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Lecture 12
Asymptotic Relative Efficiency of Tests: ARE on a G String

In this lecture I want delve a bit more deeply into the problem of comparing performance of
various tests. Among other things I will try to provide an exposition of Chernoff’s (1952) result
employed in Lars Hansen’s talks here several years ago. The lecture is based on van der Vaart
(1998, Chapter 14).

Consider the problem of testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1, using a test statistic Tn that
rejects H0 if Tn falls into the critical region Kn. The power function of the test is the function,

πn(θ) = Pθ(Tn ∈ Kn),

which describes how the probability of rejection depends upon the parameter θ, and the sample
size, n. We say the test is of level α, or has size α, if

sup
θ∈Θ0

πn(θ) ≤ α

For a given sample size, n, we say that a test with power function πn is better than a test with
power function π̃n if

πn(θ) ≤ π̃n(θ) θ ∈ Θ0

and
πn(θ) ≥ π̃n(θ) θ ∈ Θ1

and for some θ the inequalities hold strictly. These considerations simply require that the Type
I and Type II errors be smaller for the π0(θ) test than the π̃n(θ) test. Unfortunately, this is very
hard to verify, so we revert to asymptotic comparisons. The first strategy to suggest itself is to
consider the limiting power function

π(θ) = lim
n→∞

πn(θ)

Usually, however, this isn’t really very informative as the next example indicates.

Example (Sign Test): Consider a random sample X1, . . . , Xn from a distribution with
unique median. The hypothesis H0 : θ = 0 can be tested against H1 : θ > 0 using the sign
statistic

Sn = n−1
n∑
i=1

I(Xi > 0)

If F (x− θ) is the df of the X ′s, then

ESn = 1− F (−θ) ≡ µ(θ)
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V Sn = (1− F (−θ))F (−θ)/n = σ2(θ)

and using the normal approximation of the binomial

√
n(Sn − µ(θ))/σ(θ) ; N (0, 1).

Under H0, µ(0) = 1/2 and σ2(0) = 1/4 so we have

√
n(Sn − 1/2) ; N (0,

1

4
)

So a test that rejects H0, if Tn =
√
n(Sn − 1

2) exceeds the critical value 1/2zα = 1/2Φ−1(1− α)
has the power function,

πn(θ) = Pθ(
√
n(Sn − µ(θ)) >

1

2
zα − (µ(θ)− µ(0)))

= 1− Φ

(
1
2zα −

√
n(F (0)− F (−θ))
σ(θ)

)
+ o(1).

But if F has a unique median, F (0) − F (−θ) > 0 for every θ > 0, so for any sequence αn → 0
sufficiently slowly

πn(θ)→
{

0 if θ = 0
1 if θ > 0,

thus we find that the limiting power function of the sign test is perfect in the sense that the
error probabilities of both types can be seen to both tend to zero simultaneously.

A test is said to be consistent, if it has power function πn(θ)→ 1 for all θ ∈ Θ1. The sign test
is consistent in this sense, but many other tests, like the familiar t-test of H0 are also consistent
so we need a more revealing criterion. Last week we introduced Pitman’s idea of considering
sequences of alternatives local to H0.

Example: Let’s see how this works in the sign test case. Now we have H1 : θ = θn and

πn(θn) = 1− Φ

(
1
2zα −

√
n(F (0)− F (−θn))

σ(θn)

)
+ o(1)

Since σ(0) = 1/2, we see that the level of the test,

πn(0)→ α.

Now consider the power. If θn → 0 slowly, say like 1/log n we have that

√
n(F (0)− F (−θn)) =

√
nf(0)(log n)−1 →∞

so πn(θn)→ 1 for such sequences. But if θn = h/
√
n, then we have

πn(θn)→ 1− Φ(zα − 2hf(0))

and the asymptotic power function tends to 1 as h→∞.
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This can be formulated somewhat more generally as follows. Suppose that we have a statistic
Sn such that for all sequences of local alternatives θ = h/

√
n we have

(∗)
√
n(Sn − µ(θn))

σ(θn)
; N (0, 1)

where this convergence in distribution must be demonstrated under the whole sequence of models
corresponding to θn = h/

√
n. This entails that under H0,

√
n(Sn − µ(0)) ; N (0, σ2(0)) so a

test of H0 would reject if
√
n(Sn − µ(0)) > σ(0)zα and we would have

π0(θn) = Pθn(
√
n(Sn − µ(θn)) > σ(0)zα −

√
n(µ(θn)− µ(0)))

so for θn = h/
√
n we have, for differentiable µ,

πn

(
h√
n

)
→ 1− Φ

(
zα − h

µ′(0)

σ(0)

)
The quantity µ′(0)/σ(0) is the slope of the test since it measures how the probabilities change
with h. If we have two tests that both can be expressed in this way, clearly we can compare
them based solely on their slopes.

Example: The slope of the sign test we have already seen is 2f(0). If we now compare this
with the usual t-test of H0, for which

√
n(
X̄n

S
− µ(θn)) ; N (0, σ2(θn))

where µ(θ) = θ/σ, so µ(h/
√
n) = n−1/2h/σ, and σ(θ) = 1, so the slope of the t-test is simply

1/σ. So to compare the t-test and the sign test we need to compare 2f(0) with σ. This is done
for several choices of f in the Table below.

Distribution ARE (sign-test)/t-test

logistic π2/12
Normal 2/π
Laplace 2
Cauchy ∞
Uniform 1/3

An important interpretation of the ratios of slopes given in the previous table can be for-
mulated in terms of the required sample sizes needed to achieve a specified level α, and power
γ. Suppose for the moment that we could compute the precise finite sample power functions for
two competing tests and let nν denote the sample size required to achieve,

πnν (0) ≤ α and πnν (θν) ≥ γ

Clearly we prefer tests for which nν is smallest. If it exists, we will call

lim
ν→∞

nν,2
nν,1

= ARE
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the asymptotic relative efficiency, or Pitman efficiency, or just efficiency of the two tests. If
ARE = 2, it means that twice as many observations are needed by test 2, than by test 1 to
achieve a given level of performance.

Before stating the next result we must introduce the notion measuring the distance between
absolutely continuous measures P,Q by their total variation distance

||P −Q|| =
∫
|p− q|dµ.

Recall that the total variation of an absolutely continuous function f is given by

TV (f) =

∫
|f ′|dµ.

Theorem: Consider models Pn,θ such that ||Pn,θ − Pn,0|| → 0 as θ → 0, for all n. Let
Tn,1 and Tn,2 satisfy (∗) for sequences {θn} tending to 0 with functions µi, σi i = 1, 2, and
µ′i(0) > 0, σ(0) > 0 then

ARE =

(
µ′1(0)/σ1(0)

µ′2(0)/σ2(0)

)2

Proof: We first establish that nν,i → ∞, as ν → ∞. Let α, β denote that Type 1 and 2
probabilities and write

α+ β =

∫
Kn

dPn,0 +

∫
Kc
n

dPn,θν

= 1 +

∫
Kn

(Pn,0 − Pn,θν )dµn

To find Kn, we minimize and set the critical region, Kn = {Pn,0 < Pn,θν}. Substituting this
back in, yields,

α+ β = 1− 1

2
||Pn,0 − Pn,θν ||.

But the rhs tends to 1 for any bounded sequence of n = nν .
Since nν,i →∞, we can employ the normal approximation,

πnν,i(θν) = 1− Φ(zα + o(1)−√nν,iθν
µ′i(0)

σi(0)
(1 + o(1))) + o(1)

So the power of the tests tends to γ < 1 iff the expression inside Φ(·) tends to zγ , but this
implies that

lim
ν→∞

nν,2
nν,1

=
nν,2θ

2
ν

nν,1θ2
ν

=
(zα − zγ)2/(µ′2(0)/σ2(0))2

(zα − zγ)2/(µ′1(0)/σ1(0))2

And the result follows. 2

As usual, the multivariate version of this result follows the same line of argument except
now the limiting form of the test is χ2 and the ARE ratio of limiting sample sizes is simply the
ratio of the non-centrality parameters. This can be formalized by replacing (∗) by the condition

(∗∗) n(Sn − µ(θn))′Ω(θn)−1(Sn − µ(θn)) ; χ2
P
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So our test would reject if

Tn = n(Sn − µ(0))′Ω−1
0 (Sn − µ(0)) > χ2

P,α

so
πn(θn) = 1−GP (χ2

P,α − n(µ(θn)− µ(0))′Ω−1
0 (µ(θn)− µ(0)))

and for θn = h/
√
n we have, again for differentiable µ(·),

πn

(
h√
n

)
→ 1−GP (χ2

P,α − h′Ω−1
0 h)

where GP is the df of the χ2
P r.v.

Although Pitman efficiency is most commonly used in econometrics, there are other possi-
bilities as well. We might consider a general form of relative efficiency as

lim
ν→∞

n2(αν , γν , θν)

n1(αν , γν , θν)

Pitman fixes αν and γν , and lets θν drift toward θ0 = 0. Bahadur efficiency considers

lim
ν→∞

n2(αν , γ, θ)

n1(αν , γ, θ)
= BARE

So the alternative and power are fixed and αν → 0. Typically, BARE depends upon γ and
θ but not on how αν → 0. The underlying theory of BARE is fundamentally different than
Pitman ARE. While Pitman ARE is based on familiar CLT considerations BARE is based on
large deviation results.

The usual situation is as follows. Suppose we are testing H0 : θ = 0, by rejecting for large
values of Tn, and that for all t,

(i) − 2

n
logP0(Tn ≥ t)→ e(t)

and

(ii) Tn → µθ under Pθ.

The function H(t) = P0(Tn ≥ t) is called the observed significance level of the test. If we
evaluate H(t) at the random t = Tn we have a random variable that is uniformly distributed,
under H0. This is potentially confusing since it seems that P0(Tn ≥ Tn) = 1, but recall that if
X has df F (x) = P (X ≤ x), then the r.v. U = F (X) is U [0, 1]. For a fixed alternative, say θ,
H(t)|t=Tn → 0 at an exponential rate. In particular, under (i. - ii.) we have,

− 2

n
logP0(Tn ≥ t)|t=Tn

Pθ→ e(µ(θ))

and the quantity e(µ(θ)) is called the Bahadur slope of the test, and the ratio of two such slopes
is the BARE.

The primary tool needed for evaluating BARE’s is the large-deviation results (i.). For sample
means this follows from the following result due to Cramér (1938) and Chernoff (1952).

5



Theorem: Let Y1 . . . , Yn be iid with cumulant generating function K. Then for every t,

n−1 logP (Ȳn ≥ t)→ infu≥0(K(u)− tu)

Proof: We can restrict attention to the case t = 0, since the cgf of Yi − t is K(u)− ut. By
Markov’s inequality, for every u ≥ 0,

P (Ȳn ≥ 0) = P (eunȲn ≥ 1) (eun)Ȳn ≥ (eun)0

≤ EeunȲn (Markov)

= enK(u) ∗

Thus,
n−1 logP (Ȳn ≥ t) ≤ infu≥0(K(u)− tu).

The lower bound is a bit more complicated. We first dispense with some special cases:

1. If P (Yi < 0) = 0, then K(u) is increasing on < and inf K(u) = 0, attained at u = 0, but
n−1 logP (Ȳ ≥ 0) = 0 for every n so all is well.

2. If P (Yi > 0) = 0, then K(u) is decreasing on < with K(∞) = logP (Yi = 0) =
n−1 logP (Ȳn ≥ 0) so the claim is justified in this case also.

3. Now consider the case in which K(u) is finite for every u ∈ <. Then we can differentiate
under the integral

K(u) = log

∫
euydF (y)

to obtain

K ′(u) =

∫
yeuydF∫
euydF

so
K ′(0) = EY1

Since the Yi’s take both positive and negative values (points 1.) and 2.) above allow us to
dispense with the contrary case) we can conclude that K(u) → ∞ as u → ±∞, and thus [inf
K(u)] is attained at a point u0 such that K ′(u0) = 0.

Case 1: If u0 < 0, convexity of K(u) implies that K is nondecreasing on [u0,∞). This means
that K attains its minimum over u ≥ 0 at 0, where K(0) = 0. But EY1 = K ′(0) > K ′(u0) = 0
and therefore P (Ȳ ≥ 0) → 1 by SLLN and limit of left side is 0, so again the claim of the
theorem is again vindicated.

Case 2: If u0 ≥ 0, let Z1, . . . , Zn be iid r.v’s with

dPZ(z) = e−K(u0)eu0zPY (z)

∗EeunȲn = EeuΣYi = (M(u))n,M(u) = elogM(u) = eK(u), (M(u))n = enK(u).
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then Z1 has cgf K(u0 + u)−K(u0) since

logEeuZ = log

∫
euze−K(u0)+u0zdPY (z)

= K(u0 + u)−K(u0)

and as before EZ1 = K ′(u0) = 0. Thus, for every ε > 0,

P (Ȳn ≥ 0) = EI(Z̄n ≥ 0)e−u0nZ̄nenK(u0)

≥ P (0 ≤ Z̄n ≤ ε)e−u0nεenK(u0)

where the P (·) term on the lhs is bounded away from 0, by the fact that EZ1 = 0. From this
we may conclude that

limn−1[logP (0 ≤ Z̄n ≤ ε)− u0nε+ nK(u0)] ≥ K(u0)− u0ε

and since this is true for all ε > 0, it is also true for ε = 0. The proof is completed by a
truncation argument that removes the restriction to finite K(u). See van der Vaart, p. 206, for
details.

We illustrate this result by reconsidering the likelihood ratio statistic. Let Y = log(pθ/pθ0)
and note that Y has cgf

K(u) = logEeuY = logEeu log(pθ/pθ0 )pθ0dµ

= log

∫
puθp

1−u
θ0

dµ

For 0 ≤ u ≤ 1,K(u) is finite and formally differentiating we have

K ′(u) =

∫
puθp

1−u
θ0

log(pθ/pθ0)dµ∫
puθp

1−u
θ0

dµ

so
K ′(1) = Eθ log(pθ/pθ0) = KLIC(pθ, pθ0) ≡ µ(θ)

Thus,

n−1 logP (Ȳn ≥ µ(θ)) → infu≥0(K(u)− uµ(θ))

= K(1)− µ(θ)

so the Bahadur slope, e(µ(θ)), is

− 2

n
logP (Ȳn ≥ µ(θ)) → −2(K(1)− µ(θ))

= 2µ(θ).

since K(1) = log
∫
pθdµ = 0. 2

This is sometimes called Stein’s lemma, and is one of many significant results Stein never
published. It shows that the Bahadur slope of the likelihood ratio test is 2×KLIC.
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Rescaling Rates
The Pitman drift formulation in which H1 : θn = h/

√
n is typical in parametric problems,

here we consider some more general situations.

Lemma: The power function πn(θ) of any test satisfies,

πn(θ)− πn(θ0) ≤ 1

2
||Pn,θ − Pn,θ0 ||

where ||P −Q|| =
∫
|p− q|dµ is the total variation distance between P and Q

Proof Let φn(·) denote a test, i.e., an indicator function that rejects if φn = 1 and = 0
otherwise. Then

πn(θ)− πn(θ0) =

∫
φn(x)(pn,θ(x)− pn,θ0(x))dµ(x)

This expression is maximized by choosing

φn(x) = I(pn,θ(x) > pn,θ0(x))

but for any pair of densities p, q ∫
q>p

(q − p)dµ =
1

2

∫
|p− q|dµ

since
∫

(p− q)dµ = 0. 2

There is a nice connection between TV distance and Hellinger distance. Recall

H2(P,Q) =

∫
(
√
p−√q)2dµ = 2− 2

∫
√
p
√
qdµ

The last integral is sometimes called the Hellinger affinity. For product measures this extends
nicely as,

H2(Pn, Qn) = 2− 2(1− 1

2
H2(P,Q))n

This follows from the prior expression and the use of Fubini to write,

A(Pn, Qn) =

∫
pn/2qn/2dµ

= (

∫
p1/2q1/2dµ)n
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