisms leveled
by the robustness movement against conventional statistical practice based on moments. In particular, Bahadur
and Savage point out that in any sufficiently rich class of non-parametric models means and variances are not
identified and therefore conventional estimation and inference procedures about them are doomed to failure.
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Def: (Hampel (1978) The sequence of estimators {θn} is robust at F iff for all ε > 0 there
exists a δ > 0 such that in Prokhorov metric, for all n,

π(F,G) < δ ⇒ π(LF (θn), LG(θn)) < ε

This seems like a fairly innocuous requirement which should be satisfied by any reasonable
estimator. Intuitively, it simply requires that if the model assumptions - here represented by F
- don’t change much, then the behavior of the estimator θ̂n won’t change much either. Unfor-
tunately, some reflection reveals that many common estimators in everyday use do not satisfy
this requirement. Consider, for example the sample mean at F = Φ, as we saw in Problem Set
1, the mixture density

Fε = (1− ε)Φ + εC

where C is the standard Cauchy df has the property that

π(Φ, Fε) = ε

But for any ε, the sample mean has, under Fε, behavior radically different from its behavior
under Φ. In particular, as n→∞, LΦ(θn)→ δθ0 and LFε(θn)→ C so their P distance converges
to 1.

A crucial tool in helping to understand qualitative robustness and one that provides some
critical quantitative assessment of robustness is the influence function.

Def: The influence function, IF, of the estimator θn at F is

IFθn,F (x) = lim
ε→0

[θn(Fε)− θn(F )]/ε

where Fε = (1− ε)F + εδx.
This is sometimes referred to as the Frechet derivative of the functional θn. We will not dwell

on the technicalities which are well covered in Fernholz (1983) for example and Huber (1981).

Examples:

1. Mean T (F ) =
∫
xdF (x)

T (Fε) = (1− ε)µ(F ) + εx

so
IF(F )(x) = x− µ(F )

2. Sample Variance

T (F ) =

∫
(x− µ)2dF (x)

IFT,F (x) = lim
t→0

(1− ε)σ2(F ) + t(x− µ)2 − σ2(F )

ε

= (x− µ)2 − σ2

in both cases since IF (x) → ∞ as x → ∞ we have the possibility of wrecking as much
havoc as desired by only ε contamination.

Moral: Unbounded IF ⇒ Qualitative nonrobustness.
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3. M-estimators of location

Tn defined implicitly by the estimating equation:∑
ψ(xi − Tn) = 0

or ∫
ψ(x− Tn)dFn(x) = 0

Now to compute IF, write Fε is above and write

Tn(Fε) = Tn(F ) + ∆,

so expanding we have

0 =

∫
[ψ(x− T ) + ∆ψ′(x− T )]dFε(x)

⇒ ∆ = −
∫
ψ(x− T )dFε(x)∫
ψ′(x− T )dFε(x)

= − ε
∫
ψ(x− T )dδx0∫

ψ′(x− T )dFε(x)

= − εψ(x0 − T )∫
ψ′(x− T )dFε(x)

so

IFTn,F (x) =
ψ(x− Tn)∫

ψ′(x− Tn)dF (x)

Since the denominator is just a constant we may interpret the numerator as containing
the essential information about the shape of the IF.

Some Comparative Anatomy of M Estimators and Their IF’s

Note that to the extent that F has narrow tails the influence function for the optimal
estimator based on F increases in the tails rapidly, as in the Gaussian case. Whereas,
when the tails are long the IF tends to redescend to zero as in the case of the Cauchy, for
example.

4. Influence Functions for L-estimators

L-estimators for the one-sample model are simply linear combinations of order statistics
of the form

Tn =
n∑
i=1

wiX(i)

To study the influence function of such estimators, we begin by developing the IF of a
single sample quantile. Consider the identity (for u ∈ (0, 1)),

Fε(F
−1
ε (u)) = u

where as usual, Fε = ((1−ε)F+εδx), and F is some smooth df and δx is the df representing
point mass one at x. Differentiating our identity with respect to ε, we have,

−F (F−1ε (u)) + δx(F−1ε (u)) + fε(F
−1
ε (u)) · d

dε
F−1ε (u) = 0
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and evaluating at ε = 0, yields,

IF (x, T, F ) =
d

dε
F−1ε (u) =

u− δx(F−1(u))

f(F−1(u))

=

{
(u− 1)/f(F−1(u)) if x ≤ F−1(u)
u/f(F−1(u)) if x > F−1(u)

Example 1. The simplest form of L-estimators is the so called “systematic statistic”,
linear functions of a finite number of order statistics (sample quantiles). So, for example,
for fixed m < n, the estimator

Tn =
m∑
i=1

wiF
−1
n (ui)

would have

IF (x, T, F ) =
m∑
i=1

wkIF (x, F−1n (ui), F )

If Tn is to be an estimator of location, then we would require that it be location equivariant,
i.e.,

Tn(x1, x2, . . . , xn) + θ = Tn(x1 + θ, x2 + θ, . . . , xn + θ)

This obviously requires that the weights used to define Tn sum to one. In addition, we
would expect that if F were symmetric around zero, Tn = T (F ) = 0, this requirement
implies that the weights are “symmetric around 1/2.” Finally we would expect a reasonable
location estimator to be scale equivariant, i.e.,

σTn(x1, . . . , xn) = Tn(σx1, . . . , σxn)

L-estimators may also be used to estimate scale or dispersion of a distribution, for example,
the interquartle range is a simple robust alternative to the standard deviation for this
purpose. For scale estimator we require location invariance, i.e.,

Tn(x1, . . . , xn) = Tn(x1 + θ, . . . , xn + θ)

and scale equivariance,

|σ|Tn(x1, . . . , xn) = Tn(σx1, . . . , σxn).

Note that the latter definition differs from its location counterpart in that σ is replaced
by |σ| to insure Tn > 0 for the scale estimation problem.

To investigate the large sample theory of such systematic statistics we obviously require
that f(F−1(ui)) > 0 for i = 1, . . . ,m. Under this previso consider

Avar(Tn) = EIF 2

=
∑
i

∑
j

wiwjE(ui − δx(F−1(ui))(uj − δxF−1(uj))
f(F−1(ui))f(F−1(uj))
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Note that for ui < uj

(ui − δx(·))(uj − δx(·)) =


(ui − 1)(uj − 1) x < ui
ui(uj − 1) ui < x < uj
uiuj uj < x

so taking expectations, we have (ugh!),

E(ui − δx(·))(uj − δx(·)) = (ui − 1)(uj − 1)

∫ F−1(ui)

−∞
dx+ ui(uj − 1)

∫ F−1(uj)

F−1(ui)
dx

+uiuj

∫ ∞
F−1(uj)

dx

= (1− uj)ui

So,
Avar(Tn) = w′Ωw

where

Ω = (wij) =

(
min(ui, uj)− uiuj

f(F−1(ui))f(F−1(uj))

)
An amusing sport, popular in the 1950’s, is to compute “optimal” systematic statistics for
particular distributions, e.g., take F to be Cauchy, and find the choice of ((wi, ui) i =
1, . . . ,m) pairs for prespecified m to minimize the quadratic form w′Ωw.

Another interesting exercise involves the comparison of the efficiency of the interquartile
range and the standard deviation in the contaminated normal model, only slight amounts
of contamination are required to make IQR preferable to s2,

Example 2. A more interesting form for L-estimator are those with smooth weight
functions,

Tn =

∫ 1

0
J(u)F−1n (u)du

Thus,

IF (x, T, F ) =

∫ 1

0
IF (x, F−1n (u), F )J(u)du

=

∫ 1

0
J(u)

[
u− δx(F−1(u))

f(F−1(u))

]
du

let u = F (y) so,

IF (x, T, F ) =

∫
J(F (y))(F (y)− δx(y))dy

=

∫ x

−∞
J(F (y))dy −

∫ ∞
−∞

(1− F (y))J(F (y))dy
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2.1. Trimmed Mean

Perhaps the best, and oldest, of the “smooth” L-estimators are the trimmed means with

J(u) =

{
(1− 2α)−1 α < u < 1− α

0 otherwise

To get the IF for these estimators suppose, to begin, that x < F−1(α), then the first term
above is zero and,∫

F (y)J(F (y))dy =
1

1− 2α

∫ F−1(1−α)

F−1(α)
F (y)dy

=
1

1− 2α
[yF (y)|F

−1(1−α)
F−1(α) −

∫
yf(y)dy]

=
1

1− 2α
[F−1(1− α)(1− α)− F−1(α)α−

∫ 1−α

α
F−1(u)du]

and ∫
J(F (y))dy = (F−1(1− α)− F−1(α))/(1− 2α).

so, ∫
(1− F (y))J(F (y))dy =

1

1− 2α
[µ(F )− F−1(α)]

where µ(F ) =
∫ 1−α
α F−1(u)du− α(F−1(1− α) + F−1(α)).

Now,

∫ x

−∞
J(F (y))dy =

1

1− 2α

∫
dy =


0 x < F−1(α)

1
1−2α [x− F−1(α)] x ∈ (F−1(α), F−1(1− α))

1
1−2α [F−1(1− α)− F−1(α)] x > F−1(1− α)

so we can write

IF (x, T, F ) =


1

1−2α [F−1(α)− µ(F ) x < F−1(α)
1

1−2α [x− µ(F )] x ∈ (F−1(α), F−1(1− α))
1

1−2α [F−1(1− α)− µ(F )] x > F−1(1− α)

Note that if F is symmetric around zero, then µ(F ) = 0 and we have the picture of the
Huber influence function.

The large sample theory of the trimmed mean can be developed directly from the IF,
√
n(Tn−

µ(F )) is asymptotically normal provided f(F−1(ui)) > 0, ui ∈ {α, 1− α} and the asymp-
totic variance is

Avar(Tn) =

(
1

1− 2α

)2

[α(F−1(α)− µ(F ))2

+

∫ F−1(1−α)

F−1(α)
(x− µ(F ))2dx+ (1− α)(F−1(1− α)− µ(F ))2]
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2.2. Optimal Smooth L-estimators

It is natural to ask how should we choose J if we knew F = F0. Assuming two continuous
derivatives of log f0 the answer is,

J0(F0(y)) = −(log f0(y))′′

I(F0)

where I(F0) is Fisher’s Information Number.

Note that, ∫
J0(F0(y))dF (y) = 1

which implies that Tn is location equivariant. (Try proving this assertion.)

To verify that using J0 hits the Crámer-Rao lower bound, note that

IF (x, TJ0
, F0) = −I(F0)

−1[

∫ x

−∞
ψ′0(y)dy −

∫ ∞
−∞

(1− F0(y))ψ′0(y)dy]

= −ψ0(x)

I(F0)
[use the fact that

∫
F0ψ

′
0dy =

∫
ψ0f0dy = 0].

Thus,

EIF 2 =

∫
ψ2
0(x)

(I(F0))2
f0(x)dx =

1

I(F0)
.

5. Some Heuristic Asymptotics for M-estimators

Since
√
n(Fn − F ) = Op(1) and if

T (Fn) = T (F ) +

∫
IF (x, T, F )dFn + o(‖ Fn − F ‖)

we have

√
n(T (Fn)− T (F )) =

√
n

∫
IFdFn +

√
n o(Op(1/

√
n))

=
1√
n

∑
IF (Xi) + op(1)

; N (O,E IF 2(Xi))

where
E IF 2(x) = Eψ2(X)/(Eψ′(X))2

This may be interpreted as the prototypical Huber Sandwich formula.

Useful Exercises

(a) Show that if ψ is optimal, then E IF 2 specializes to the inverse of Fisher’s informa-
tion.

(b) Show that if ψ is not optimal E IF 2 is greater than the inverse of Fisher’s information
and interpret this result.
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Asymptotically Minimax Estimators
Huber(1964) posed the following problem. Let Fε denote the following family of Φ-contaminated

df’s:
Fε = {F |F = (1− ε)Φ + εH, H ∈ H}

where H is the set of df’s symmetric about 0.

Q. What is the least favorable member of Fε, i.e., the member which makes it as difficult as
possible to estimate the center of distribution, i.e., maximizes the asymptotic variance of
the best possible estimator of the location parameter θ from a sample from Fε(x− θ).

A. The answer requires us to minimize, over Fε,

I(F ) =

∫
(f ′/f)2fdx

This is a decidedly nontrivial problem and has the following solution:

f∗(x) =

{
(1− ε)φ(x) x ∈ [−k, k],
c exp{−λ|x|} otherwise.

for some constants, c, λ and k depending on ε. Thus, the least favorable density is Gaussian
in the center and exponential in the tails. It is not easy to find an elementary treatment
of this solution, but recently Jiaying Gu has suggested to me a nice calculus of variations
argument that provides the essentials of the argument. I’ve added this as a new example
to the brief tutorial that I’ve provided for 574 on calculus of variations as Lecture 12a.

The least favorable nature of the exponential is quite interesting – thicker tails than the
exponential are actually informative about θ in a “negative way”. The optimal ψ function
for this least favorable f is the form

ψ(u) = min{k,max{u,−k}}

and is the M-estimator form of the more commonly used L-estimator, the α-trimmed mean.

θ̂n = (1− 2α)−1
∫ 1−α

α
xdFn(x).

The correspondance between ε, k and the trimming proportion α is suggested by some
examples in Table 1. Table 2 provides asymptotic variances for this estimator for various
choices of the trimming proportion α for several scale mixtures of the normal distributions.
Note that although there is a small efficiency loss at the normal model, there is a potentially
large gain from trimming in longer tailed error conditions.

Optimal k’s and α’s for Huber’s
Model of Contamination
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ε k α

0.001 2.63 0.005
0.01 1.95 0.031
0.05 1.40 0.102
0.10 1.14 0.164
0.20 .86 0.256

Asymptotic Variances of Trimmed Least Squares Estimators
for Contaminated Gaussian Distributions

Proportion Relative Trimming Proportion
Contamination Scale 0.0 .05 .10 .25 .50

0.00 1.0 1.00 1.03 1.06 1.19 1.57
0.05 3.0 1.40 1.16 1.17 1.29 1.68
0.05 5.0 2.20 1.20 1.20 1.31 1.70
0.05 10.0 5.95 1.25 1.23 1.33 1.72
0.10 3.0 1.80 1.32 1.30 1.39 1.80
0.10 5.0 3.40 1.46 1.38 1.45 1.85
0.10 10.0 10.90 1.65 1.45 1.49 1.89
0.25 3.0 3.00 2.14 1.85 1.80 2.26
0.25 5.0 7.00 4.11 2.39 2.01 2.45
0.25 10.0 25.75 13.65 3.65 2.19 2.61
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