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Lecture 11
“Asymptotic Theory of Testing”
(Introduction to the Holy Trinity)

The likelihood ratio test

Suppose we begin with a problem of testing a simple null hypothesis

H0 : θ = θ0

against
H1 : θ 6= θ0

For a specific alternative, θ = θ1, we “know” that the best test of H0 has critical regions of the
form, (Neyman-Pearson Lemma), {

z | L(θ1, z)

L(θ0, z)
> c

}
When the alternative is not simple, then we can sometimes achieve a uniformly most powerful
UMP test by using critical regions of the form{

z | L(θ̂n, z)

L(θ0, z)
> c

}

where θ̂n denotes the MLE. Note that we simply replace L evaluated at the specific alternative
with L evaluated at the best alternative as selected by the principle of maximimum likelihood.
For finite n, it is typically difficult to find the exact distribution of the likelihood ratio, but the
situation is nice in the following extended example.

Remark: Economist’s Heuristics for the Neyman-Pearson Lemma
Cosma Shalizi of Carnegie Mellon has suggested the following nice heuristic argument for

the optimality of likelihood ratio tests. We want to choose a rejection region, R such that under
the alternative hypothesis, the probability of falling into R, which we will denote, Q(R) is as
large as possible, given that we satisfy a constraint that the probability falling into R under the
null hypothesis, denoted by P (R) doesn’t exceed some specified level α. Then Lagrange tells us
to solve,

max{Q(R)− λ(P (R)− α}

over R and λ. Note that the first term, usually called the power of the test is a Good Thing, and
the second term involving P (R), usually called the type I error is a Bad Thing, hence the minus
sign before the Lagrange multiplier to make the terms of commensurate goodness. Now it looks
like we have a very high dimensional problem involving choice the the set R and the real value λ,
which would lead us into the thickets of the calculus of variations. But if we think of this problem
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as choosing R to maximize benefits minus costs, the inscrutable logic of economics tells us that
we need to set marginal benefit equal to marginal cost. And if we interpret this in the present
context to mean that small changes in the size of R should equate the change in Q(R) with λ
times the change in P (R), we see that this is equivalent to the rule that ∆Q(R)/∆P (R) = λ on
the boundary of R. Thus the Lagrange multiplier λ is seen to be the critical value of a test, or
the shadow price of power in units of Type I error. In differentiable settings the dQ/dP object
is just the ratio of the densities giving us the likelihood ratio.

Example: Linear Model

Suppose y = xβ + ε with ε ∼ N (0, σ2I) and σ2 known. We would like to test H0 : β = β0.
The MLE is β̂ = (X ′X)−1X ′y, the likelihood is,

L(β, y) = (2πσ2)−n/2 exp{−
∑

(yi − xiβ)2/2σ2}

so,

λ ≡ L(β̂, y)/L(β0, y) = exp{ 1

2σ2
(β̂ − β0)′(X ′X)(β̂ − β0)}

and
2 log λ = (β̂ − β0)′(X ′X)(β̂ − β0)/σ2

But under H0, β̂ ∼ Np(β0, σ2(X ′X)−1) so 2 log λ ∼ χ2
p. Thus, an exact level α test may be

constructed by rejecting H0 when 2 log λ exceeds the α critical value of χ2
p. When σ2 is unknown,

we do essentially the same thing, but replace σ2 with s2 and look up the critical value in Fp,n−p,
rather than χ2

p.

Digression on non-central χ2. If Z1, . . . , Zp are independently distributed as
N (ξi, σ

2), then
∑p
i=1 Z

2
i /σ

2 ∼ χ2
p(δ) non-central χ2 with p degrees of freedom and

noncentrality parameter δ where δ =
∑
ξ2i /σ

2. Caveat: Sometimes
√
δ is used, or

δ2/2, depending upon what the author had for breakfast. More generally, if the
p-vector Z is N (ξ,Ω), then Z ′Ω−1Z ∼ χ2

p(δ), where δ = ξ′Ω−1ξ.

Q. What happens in this case as n → ∞? A. When H0 is true, then nothing much happens,

i.e., 2 log λ is χ2
p(0), i.e. central chi-square for all n. But, if H0 is false, so β = β1 6= β0, then,

β̂ ∼ N (β1, σ
2(X ′X)−1) and therefore, β̂−β0 ∼ N (β1−β0, σ2(X ′X)−1) we have 2 log λ ∼ χ2

p(δn)
where δn = (β1 − β0)′(X ′X)(β1 − β0)/σ2. What happens to δn as n → ∞. Of course, this
depends upon what happens to (X ′X). Our standard assumption on X is

lim
n→∞

n−1X ′X = D >> 0.

so for large n we have
δn ≈ n(β1 − β0)′D(β1 − β0)/σ2

Thus, for larger and larger n, Eχ2
p(δ) = p+ δ and V χ2

p(δ) = 2p+ 4δ so both mean and variance
are blowing up. What does this imply about Probability of Type II error, i.e., probability of
saying H0 is true when it isn’t? It goes to zero, and we say the test is consistent.
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Suggested Exercise: Use Chebyshev and the moments above to prove this.
This isn’t a very satisfactory state of affairs, since it does not really provide sufficient detail

about what the probability of a type II error is. To compare tests we’d like to investigate power
under a more challenging state of affairs. For fixed alternatives and fixed significance levels, life
is too easy, and all we can say is that eventually we will reject H0 if it is false.

There are three approaches to studying the asymptotic power of tests:

(i) let α→ 0 (Bayes)
(ii) look at rates at which power → 1 (Bahadur)
(iii) let the alternative shrink toward θ0 (Pitman)

We will focus on the third. Suppose instead of fixing the alternative β = β1 we choose instead
a “sequence of local alternatives,” so β1 = β0 + ξ/an where {an} is a sequence → ∞, chosen
to stabilize the power of the test. In the present example the obvious choice is an =

√
n, i.e.,

β0 + ξ/
√
n. Since, then

2 log λ = (β̂ − β0)(X ′X)(β̂ − β0)/σ2 → χ2
p(δ0)

where δn = n−1ξ′(X ′X)ξ → ξ′Dξ ≡ δ0. This concludes the normal linear model example.

General theory of Likelihood Ratios 2 log λ.
We will begin by considering the scalar case, and then generalize. Expanding around θ̂,

under H0,

l(θ0) = l(θ̂) + (θ0 − θ̂)l(θ̂) +
1

2
(θ0 − θ̂)2l′′(θ∗)

where |θ∗ − θ0| ≤ |θ̂ − θ0| so

2 log λ = 2(l(θ̂)− l(θ0))

= 2{l(θ̂)− l(θ̂)− (θ0 − θ̂)l′(θ̂)−
1

2
(θ0 − θ̂)2l′′(θ∗)}

= −(θ̂ − θ0)2l′′(θ∗).

But, since θ̂
p→ θ0, n

−1l′′(θ∗)
p→ −I(θ0) and

√
n(θ̂ − θ0)

D
; N (0, I(θ0)

−1) we have

2 log λ = −n(θ̂ − θ0)2(
1

n
l′′(θ∗)) ; χ2

1(0)

The Wald Test

The Wald test based on the discrepancy (θ̂−θ0) obviously has the same asymptotic behavior
under H0 and H1 as 2 log λ.

The Rao Test

This form of the test is also known as the score or Lagrange-multiplier test and is based on
the size of the gradient in the direction of the alternative when evaluated at the null. Expand
l′(θ0) around θ = θ̂ to obtain

l′(θ0) = l′(θ̂) + (θ0 − θ̂)l′′(θ̂) +
1

2
(θ0 − θ̂)2l′′′(θ∗)
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or

√
n

1

n
l′(θ0) = −

√
n(θ̂ − θ0)(

1

n
l′′(θ̂)) +

1

2

√
n(θ0 − θ̂)2

1

n
l′′′(θ∗)

p→
√
n(θ̂ − θ0)I(θ0)

; N (I(θ0)ξ, I(θ0))

hence,
1

n
(l′(θ0))

′I(θ0)
−1l′(θ0)

D
; χ2

p(δ)

or equivalently,

−(l′(θ0))
′(

1

n
l′′(θ0))

−1l′(θ0)
D
; χ2

1(δ).

The expansion shows that this is asymptotically equivalent to the other two tests under H0 and
H1.

Why is the LM test called the Lagrange multiplier test? Suppose we consider the simple
case

max l(θ)− λ(θ − θ0)

we get first order condition l′(θ0) = λ so the test based on the score function is the same as the
test based on the Lagrange multiplier. This generalizes in a nice way, see GM section 17.2.2.
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Multivariate Extensions

Now suppose that Θ ∈ |R2, and H0 : θ = θ0 and Hn : θ = θn = θ0 + ξ/
√
n.

Theorem: (Asymptotic Equivalence of the Holy Trinity) Under the Lehmann Conditions, and
Hn, the test statistics

W = n(θ̂n − θ0)′I(θ0)(θ̂n − θ0)
LR = 2(l(θ̂n)− l(θ0))
LM = n−1(∇l(θ0))′I(θ0)

−1∇l(θ0)

all converge in distribution to χ2
p(δ), with δ = ξ′I(θ0)ξ

Proof: Under Hn,
√
n(θ̂n−θ0) ; N (ξ, I(θ0)

−1) so it follows immediately that W ; χ2
p(δ).

Expanding l(·) around θ̂n as in the scalar case yields LR ; χ2
p(δ). Expanding ∇l(·) around θ̂n

as in the scalar case yields

n−1/2∇l(θ0) = n−1/2∇l(θ̂n) +
√
n(θ0 − θ̂)′(∇2l(θ̂n)/n) + op(1) ; N (ξ′I(θ0), I(θ0))

so LM ; χ2
p(δ).

Composite Hypotheses I

Often the null hypothesis involves only a subset of the parameters, and the remaining ones
must be treated as nuisance parameters. Partition θ = (θ1, θ2) and consider H0 : θ1 = θ10 vs.
Hn : θ1 = θ10 + ξ/

√
n, with no restriction on θ2.

Let θ̂n and θ̃n denote the unrestricted and restricted mle’s respectively, so θ̂n = (θ10, θ̃2). Parti-
tion ∇l = (s1(θ), s2(θ))

′ and I(θ) = (Iij(θ)). Let Iij denote the ij block of I−1.

Theorem: (AE/HT - II ) Under Lehmann’s Conditions, and Hn,

W = n(θ̂1 − θ10)′I11(θ0)−1(θ̂1 − θ10)
LR = 2(l(θ̂n)− l(θ̃n))

LM = n−1s1(θ̃n)′I11(θ̃n)s1(θ̃n)

all converge in distribution to χ2
q(ξ
′I11(θ0)

−1ξ) where q = dim θ1 ≤ p.

Proof: Recall that
I11 = (I11 − I12I−122 I12)

−1

which equals I11 if I12 = 0, otherwise it is strictly larger, i.e., the unknown nuisance parameters
increase the variability of the mle of the full model relative to what it would be if the nuisance
parameters were known.

The Wald case is easy √
n(θ̂1 − θ10) ; N (ξ, I11(θ0))

so W ; χ2
1(δ). The LR, LM cases are more tedious and we will defer the proof to the next

result which includes this one. Clearly I11(θ0) may be replaced by I11(θ̂n) or I11(θ̃n) under Hn

and can be estimated by either n−1∇l(∇l)′ or −n−1∇2l.
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General Composite Hypothesis II
Now consider the general nonlinear hypotheses,

H0 : H(θ) = 0

Hn : θ = θn = θ0 + ξ/
√
n where H(θ0) = 0.

Again, let θ̂n, θ̃n denote the unrestricted and restricted mle’s. We will denote the Jacobian of
the function describing the null hypothesis by J = ∇H(θ0), and we will assume that rank(J ) =
q ≤ p, finally at the risk of some confusion, we will denote I = I(θ0).

Theorem: (AE/HT - III) Under Lehmann conditions and Hn,

W = nH(θ̂n)′(J ′I−1J )−1H(θ̂n)

LR = 2(l(θ̂n)− l(θ̃n))

LM = n−1∇l(θ̃n)′I−1J (J ′I−1J )−1J ′I−1∇l(θ̃n)

all converge in distribution to χ2
q(δ), where δ = ξJ (J ′I−1J )−1J ′ξ.

Proof: Wald, again, is easy. By the δ-method
√
nH(θ̂n) ; N (J ′ξ,J ′I−1J ) so we have

immediately, W ; χ2
q(δ). For LR, we may expand, as in the one dimensional case to get

LR = n(θ̂n − θ̃n)′I(θ̂n − θ̃n) + op(1).

To connect this expression with W note that
√
nH(θ̂n) =

√
n(θ̂ − θ̃)J + op(1) since

√
nĤ =√

nH̃ +
√
n(θ̂− θ̃)′J + op(1), but H̃ = H(θ̃n) = 0 by definition, so another way to express W is

W ∗ = n(θ̂ − θ̃)′J (J ′I−1J )−1J ′(θ̂ − θ̃)

with W = W ∗ + op(1). This formulation is related to the Hausman-Wu testing strategy. To
complete the connection between LR and W it is convenient to have a representation of the
restricted estimator θ̃n in terms of the score evaluated at the true parameter. To this end,
consider the problem,

max
(θ,λ)

l(θ)− λ′H(θ),

expand the the first order conditions,

∇`(θ̃n) = λ̃nJ

H(θ̃n) = 0

around θ0 to obtain,

0 = ∇l(θ0) +∇2l(θ0)(θ̃ − θ0)− J λ̃n + op(1),

0 = J (θ̃n − θ0) +H(θ0) + op(1).

and since, under the null H(θ0) = 0 we have( √
n(θ̃n − θ0)

1√
n
λ

)
=

(
I J
J 0

)−1( 1√
n
∇l(θ0)
0

)
+ op(1).
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Using standard formulae for partitioned inverses we have, under H0,

√
n(θ̃n − θ0) = [I−1 − I−1J (J ′I−1J )−1J ′I−1] 1√

n
∇l(θ0) + op(1)

so √
n(θ̂n − θ̃n) = [I−1J (J ′I−1J )−1J ′I]

1√
n
∇l(θ0) + op(1)

Now,
1√
n
∇l(θ0) ; N (0, I)

so
1√
n
I−1/2∇l(θ0) ; N (0, Ip).

Set K ≡ J (J ′I−1J )−1J ′ and let G satisfy GG′ = I−1 then G′KG is idempotent with rank q,
by direct computation and,

rank (G′KG) = Tr (G′KG) = Tr (KGG′) = Tr [(J ′I−1J )−1J ′I−1J ] = q.

Thus,

G′KG
1√
n
I−1/2∇l(θ0) ; N (0, G′KG)

and since √
n(θ̂ − θ̃)I1/2 = G′KG

1√
n
I−1/2∇l(θ0)

it follows that LR is asymptotically equivalent to

n(θ̂ − θ̃)′I(θ̂ − θ̃) ; χ2
q .

under H0. The details under Hn are left as an exercise.
For the LM case, write

n−1/2∇l(θ̃n) = n−1/2∇l(θ̂n) +
√
n(θ̃n − θ̂n)∇2l(θ̃n)/n+ op(1)

so √
n(θ̃n − θ̂n) = −I(θ0)

−1n−1/2∇l(θ̃n).

so W ∗ is equivalent to

LM∗ = n−1∇l(θ̃n)′I−1J (J ′I−1J )−1J I−1∇l(θ̃n)

which completes the proof.

Remark: Another useful way to connect LM more directly to Lagrange multipliers is to
observe that since

θ̃n = arg min
θ
{l(θ − λ′H(θ)}

we have at the restricted estimated, θ̃n,

∇l(θ̃n) = J (θ̃n)λ,

so we can write,
LM∗∗ = n−1λ′J ′I−1J λ.

where all the matrices are evaluated at θ̃n.
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