Calculus of Variations in a Thimble

Consider the problem of minimizing the functional
o) = [ Pl @)y @) ds
o
we would like to find a function y(x) to solve this problem. To do this we
consider a one-parameter family of functions
y(z,a) = y(z) + ady(z)

where dy denotes some perturbation of the function y(k) and « is a scalar
denoting the magnitude of the perturbation. Obviously,

y(z,0) = y(z)
so if we limit our optimization only to curves of the form y(x, «), then, we would
require,
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otherwise we could improve by moving y in the direction dy. Thus,
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Integrate the second summand,
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Similarly integrating twice
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and so forth, so the £ term is,
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If we insist that the boundary conditions be satisfied for y(x), then it follows
that 6y = 0y’ = 6y” = ... = 6y*~! = 0 at both zy and z, so this drastically

simplifies to,
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But Jy is arbitrary, so the only way that this can hold is if the factor in
parentheses is identically zero. So we require
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This is the Euler or Euler-Poisson equation. It plays the same role as the usual
first-order conditions for finite dimension optimization. In effect it is a (not-
so-obvious) generalization of the usual requirement that directional derivatives
should be zero in all directions, provided that the objective function is suit-
ably smooth. In non-smooth cases then we need more sophisticated optimality
criteria, obviously.

Fy(k) =0.

Ezxample 0 In the Epanechnikov case,

min/KQ(m)dx s.t. /K(x) = L/xK(x) :0,/x2K(x) =1

or
mim/(K2 + oK 4+ pxK 4 pox? K)dx

The Euler condition is simple since there are no derivatives,

2K + puo + @ + paa® =0
= K(x):a+bx+cx2

and now we need to find a, b, c to satisfy our constraints. Note that there is,
as we said in class, some technical issues about the bounded support of the K
solution.

Ezample 1

vly] :/o 1+ (" (@)))da st y(0),y'(0) =1,y(1) = 1,5/(1) =1

The Euler condition is
d2
@2y”(w) =0 or y @ =0

so this implies that y(x) is cubic and the boundary conditions require that

y(z) = 3.

Ezample 2
/2
oly] = / (2P +a2)da st y(0) = 1,4/(0) = 0,y(m/2) = 0,4/ (n/2) = —1,

which has Euler condition,
yW—y=0



which has the general solution,
y=Cre® +Coe 4+ Czcosx + Cysinx

but when one enforces the boundary conditions it can be seen that Cy = Cy =
C4 = 0, so the solution is simply, y = cosx.

Ezample 8 A more serious statistical example yields Huber’s (1964) M-estimator.
Huber posed the following problem: suppose we have iid observations from the
contaminated distribution,

Flz—60)=(1—-¢e)®(x—6)+eH(z—0)

where @ is the standard normal df, and H is an arbitrary, symmetric distribu-
tion. We would like to estimate 6, the center of symmetry, what is the least
favorable H? That is, what is the H that makes it most difficult? This is
a decidedly non-trivial problem, and Huber’s solution came as something of a
surprise to the statistical community. It might be expected that the least fa-
vorable distribution would be very heavy tailed, but Huber’s solution is only
mildly heavy tailed.

It is difficult to find an elementary derivation of Huber’s solution, the de-
velopment in Huber (1981) makes very clever use of Cauchy-Schwartz, but is
rather opaque, at least from my perspective. The following argument, suggested
to me by Jiaying Gu, provides the essential insights.

Let f denote the density of the contaminated distribution F'. We would like
to minimize the Fisher information for location over possible f’s, that is, to
solve,

min{I(f) | / f=1}

or in the formalism of the prior development, to minimize,

olf] = / (F'/)2F + Af)da.

The Euler condition is thus,
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Now, note that this differential equation is solved for f(z) = %e*m, or any
scale dilation of this f, with A = 1, or another scale constant, if f has been
rescaled. Thus, the least favorable model is the double exponential (Laplace)
model. 1\2Tote that this f has heavier tails than the Gaussian, like e rather
than e~*"/2, but much lighter than the usual algebraic (Pareto) tails we might
have expected.

But we are not done yet since the Laplace model is not of the require con-
tamination form. How are we to find an H, or its corresponding density h to



satisfy this requirement? Since h(z) must be non-negative for all z, we have the
additional constraint that, for all x,

f(@) = (1 = e)p(x)

so it is now “clear” that all the mass of h should concentrate in the tails of f,
and it is just a matter of solving for Huber’s mysterious & where the Gaussian
and Laplacian pieces join together. This is a matter of carefully adjusting k
so we get the “right” amount of contamination. The resulting least favorable
density has exponential tails beyond +k and satisfies,

f(@) = (1 - e)p(x)

on the interval [—k, k]. The required h puts no mass on this inner interval and
just enough in the outer intervals to raise the tails from Gaussian to Laplacian.



