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Lecture 13
“Monte-Carlo II – Design and Execution”

In a previous lecture we have considered some elementary aspects of random variable gen-
eration. Here we consider questions of experimental design. A general reference is DM - §21.
An important aspect of simulation experiments is their reproducibility. If you look at my web
page you will see a link to some references relevant to this; in particular there is a protocol for
reproducible simulations that I’ve tried to follow in my own work, and there is a joint paper
that I wrote with Achim Zeileis that appeared in the J. of Applied Econometrics that describes
some useful tools for achieving reproducibility. We will begin by discussing general objectives
of MC. First, focusing on estimation then on testing.

Estimation in Monte-Carlo simulations is usually a horse race. We have several model
configurations and we want to know which of several competing estimators do best.

Q1 How to define best?

A1 MSE, often helpful to decompose bias and variance effect.

A2 MAE, sometimes useful particularly when estimators have long tails.

A3 “Pitman closeness” is another criterion, but rarely used in econometrics.

In Pitman (1937) an estimator θ̂n is defined to be a “closer” estimator of θ0 than θ̃n iff,

P [|θ̂n − θ0| < |θ̃n − θ0|] >
1

2

“More than half the time θ̂ is closer to θ0 than θ̃n.

This criterion yields the posterior median as a Bayes estimator.

Example: Problem posed by Schrödinger to Geary in Dublin during WWII∗

In a town, cars are numbered 1, 2, . . . ,m. The numbers on a sample of n cars
are noted. Find the closest estimate of m.

Solution: P (x(n) < mc) ≈ cn so, let m̂ = 21/nx(n), and note

P (m̂ < m) = P (x(n) <
m

21/n
) =

(
1

21/n

)n
=

1

2

so m̂ is median unbiased for m. Half the time it is too big and half the time it is too
small. This problem is related to the literature about capture-recapture models that are
extensively used in biology to estimate population sizes. See for example Efron (2003)
“Robbins, Empirical Bayes and Microarrays” in the Annals of Statistics, where the second
section reviews some earlier literature on this problem and discusses methods for estimating
the size of Shakespeare’s vocabulary.

∗There is a good novel about this whole episode in Schrödinger’s life written by Neil Belton, called A Sharpening
of the Knives. Bill Farebrother has written a paper with some more historical details on this problem.
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Q2 How to estimate MSE?

A1 Approximate
∫

(θ̂n − θo)2dF where θ̂n(X1, . . . , Xn) and F is the joint df of X, by,

1

m

m∑
i=1

(θ̂n(xi1, . . . , x
i
n)− θ0)2

A2 But refinements are frequently worthwhile. I will discuss antithetic variables first.
The idea is simple: we want to estimate something, say µ = E(θ̂− θ0), we have some
way to compute estimates µ̂i, (A1) suggests the naive estimator

1

m

m∑
i=1

µ̂i → µ

But if we could find another estimator µ̌i which was negatively correlated with µ̂i
then since

V (µ̄) ≡ V (
1

2
(µ̂i + µ̌i)) =

1

4
(V (µ̂i) + V (µ̌i) + 2 Cov (µ̂i, µ̌i))

If Cov were less than zero, then this would be less than we would get by performing
two independent experiments. A rather silly example from DM

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ0 + u)

β̌ = (X ′X)−1X ′(Xβ0 − u)

Thus,

β̄ =
1

2
(β̂ + β̌) = β0

The estimators are perfectly negatively correlated and therefore, we have no noise
whatsoever in β̄. In non linear models the above technique of using IU isn’t perfect
but does reduce error somewhat. Another good example is adding vertical lines to
the horizontal ones in the Buffon example.

A3 Control Variates – this is generally more useful. We condition on something clever
and can thereby sometimes drastically reduce the variability.

Recall
E(E(X|W )) = EX

and
V (E(X|W )) + E(V (X|W )) = V (X)

so
V (X) ≥ V (E(X|W ))

Thus averaging E(X|W ) is a better way to estimate EX than just averaging X itself.
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Example 1 Simon Applied Statistics (1976). Suppose W ∼ Poisson (λ) and X ∼
Beta (W,W 2 + 1) and that we would like to estimate EX. Observe that

E Beta (v, w) = v/v + w

so
E(X|W ) = W/(W 2 +W + 1)

so to estimate EX we average E(X|W ) i.e., compute

T = m−1
m∑
i=1

Wi/(W
2
i +Wi + 1)

To evaluate gain we would need to compute

V (E(X|W )) and E(V (X|W ))

we could estimate the former by sample variance of the E(X|W )’s and the latter
using the fact that

V (X|W ) = W (W 2 + 1)/((W 2 +W + 1)2(W 2 +W + 2))

Example 2 An extremely useful example of this strategy is the normal/ind. swindle.
A rather large class of problems can be handled in this way.

2.1 Let X1, . . . , Xn be iid N (µ, 1) and θ̃ = median {Xi’s}. Find V (θ̃). Naively,
we could compute

T =
1

m

m∑
i=1

(θ̃in − θ̃n)2

But here we know that the optimal estimator is θ̂n = X̄n. Note

θ̃n = θ̂n − (θ̂n − θ̃n)

and these two pieces are independent by Problem 4 on Problem Set 3. Thus,

V (θ̃n) = V (θ̂n) + V (θ̃n − θ̂n)

and here V (θ̂n) = 1/n so we can compute average of the θ̃n − θ̂n to get more
efficient estimate.

2.2 What to do in non-normal cases? Often we can condition on a GLS estima-
tor.

A large class of df ’s may be generated as Y = X/Z where X is normal and Z is independent
r.v. so Y |Z ∼ N (0, Z−2).

Examples 1) Z = δσ−1 ⇒ Y ∼ N (0, σ2)

2) Z = (1− ε)δ1 + εδσ−1 Y ∼contaminated normal.

3) Z = |N (0, 1)| Y ∼ Cauchy.
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4) Z =
√
x2q/q Y ∼ Student.

5) Z ∼ U [0, 1] Y ∼ Slash (extreme version of Cauchy)

See Efron & Olshen, Annals (1978), “How broad is the class of normal scale mixtures?”

Now, in general, if we say Y is Cauchy, we wouldn’t know Z so we couldn’t condition,
but in MC if we generate Y , this way we can know Z and we can compute estimators
conditional on Z, e.g., in the linear model

Yi = xiβ + ui

we can think of ui ∼ vi/wi where vi ∼ N (0, 1) and wi ∼
√
χ2
q/q conditional on w’s we

know that
β̂ = (X ′WX)−1X ′Wy

where W = diag (w2
i ) is efficient and has covariance matrix (X ′WX)−1 so we can use this

as control variate just as in the median case, i.e., let

β̃ = β̂ − (β̂ − β̃)

with
V (β̃) = V (β̂) + V (β̂ − β̃)

we know V (β̃) and we estimate the 2nd bit by

m−1
∑

(β̂i − β̃i)(β̂i − β̃i)′

which, if β̃i is good, should be small. Actually, E(X ′WX)−1 may be nontrivial to compute,
but if one is comparing several estimators for which this component is the same one need
not bother with it.

MC For Testing
Inference MC is somewhat more challenging. Some general rules:

1. Contrary to common practice, correct size is rarely sufficient, power is important aspect
of MC evaluation of tests.

2. Power comparisons of tests with different sizes are worthless. But it is generally difficult
to find a good general strategy for size correction.

3. Local alternatives offer a convenient way to design power comparisons for varying n, i.e.,
set θn = θ0 + δ/

√
n with fixed δ, this mimics asymptotic considerations.

Monte-Carlo Swindles for Testing

Ref.: Gross (1977, JASA), Koenker and Portnoy (1987, JASA, L-estimation)

This is really an extended example to illustrate the use of control variates for evaluation of
tests and CI procedures. The setup is like before with

yi = x′iβ + ui ui = zi/vi
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where zi ∼ N (0, 1) and iid, vi is independent. Thus the efficient estimator is

β̂ = (X ′WX)−1X ′Wy W = diag (v2i )

Consider any other translation equivariant estimator β̃, i.e.,

β̃(y +Xγ) = β̃(y) + γ

and scale equivariant estimator s2, i.e.,

s(σy) = σs(y)

The scale estimator s will be used to studentize β̃, typically it would be an estimator of the
asymptotic variance of β̃.

Let α̃ = c′β be an arbitrary linear contrast, then

P (ã > ks) = 1− Φ((ks− α̃+ α̂)/σc)

where â = c′β̂ and σc = c′(X ′WX)−1c. Why? Because, α0 = c′β, and

(∗) α̂ ∼ N (α0, σ
2
c )

Gross Argument

P (ã > ks) = P (ã− â > ks− â)

= P (â > ks− (ã− â))

Now â is conditionally sufficient for α0, so ã− â is conditionally independent of â, so we can
use (*) to evaluate;

P (α̃ > kxi) = 1− Φ

(
ks− (ã− â))

σc

)
By symmetry,

P (α̃ > kxi) = Φ

(
−ks− (ã− â)

σc

)
Averaging these probabilities over several choices of k yields estimates p̂(ki) and then regressing
logit (p̂(ki)) on k to find k∗ such that p(k∗) = α determines the correct critical value needed to

achieve size α for the test. This is considerably more accurate than the naive method. As an
example of the application of this method you might look at Jureckova, Koenker, Welsh Annals
of the Institute of Stat. Math., 1995.
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