
Calculus of Variations in a Thimble

Consider the problem of minimizing the functional

v[y(x)] =

∫ x1

x0

F (x, y(x), y′(x), . . . , y(k)(x))dx

we would like to find a function y(x) to solve this problem. To do this we
consider a one-parameter family of functions

y(x, α) = y(x) + αδy(x)

where δy denotes some perturbation of the function y(k) and α is a scalar
denoting the magnitude of the perturbation. Obviously,

y(x, 0) = y(x)

so if we limit our optimization only to curves of the form y(x, α), then, we would
require,

d

dα
v[y(x, α)] = 0

otherwise we could improve by moving y in the direction δy. Thus,

δv =

∫ x1

x0

(Fyδy + Fy′δy
′ + . . .+ Fy(k)δy(k))dx = 0

Integrate the second summand,∫
Fy′δy

′dx = Fy′δy|x1
x0
−
∫

d

dx
Fy′δy

Similarly integrating twice∫
Fy′′δy

′′dx = Fy′′δy
′|x1
x0
− d

dx
Fy′′δy +

∫
d2

dx2
Fy′′δydx

and so forth, so the kth term is,∫
Fy(k)δy(k)dx = Fykδy

k−1|x1
x0
− d

dx
Fy(k)δy(k−2)|x1

x0

. . .+ (−1)n
∫

dk

dxk
Fy(k)δydx.

If we insist that the boundary conditions be satisfied for y(x), then it follows
that δy = δy′ = δy′′ = . . . = δyk−1 = 0 at both x0 and x1, so this drastically
simplifies to,

δv =

∫ x1

x0

(Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ + . . .+ (−1)k

dk

dxk
Fy(k))δydx
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But δy is arbitrary, so the only way that this can hold is if the factor in
parentheses is identically zero. So we require

Fy −
d

dx
Fy′ +

d2

dx2
+

d2

dx2
Fy′′ + . . .+ (−1)n

dk

dxk
Fy(k) = 0.

This is the Euler or Euler-Poisson equation. It plays the same role as the usual
first-order conditions for finite dimension optimization. In effect it is a (not-
so-obvious) generalization of the usual requirement that directional derivatives
should be zero in all directions, provided that the objective function is suit-
ably smooth. In non-smooth cases then we need more sophisticated optimality
criteria, obviously.

Example 0 In the Epanechnikov case,

min

∫
K2(x)dx s.t.

∫
K(x) = 1,

∫
xK(x) = 0,

∫
x2K(x) = 1

or

min

∫
(K2 + µ0K + µ1xK + µ2x

2K)dx

The Euler condition is simple since there are no derivatives,

2K + µ0 + µ1x+ µ2x
2 = 0

⇒ K(x) = a+ bx+ cx2

and now we need to find a, b, c to satisfy our constraints. Note that there is,
as we said in class, some technical issues about the bounded support of the K
solution.

Example 1

v[y] =

∫ 1

0

(1 + (y′′(x))2)dx s.t. y(0), y′(0) = 1, y(1) = 1, y′(1) = 1

The Euler condition is

d2

dx2
2y′′(x) = 0 or y(4) = 0

so this implies that y(x) is cubic and the boundary conditions require that
y(x) = x3.

Example 2

v[y] =

∫ π/2

0

((y′′)2−y2+x2)dx s.t. y(0) = 1, y′(0) = 0, y(π/2) = 0, y′(π/2) = −1,

which has Euler condition,
y(4) − y = 0
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which has the general solution,

y = C1e
x + C2e

−x + C3 cosx+ C4 sinx

but when one enforces the boundary conditions it can be seen that C1 = C2 =
C4 = 0, so the solution is simply, y = cosx.

Example 3 A more serious statistical example yields Huber’s (1964) M-estimator.
Huber posed the following problem: suppose we have iid observations from the
contaminated distribution,

F (x− θ) = (1− ε)Φ(x− θ) + εH(x− θ)

where Φ is the standard normal df, and H is an arbitrary, symmetric distribu-
tion. We would like to estimate θ, the center of symmetry, what is the least
favorable H? That is, what is the H that makes it most difficult? This is
a decidedly non-trivial problem, and Huber’s solution came as something of a
surprise to the statistical community. It might be expected that the least fa-
vorable distribution would be very heavy tailed, but Huber’s solution is only
mildly heavy tailed.

It is difficult to find an elementary derivation of Huber’s solution, the de-
velopment in Huber (1981) makes very clever use of Cauchy-Schwartz, but is
rather opaque, at least from my perspective. The following argument, suggested
to me by Jiaying Gu, provides the essential insights.

Let f denote the density of the contaminated distribution F . We would like
to minimize the Fisher information for location over possible f ’s, that is, to
solve,

min{I(f) |
∫
f = 1}

or in the formalism of the prior development, to minimize,

v[f ] =

∫
((f ′/f)2f + λf)dx.

The Euler condition is thus,

−
(
f ′

f

)2

+ λ− d

dx

2f ′

f
= −

(
f ′

f

)2

+ λ− 2
f ′′f − (f ′)2

f2
= 0.

Now, note that this differential equation is solved for f(x) = 1
2e
−|x|, or any

scale dilation of this f , with λ = 1, or another scale constant, if f has been
rescaled. Thus, the least favorable model is the double exponential (Laplace)
model. Note that this f has heavier tails than the Gaussian, like e−x rather
than e−x

2/2, but much lighter than the usual algebraic (Pareto) tails we might
have expected.

But we are not done yet since the Laplace model is not of the require con-
tamination form. How are we to find an H, or its corresponding density h to
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satisfy this requirement? Since h(x) must be non-negative for all x, we have the
additional constraint that, for all x,

f(x) ≥ (1− ε)φ(x)

so it is now “clear” that all the mass of h should concentrate in the tails of f ,
and it is just a matter of solving for Huber’s mysterious k where the Gaussian
and Laplacian pieces join together. This is a matter of carefully adjusting k
so we get the “right” amount of contamination. The resulting least favorable
density has exponential tails beyond ±k and satisfies,

f(x) = (1− ε)φ(x)

on the interval [−k, k]. The required h puts no mass on this inner interval and
just enough in the outer intervals to raise the tails from Gaussian to Laplacian.
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