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Lecture 14
“GEE-GMM”

Throughout the course we have emphasized methods of estimation and inference based on the
principle of maximum likelihood which required a complete specification of the probability model
describing the mechanism generating the data. Even when we considered M-estimations and the
idea of quasi-maximum likelihood in which the specified probability model was admittedly not
the true data generating mechanism, it nevertheless presumed that we had specified a complete
probabilistic model for the data, and KLIC was used to implicitly define the relevant population
parameters of this model.

Occasionally, we have departed from this paradigm. In quantile regression, for example,
we need not provide a fully specified probabilistic model; we require only a specification of the
parametric model describing a single conditional quantile function. Of course, if we proceed to
specify a parametric model for all conditional quantile functions we are back, essentially, to the
framework underlying the MLE. Another example of a partially specified parametric model is, of
course, the classical linear regression model which we may interpret as simply a specification of
the parametric form of the conditional mean function. Strengthening the assumptions to specify
a form for the conditional density at each design point, xi, would complete the full probability
model for the data, but this is certainly not necessary to justify ordinary regression M-estimators.
These examples illustrate the method-of-moments estimation paradigm. A parametric model
is specified by asserting the parametric form of certain observable functions of the data. Then
under certain rank conditions on the Jacobian of these functions, they can be “inverted”, or
“solved” for the parameters of interest.

This approach to estimation has been advanced by Sims and elaborated by Hansen (1982) and
proven highly successful, particularly in addressing specification problems in macroeconomics
where fully parametric statistical models are difficult, but certain orthogonality conditions may
be used to specify identifying moment conditions.

Actually, the prime examples of such specification of models and associated methods of esti-
mation are classical regression and instrumental variables estimators in econometrics. Consider
the linear model,

yi = x′iβ + ui u = 1, . . . , n

and suppose we have instruments, {zi}, so we claim that

Eziui = 0

i.e., that the IV’s are orthogonal to the ui’s and that

Ezix
′
i

is (asymptotically) invertible, requiring at the very least that there be as many coordinates to
zi as to β. If the latter condition is exactly satisfied so we have, β, exactly identified by the

1



orthogonality conditions we can define the IV estimator as

β̂ = (
∑

zix
′
i)
−1∑ ziyi

= (Z ′X)−1Z ′y.

Under the classical condition that
Euu′ = σ2I

it is easy to see that

√
n(β̂ − β) ; N (0, σ2(X ′Z/n)−1Z ′Z/n(Z ′X/n)−1)

provided these matrices are invertible and the Lindeberg condition

max
i
‖ zi ‖2 /

∑
‖ zi ‖2→ 0

holds. (The latter condition is needed for the CLT on n1/2
∑
ziui to apply.)

The condition that the matrix Z ′X/n be invertible, which is really an identifiability condition,
is obviously quite restrictive. In general, we might hope to have more IV’s than elements of β,
i.e., have a parametric model which is overidentified. In this case we can not expect to satisfy
the empirical counterpart of our population orthogonality conditions

EZ ′u = 0

exactly, since we have a system of q > p equations

Z ′û = Z ′(y −Xβ) ≡ m(β)

in only p = dim(β) unknowns. It is reasonable to replace the infeasible requirement that Z ′û = 0,
by the requirement that it be small in some reasonable norm, e.g.,

û′ZA−1Z ′û = min!

The immediate question is then: how should we choose the matrix A and a natural response
would be to set A equal to the inverse of the covariance matrix of the orthogonality conditions,
i.e.,

A = Cov (Z ′u) = EZ ′uu′Z = σ2Z ′Z

This leads to the estimator

β̂ = argmin û(β)′PZ û(β)

= (X ′PZX)−1X ′PZy

where PZ = Z(Z ′Z)−1Z ′ and thus gives us the familiar two stage least squares estimator.
This approach can be extended in various ways. If Euu′ = Ω, then it is clear that we should

take
A = Z ′ΩZ

and β̂ is adapted accordingly. If the “response” function, i.e., the conditional mean function, is
nonlinear in parameters, so for example

ûi(β) = yi − g(xi, β)
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we may still define β̂ as the minimizer

β̂ = argmin û(β)′PZ û(β)

where we now have the nonlinear two stage least squares estimator. It is straightforward to
derive the asymptotic behavior of this estimator using our usual strategy. Let

J = ∇βû(β)

denote the Jacobian matrix of the model, so optimality would require that

J ′PZ û(β) = 0

at β = β̂. Expanding this condition around β = β0, the true parameter and evaluating at β = β̂
we obtain

0 = J ′PZ(û(β0) + J(β̂ − β0)) + (β̂ − β0)′H ′PZ û(β0) +R

where H = ∇2û(β) and R is the remainder.
Then writing

√
n(β̂ − β0) = (J ′PZJ/n+H ′PZ û(β0)/n)−1n−1/2J ′PZ û(β0) + op(1)

and noting that the Hessian term tends to zero we have the linear representation,

√
n(β̂ − β0) = (J ′PZJ/n)−1n−1/2J ′PZ û(β0) + op(1)

and assuming that Eû(β0)û(β0)
′ = σ2I we have

√
n(β̂ − β0) ; N (0, σ2J ′PZJ/n)

How would this change if σ2I were Ω? What should be used in place of PZ for this case? If we
continue to use PZ , we obtain

V = (JPZJ)−1J ′PZΩPZJ(JPZJ)−1

for the limiting form of the covariance matrix. However, as above, if we replace PZ by

P ∗Z = Z(Z ′ΩZ)−1Z ′

then we see that V collapses to
V ∗ = (J ′P ∗ZJ)−1

It is easy to see that V ∗ << V , in the sense of positive definite matrices so P ∗Z is clearly preferred
to PZ . The difficulty, of course, is that we need to estimate Ω or at least the lower dimensional
matrix Z ′ΩZ. This is very much like the familiar Eicker-White problem and can be handled
analogously. In the case of dependence the approach of Newey-West can be adopted.

Inference in GMM estimation
Not surprisingly, GMM inference can be conducted using any of the three approaches already

considered in the discussion of likelihood based inference. Clearly Wald tests based on the large-
sample theory outlined above are possible. The GMM criterion function can itself be used as a
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quasi-likelihood for constructing LR-type tests, and finally we may construct LM tests based on
the gradient of the GMM criterion evaluated at the restricted estimate. Of these approaches,
the LR approach would appear to offer the most attractive strategy, particularly, in situations
in which the objective function may be highly non-quadratic.

Information theoretic approaches to GMM inference
Imbens, Johnson and Spady(1998) considered some alternative approaches to GMM inference

based on information theoretic ideas. Following their notation, suppose we have iid observations
{zi}ni=1 from F and moment conditions

Eψ(Z, θ0) = 0

where θ0 ∈ <p constitutes a unique solution to the q >> p equations

Eψ(Z, θ) = 0

This may be viewed as a GMM problem with criterion function

Q(θ) = n−2ψ′W−1ψ

where ψ = (ψ(zi, θ) and (optimally) we would try to choose W = Eψψ′. As we have seen, the
minimizer of Q(·), say θ̂, satisfies

√
n(θ̂ − θ) ; N (0, H−1JH−1)

where H = E∇ψ, and J = Eψψ′, and furthermore

nQ(θ̂) ; χ2
q−p

which provides a test of over-identifying restrictions. Usually, as we have seen this is accom-
plished in two steps. In the first step we replace W by some preliminary estimate, such as Iq,
and in the second step we use this first stage estimator, say θ̃ to obtain

Ŵ = n−1
∑

ψ(zi, θ̃)ψ(zi, θ̃)
′

and minimize again to obtain θ̂.
An alternative to this two-step procedure is the empirical likelihood (Owen (1988) and Qin

and Lawless (1994)) estimator which solves

max
π,θ

∑
n−1(log πi − log(n−1))

subject to∑
ψ(zi, θ)πi = 0∑
πi = 1.

The solution to this problem may be seen to be the solution to the system of equations

0 =

( ∑
t′∇ψ(zi, θ)/(1 + t′ψ(zi, θ)∑
ψ(zi, θ)/(1 + t′ψ(zi, θ)

)
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where t ∈ <q denotes a vector of q Lagrange multiplier parameters which is called the tilting
parameter. This can be seen as follows by concentrating with respect to the πi’s. Differentiating
wrt πi we obtain

n−1

πi
− λ− t′ψi = 0

multiply by πi and summing, ∑
n−1 −

∑
λπi −

∑
t′ψiπi = 0

Note that the last term is zero and consequently λ = 1 so we have from the first equation

πi =
n−1

1 + t′ψi

substituting back into the constraint and differentiating wrt to θ and t yields the estimating
equations as given. An alternative suggested by Imbens, Johnson and Spady is the exponential
tilting estimator which replaces the empirical likelihood term by

max
π,θ

∑
πi(log(n−1)− log πi)

s.t.
∑

ψiπi = 0∑
πi = 1

Note that this just reverses the prior KL divergence expression. A similar argument to the one
just employed yields the modified estimating equation,

0 =

( ∑
t′∇ψ(zi, θ) exp(t′ψ(zi, θ))∑
ψ(zi, θ) exp(t′ψ(zi, θ))

)
In this approach

πi = et
′ψi/

∑
j

et
′ψj

and our problem becomes

max{−
∑

t′ψi
exp(t′ψi)∑

exp(t′ψi) + log(
∑

exp t′ψi)
+ log(

∑
j

exp(t′ψj))}

s.t.
∑

ψi
exp(t′ψi)∑

exp(t′ψi)
= 0

When the constraints are satisfied the first term is identically zero so we can focus on the second
term which we may recognize as the cumulant generating function of ψ. Thus the problem may
be written more compactly as,

max
t,θ

K(t, θ) s.t. Kt(t, θ) = 0

where Kt = ∂
∂tK(t, θ), higher order derivatives will be denoted similarly Ktθ,Kθθ, etc. Note

that at a solution both Kt(t, θ) = 0 and Kθ(t, θ) = 0. In practice the constrained problem may
be replaced by the unconstrained problem

max
t,θ

K(t, θ)− 1

2
AK ′tW

−1Kt
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where A is a “large” scalar and W is a positive definite matrix of conformable dimension. A
sensible choice of W is

W (t, θ) = Ktt +KtK
′
t

evaluated at some preliminary estimates of t, θ. The form of this matrix is not crucial since at
a solution Kt = 0 and the contribution of the penalty term vanishes. A connection with our
original formulation of GMM may be made here by noting that

θ̂gmm = argmax {−1

2
AKt(0, θ)

′W (0, θ̂)−1Kt(0, θ)}

for some preliminary consistent choice of θ̂, since

W (0, θ) = Ktt(0, θ) +Kt(0, θ)Kt(0, θ)
′

= n−1
∑

ψ(zi, θ)ψ(zi, θ)
′

An important recent development in this direction involves the use of EL methods combined
with Bayesian MCMC ideas to impose prior information in addition to that provided by the EL
framework. An interesting example of this approach is the paper of Yang and He (2012) which
treats quantile regression models in this way.

Testing Overidentifying Moment Conditions
We have already discussed what IJS call average moment tests based on

Tn = nQ(θ̂gmm) ; χ2
q−p.

A second version of this test is based on iterating the estimation of the weight matrix W in
GMM until it is consistent with the one based on the final estimates of θ.

Since the Lagrange multiplier parameter t measures the “marginal cost” of imposing the
moment conditions in terms of the sacrifice in the objective function, it seems natural to consider
tests based on t̂ as well. The large sample theory of (θ̂, t̂) is given by

√
n

(
θ̂ − θ0
t̂

)
; N

((
0
0

)
,

(
(H ′J−1H)−1 0

0 J−1(I −H(H ′J−1H)−1H ′)J−1

))
so we may consider the test statistic

Tn = t̂′V −n t̂

where Vn = J−1(I −H(H ′J−1H)−1H ′)J−1 and V −n denotes any generalized inverse of Vn. Such
tests perform extremely well in monte carlo relative the classical average moment tests which
are commonly used.
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