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Lecture 1
“13 ways of looking at a random variable”

0. Some Obligatory Formalism
It is customary to begin with some priestly incantations about Kolmogorov’s axiomatic

treatment of probability. We will keep this brief, since it won’t play a large role in sub-
sequent developments. It is essential at some stage however since it is what really makes
probability a proper branch of mathematics.

In the beginning, before the chaos, there was the probability space (Ω,A, P ) where

Ω is the sample space with elements ω
A is a σ-field of subsets of Ω with elements A called “events” and
P is a probability measure which assigns probabilities to elements of A

according to the following rules:
(i) 0 ≤ P (A) ≤ 1
(ii) P (Ω) = 1
(iii) If the “events” A1, . . . , An are disjoint

(pairwise mutually exclusive, i.e., Ai ∩Aj = φ )
Then P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + · · ·+ P (An)

From these humble beginnings a great sand castle may be built. Other sand castles
may be built from alternative axioms – see for example Savage (1954, Foundations of
Statistics) who develops probability as a degree of personal belief rather than based on
frequency in some hypothetical reproducible experiment.

Remark It is sometimes helpful to extend the axioms above from “finitely additive” to
“countably additive”. Note that there is an appendix (L1a) to this lecture that attempts
to review some basics of the underlying measure theory.

The standard example is the identification of an experiment in which a potentially
infinite sequence of coin flips occurs and the probability space is taken as follows

Ω = [0, 1)

A = Borel sets on Ω

P = Lebesgue measure

How does this work? We have on the ith toss δi = 1 if the toss lands heads and 0 if
tails, and write for n tosses

Xi =

n∑
i=1

δi/2
i
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Thus the sequence HHTTH would be expressed as

x =
1

2
+

1

4
+

0

8
+

0

16
+

1

32

or in a diadic (binary) expansion
x = .11001

We thereby have a way to translate the physical experiment of coin flipping, as in the first
scene of Rosencrantz and Guildenstern Are Dead, into formal mathematical language: an
infinite sequence of coin flips becomes just a number somewhere in the interval [0,1].

This seemingly innocent formalism yields some remarkably deep insights into number
theory as well as probability. See for example, Kac (1959, Statistical Independence in
Probability and Number Theory) or Billingsley (1979). E.g., the set of rational numbers
(which have terminating expansions consisting entirely of zeros) is known to have Lebesgue
measure 0. We are now ready to begin our 13 ways of looking at X.

1. A function X : Ω → |R such that images X−1(B) of any Borel set are elements of
A is called a random variable. A p-tuple of r.v.s. is called a random vector.

2 Associated with a random vector X on (Ω,A, P ) is a distribution function, df,

F (x) = FX1,...,Xp(x1, . . . , xp) = P (ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp)

Note that F is right continuous. This is a convention, but a useful one. For students
with a little knowledge of French there is a helpful aide memoire: cadlag, which is an
acronym for continué à droit, limites à gauche, continuous from the right, limits from the
left.

3 For any scalar r.v. X with df F , the quantity

Q(u) = F−1(u) = inf{x : F (x) ≥ u}

is called the uth quantile of X, or F . In particular, Q(1/2) is the median. Note Q is
left continuous caglad. For this it is important that we have the weak inequality in the
definition. Drawing a picture is valuable to clarify this. If you draw a piecewise constant
F and then flip the page over to see the Q, you can amaze your friends with your deep
knowledge of “how to invert functions which don’t have inverses.” Note that we have,
relying on our continuity conventions: F (Q(u)) = u for any u ∈ (0, 1).

We note in passing, in the hope that it may be deemed relevant at some later point,
that the random variable X∗ whose quantile function is,

F−1
X∗ (u) = (1− u)−1

∫ 1

u
F−1
X (v)dv

is called the Hardy-Littlewood transform of X.

4 If the df F is absolutely continuous with respect to the measure µ, then F has a
density, f , with respect to µ. We will only be concerned with the case in which µ is
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Lebesgue measure in which case we may write

F (x) =

∫ x

−∞
f(t)dt

and thus we may regard the density f(t) as the derivative F ′(t).

5. The expectation of a random variable X is

EX =

∫
Ω
X(ω)dP (ω) =

∫ ∞
−∞

xdF (x) =

∫ ∞
−∞

xf(x)dx

expectations of functions X may be computed similarly

Eg(X) =

∫
Ω
g(X(ω))dP (ω) =

∫
g(x)dF (x).

An important special case is g(x) = IB(x) where IB(x) is the “indicator function” of
the set B and takes the value 1 if x ∈ B and 0 otherwise. In this case we have, setting
A = X−1(B),

EIB(x) =

∫
B
dF (x) =

∫
A
dP (ω) = P (A)

Example: (The most famous homework problem of economics.) Daniel Bernoulli, while
visiting Euler in St Petersburg in the 1730’s, made famous the problem of valuing a
gambling prospect, X, that paid 2i with probability 2−i for i = 1, 2, . . . . This prospect
can be made a bit more explicit by imagining someone with a large bankroll flipping
coins against a equally wealthy casino; each flip that our prospective gambler loses, he
doubles the stakes of the bet in the next round until finally he guesses correctly. One
has to make a “willing suspension of disbelief” to imagine the wealth and patience of
the players in this scenario. The paradoxical aspect of the problem is that EX = +∞,
but it seems quite clear that few would want to pay this much. Bernoulli’s proposed
solution was to suggest that individuals evaluating the gamble X might instead compute
expected utility which would be a concave function of the monetary payoff. The (natural)
logarithm provided a convenient example, and one can easily compute E log(X) ≈ 1.40
utils, and exp(1.40) ≈ 4.00 ducats in the original monetary units of the problem. Of
course, we should realize that this “certainty equivalent” value is also suspect, and should
be modified, presumably reduced, to account for the variability of the payoff. And we
should also account for the individuals initial wealth in the utility calculation, but these
complications takes us too far away from the original purpose.

6. Moments. Expectations of higher powers of X − µ are often used to describe the
basic characteristics of the distributions of r.v.s.

µk = E(X − EX)k

in particular,

measures
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Var(x) = µ2 = σ2 dispersion-spread

Skewness(X) = µ3/σ
3 asymmetry

Kurtosis(X) = µ4/σ
4 peakedness & tail length.

7. Moment generating function To compute moments it is often convenient to the
the moment generating function, mgf,

mX(t) = EetX =

∫
etXdF (x)

when mX(t) and its derivatives exist in some neighborhood of 0 we have

νk = m
(k)
X (0) = EXk k = 0, 1, 2, . . .

i.e., the moments about the origin are simply the derivatives of the mgf. To get the
moments about the mean EX = µ we may use

mX−µ(t) = Eet(X−µ) = e−µtmX(t)

Note that the following properties hold

(i) For constants µ, σ
mµ+σX(t) = eµtm(σt)

(ii) For independent X,Y
mX+Y (t) = mX(t)mY (t)

Since the moment generating function always seems a bit mysterious it is worth taking
a few moments to try to demystify it. I will try to do this by starting with a more
elementary setting: discrete random variables on the nonnegative integers.

Suppose we have a discrete r.v. on {0, 1, 2, . . .} with

P (X = j) = aj

We will define the generating function of X as,

g(z) =

∞∑
j=0

ajz
j

Since
∑
aj = 1 it is clear that

|g(z)| ≤
∑
j

|aj | |z|j ≤
∑

aj = 1 for |z| ≤ 1.

4



Now consider derivatives:

g′(z) = a1 + 2a2z + 3a3z
2 + . . . =

∞∑
n=1

nanz
n−1

g′′(z) = 2a2 + 6a3z + . . . =
∞∑
n=1

n(n− 1)anz
n−2

...

g(j)(z) =
∞∑
n=j

n(n− 1) . . . (n− j + 1)anz
n−j =

∞∑
n=j

(
n
j

)
(j!)anz

n−j

Thus,

g(j)(0) = j!aj or aj = (j!)−1g(j)(0)

so all the information about the aj ’s are contained within the function g and is made
accessible by simply differentiating and evaluating at 0. Already this justifies the comment
by K.L. Chung that the generating function is a “true gimmick”.

Note also that we can get moments, provided they exist, by evaluating derivatives at
z = 1,

g′(1) =
∞∑
n=0

nan = EX

g′′(1) =
∑

n2an −
∑

nan = EX2 − EX

so EX = g′(1) and EX2 = g′′(1) + g′(1), etc.

Thm: The distribution of a nonnegative integer valued r.v. is uniquely determined by its
generating function.

Pf: Follows from the fact that aj = (j!)−1g(j)(0).

Now we begin to see how to use the gimmick. Suppose we multiply two generating
functions

g(z)h(z) =
∑
i

aiz
i
∑
j

bjz
j =

∑
i

∑
j

aibjz
i+j

=
∑

ckz
k

where ck =
∑

i+j=k aibj =
∑k

i=0 aibk−i. This series {ck} is called the convolution of
{ai} and {bi}. The reason it is interesting is that it arises from adding independent r.v.’s
together. First, note that

ck =

k∑
i=0

P (X = i)P (Y = k − i)

=

k∑
i=0

P (X = i, Y = k − i) by ⊥⊥

= P (X + Y = k)
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Note that the last step uses the fact that X,Y don’t take negative values.

Thm: If X1, . . . , Xn are ⊥⊥ with generating functions g1, . . . , gn, then X1 + . . . + Xn has
generating function

∏
gi.

Example: For a single die the ai’s are all 1/6 so

g(z) =
1

6

6∑
i=1

zi =
z(1− z6)

6(1− z)

The generating function for the sum of 3 dice is:

g3(z) =
z3(1− z6)3

63(1− z)3
=
z3

63
(1− 3z6 + 3z12 − z18)(1− z)−3

=
z3

63
(1− 3z6 + 3z12 − z18)

∞∑
k=0

(
k + 2

2

)
zk.

Now to get, e.g., the probability the 3 dice yield the sum 9 we must determine the
coefficient on z9, this means either k = 6 or k = 0 for the last term multiplied into the
first and second terms respectively so we have

c9 =
1

63

(
1 ·
(

6 + 2

2

)
− 3 ·

(
0 + 2

2

))
=

28− 3

63
=

25

63

Note that this is fully automatic, meaning that it is easily implementable in Mathematica
among other things. Three dice problems like this are tractable by enumeration, but just
barely at the margin of human patience. If you like this sort of mathematics you should
look at Graham, Knuth, and Patashnik (1989) which contains a wealth of it.

Now note that we can write, in a slightly fancier notation,

g(x) = EzX =

∞∑
i=0

aiz
i

thus we can now revisit the last theorem and write

EzX1+...+Xn = EzX1 · zX2 · . . . · zXn

= EzX1 · EzX2 · . . . · EzXn by ⊥⊥

We will consider a further extension. Suppose X takes arbitrary real values, and
consider 0 < z ≤ 1, any such z can be written as e−λ for 0 ≤ λ < ∞, thus instead of
writing

EzX = Ee−λX 0 ≤ λ <∞

so in the previous case,

Ee−λX =
∞∑
j=0

aje
−jλ
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but more generally if X takes values xj with probability pj , we have,

Ee−λX =
∑
j

pje
−λxj

thus if X has density f

Ee−λX =

∫
e−λuf(u)du

so we can also deal with continuous case. This formulation is the Laplace Transform of X,
of f , or F . If we now replace λ by iθ, we have, Ee−iθX and obtain the Fourier Transform
or characteristic function of the r.v. These notes follow Chung (1978 §6.5), this book is
sometimes called “baby Chung” since it is much more elementary that Chung’s standard
text in probability, but nevertheless contains much useful wisdom.

Chung, K.L. (1978). Elementary Probability Theory with Stochastic Processes, Springer.

Graham, R.L., D.E. Knuth, and O. Patashnik (1989). Concrete Mathematics, Addison-
Wesley.

8. Cumulants. Rather than moments it is sometimes useful to consider cumulants.
The cumulant generating function is simply the logarithm of the mgf,

kY (t) = logmY (t)

kY−µ(t) = logmY−µ(t) = log(e−µtmY (t)) = −µt+ kY (t)

The rth cumulant of Y is the coefficient of tr/r! in the Taylor expansion of kY (t), i.e.,∑
krt

r/r! = log(1 +
∑

µ′rt
r/r!)

= µt+ log(1 +
∑

µrt
r/r!)

Example: For standard normal kZ(t) = 1
2 t

2 so k = {0, 1, 0, 0, . . . }.

Remark: For sums of independent rv’s cumulants add.

9. Characteristic Functions. The Fourier transform of the df, F is called a character-
istic function:

φ(t) = EeitX =

∫
eitxdF (x)

where, as conventional, i2 = −1 and eitx = cos(tx)+ i sin(tx). This behaves very much like
the mgf, but is defined more generally. Existence follows from |a+ ib|2 ≡ (a+ ib)(a− ib) =
a2 + b2, and

|EeitX | ≤ E|eitX | = E| cos tX + i sin tX| = E(cos2 tX + sin2 tX) = E1 = 1
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One of the more elegant expressions in mathematics is the identity e2πi = 1 which is
usually attributed to Euler. Verify. An important property of the cf is that it (essentially)
determines its corresponding df through the inversion formulae for the density

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt

or, more generally,

F (x)− F (y) =
1

2π

∫ ∞
−∞

e−itx − e−ity

−it
φ(t)dt

if x and y are continuity points of F . There is a nice discussion of this in Williams.

Example:

For Z ∼ N (0, 1) φZ(t) = exp(−t2/2).
Z ∼ N (µ, σ2) φZ(t) = exp(itµ− σ2t2/2)
Z ∼ N (µ, V ) φZ(t) = exp(it′µ− t′V t/2)
Z = a w.p.1 φ(t) = eiat

Z ∼ (1− p)δ0 + pδ1 φZ(t) = 1 + p(eit − 1)

Z ∼ t1 φ(t) = e−|t|.

A crucial property of the characteristic function and the reason that it proves to be such
an important tool is that for independent random variables X and Y the characteristic
function of Z = X+Y is simply the product of the characteristic functions of X and Y , i.e.
φX+Y (t) = φX(t)φY (t). To illustrate how this may prove relevant in econometric modeling,
consider a model in which productivity Z is determined by an ability component, X, and
a luck component, Y . If we assume that we know that the luck component has a known
distribution, say Gaussian, then the question: When can we consistently estimate the
ability distribution? can be answered by noting that as long as the characteristic function
of the ability distribution isn’t zero on an open interval the characteristic function of ability
can be obtained simply by dividing the observed productivity chf by the chf of the luck
distribution. Then inversion yields the distribution as above. This process of unraveling
one distribution from that of sum of two, or more, components is called deconvolution.

Moment Expansions
We begin by recalling some useful facts about Taylor’s expansion. When we write

f(x) = f(x0) + (x− x0)f ′(x0) + · · ·+ (x− x0)n

n!
f (n)(x0) +Rn

we may write Rn in two possible ways:

(1) Rn =
(x− x0)n+1

(n+ 1)!
fn+1(ξ) ξ ∈ (xo, x)

or

(2) Rn =

∫ x

x0

f (n+1)(t)
(x− t)n

n!
dt.
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The latter form is usually called Taylor expansion with integral remainder. It has the
virtue of being exact provided of course that the derivatives exist. The following result
proves convenient in working with expansions of cfs. It shows that under certain conditions
the moments fully characterize the distribution they arise from – since the characterize
the cf, but one needs to be careful about interpreting this too generously as some of the
problems on the first problem set show.

Theorem: If E|X|m <∞ for an integer m > 0, then setting νj = EXj ,

φ(t) =
m∑
j=0

(it)j

j!
νj + o(tm).

Remark One can also, using the same tricks as in §8 for the cumulant generating function,
write the moment expansion in terms of the log characteristic function as,

log φ(t) =
∑

κj(it)
j/j!

or equivalently,

φ(t) = exp{
∑

κj(it)
j/j!}.

It is in this form that we will use the expansion for the CLT in L4.

Proof: Whittle claims that by Taylor’s theorem,

eitx =
m∑
j=0

(itx)j

j!
+

(it)m

(m− 1)!

∫ 1

0
(eitxsxm − xm)(1− s)m−1ds

Now he replaces x by X and takes expectations, evaluating the remainder as,

(it)m

(m− 1)!

∫ 1

0
(φm(ts)− φm(0))(1− s)m−1ds

Under the conditions φm(t) = EXmeitX is uniformly continuous so the integral, see e.g.,
Whittle (pp. 124-5), for small t, is o(1) and thus the remainder is o(tm).

A more detailed argument from Chung goes like this: begin by showing that φ(k)(t) =∫∞
−∞(ix)keitxdF (x) To see this consider the case k = 1. The result follows from

f(t+ h)− f(t)

h
=

∫ ∞
−∞

ei(t+h)x − eitx

h
dF (x),

by taking limits as h → 0 and using L’Hopital on the right-hand side. The validity of
passing the limit inside the integral is argued as follows. The integrand is bounded by |x|,
so if E|x| <∞ we can take limit inside the

∫
to get the result. Uniform continuity in t is

proved as follows;

f(t+ h)− f(t) =

∫
(ei(t+h)x − eitx)dF (x)

|f(t+ h)− f(t)| ≤
∫
|eitx| |eihx − 1|dF (x)

=

∫
|eihx − 1|dF (x).
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since
|eitx| = cos2(tx) + sin2 t(x) = 1

The result for general k then follows by induction.
Next we argue that if E|X|k ≡ µk <∞ k ≥ 1, then for |t| < 1,

φ(t) =
k∑
j=0

(it)j

j!
νj + o(|t|k)

From G.H. Hardy’s Course of Pure Mathematics, p.290, see below, if φ has finite kth

derivative at t = 0,

(∗) φ(t) =
∑ φ(j)(0)

j!
tj + o(|t|k)

Since µj <∞ 1 ≤ j ≤ k, φ(j)(0) = ijµj – this follows from T 6.4.1. So substituting in
(*) we have the result.

So the mystery in so far as there is one is really (*). Thus is argued as follows in Hardy.
Suppose f(x) has n derivatives f ′(0), . . . , f (n)(0) at x = 0. Existence of f (k)(x) at

any point x0 entails existence of f (k−1)(x) in an interval containing x0. Let h > 0, and
consider

Rn(h) = f(h)− f(0)− hf ′(0)− . . .− hn−1

(n− 1)!
f (n−1)(0)

then Rn(h) and its first n − 1 derivatives vanish at h = 0, and Rn(0) = f (n)(a). Now,
write

G(h) = Rn(h)− hn

n!
(f (n)(0)− δ)

where δ is positive. We have

G(0) = 0, G′(0) = 0, . . . , G(n−1)(0) = 0

and
G(n)(0) = δ > 0.

Thus G(n−1)(h) is increasing at h = 0, and positive for sufficiently small h > 0. Next,
G(n−2)(0) = 0, and G(n−1)(h) > 0 for small h > 0 so G(n−2)(h) > 0 for small h > 0.
Repeating we find G(n−3)(h), . . . , G(h) are positive, so

Rn(h) >
hn

n!
(f (n)(0)− δ).

Similarly,

Rn(h) <
hn

n!
(fn(0) + δ)

for small h > 0. Treating negative values of h similarly we have

f(h) = f(0) + hf ′(0) + . . .+
h(n−1)

(n− 1)!
f (n−1)(0) +

hn

n!
(f (n)(0) + η)
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where η → 0 as h→ 0, or

f(h) = f(0) + hf ′(0) + . . .+
h(n−1)

(n− 1)!
f (n−1)(0) + σ(hn)

This would follow easily from usual form of Taylor theorem if we just strengthened the
assumptions slightly to ensure that f (n)(h) was continuous in a neighborhood of 0. The
above result only needs the existence of the derivitive at 0.

10. Conditional Probability
The conditional probability of an event B given that an event A has occurred is

P (B|A) =
P (B ∩A)

P (A)

where by convention P (B|A) = 0 when P (A) = 0.
But this definition breaks down for uncountable Ω and we need something new. The

conventional approach is the Radon-Nikodym theorem which uses the fact that for mea-
sures ν, µ if ν << µ, i.e., ν is absolutely continuous with respect to µ on A1 there exists
a nonnegative function ϕ such that

ν(A) =

∫
A
ϕdµ for anyA ∈ A.

or
dν

dµ
= ϕ

Thus, if, for example, we have (X,Y ) with joint density f(x, y) and X with marginal
density g(x), then the conditional density

ϕ(y|x) = f(x, y)/g(x).

This works when limits can be taken very carefully but is generally quite problematic. For
an alternative approach see Pollard’s recent text, A User’s Guide to Measure Theoretic
Probability.

An alternative approach using expectations has been advanced by Whittle who suggests
that one may view the conditional expectation of Y given X, which we write as ϕ(X) =
E(Y |X) and can be interpreted as a random variable which takes the value E(Y |X = x)
with probability P (X = x), can be defined as the scalar function of X which satisfies

E[(Y − ϕ(X))H(X)] = 0 (⊥ condition)

for any scalar function H(X).

Remark 1: This coincides with the prior definition when Y is discrete. Take H(X) =
I(X = x) then the ⊥ condition yields

EY I(X = x) = Eϕ(X)I(X = x)

1That is ν assigns probability zero to any set that µ assigns probability zero.
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which at X = x yields

ϕ(X) =
EY I(X = x)

EI(X = x)
= E(Y |X = x)

Remark 2: If EY 2 < ∞, then E(Y |X) can be interpreted as the best L2 approximant of
Y in terms of X, i.e., the function ϕ(X) which minimizes

(∗) E(Y − ϕ(X))2

The necessity of the ⊥ condition follows from the fact that if EY |X is a solution, then
stationarity of (∗) under the perturbation E(Y |X) + εH(X) requires it, i.e.,

d

dε
E(Y − E(Y |X)− εH(X))2|ε=0 = 0

⇒ −2E(Y − EY |X)H(X) = 0

which should hold for any perturbation function H(X). This is analogous to the usual
arguments in the calculus of variations.

11. Independence A crucial concept is the following.

Definition: The r.v.s. X1, . . . , Xn on (Ω,F , P ) are independent if for any sets B1, . . . , Bn ∈
B,

P (X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏
i=1

P (Xi ∈ Bi).

As a notational matter it is convenient to use X ⊥⊥ Y to denote independence, a concept
which is stronger than the uncorrelatedness, which we denoted, X ⊥ Y , in the previous
section. One can also define independence of σ-fields, i.e., F1,F2, . . . ,Fn are independent
if for any sets A1 ∈ F1, . . .

P (A1 ∩ · · · ∩An) =
∏

P (Ai)

and X1, . . . , Xn are independent iff F(X1), . . . ,F(Xn) are independent. An important
implication of independence is that conditional probabilities and marginal probabilities
are equal, i.e., generally

P (A ∩B) = P (B|A)P (A)

but under independence
P (A ∩B) = P (A)P (B)

so if the events A and B are independent P (B|A) = P (B) which conveys the idea that
A isn’t informative about B, i.e. knowing A occurred doesn’t help in evaluating the
probability of B.
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12. Correlation and least squares projection. Relationship between rv’s is often ex-
pressed in terms of correlation. Suppose we wish to approximate the r.v. Y by the rv’s
X1, . . . , Xp. In particular, we wish to restrict ourselves to approximations of the form

Ŷ =

p∑
i=1

Xiβi = X ′β

which minimize

D(b) = E(Y − Ŷ )2

= EY 2 − 2EY Ŷ + EŶ 2

= SY − 2b′SXY + b′SXXb

where SY = EY 2, SXY = (EYXi), SXX = E(XiXj). Any b minimizing D(·) must satisfy

SXXb = SXY

If the matrix SXX is nonsingular, we may write this as b = S−1
XXSXY . This is a linear

approximation to the conditional expectation EY |X, i.e., X ′β ≈ EY |Xβ. If one of the
Xi’s is degenerate, taking the value 1 with probability 1 then the p by p matrix SXX may
be interpreted as the covariance matrix of X and SXY as the vector of covariances of Y
with X. At the minimum

Dβ̂ = SY − β̂′SXY = SY − S′XY S−1
XXSXY

so if X “contains a intercept” SY is variance of Y , and S′XY S
−1
XXSXY is the amount of

V (Y ) explained by X In the scalar X case

ρ2 =
S2
XY

SXXSY

is proportion of variance of Y explained by X.

13. Tail Behavior. For scalar r.v.s X with df F we say F , or X, has an exponential
tail if

lim
a→∞

− log(1− F (a))

car
= 1 for some c > 0; r > 0

and an algebraic tail if

lim
a→∞

− log(1− F (a))

m log a
= 1 for some m > 0

Examples:

Exponential df: F (a) = 1− e−λa so c = λ, r = 1.
Gaussian df: c = 2, r = 2 exponential
Student t: m = ν algebraic
Pareto: F (x) = 1− (a/x)θ algebraic with m = θ
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The following result clarifies the connection between tail behavior and the existence of
moments.

Theorem: For any r.v. X and real number r > 0

E|X|r = r

∫ ∞
0

xr−1P (|X| ≥ x)dx

Proof: By induction and the following lemma.

Lemma: Let X be a nonnegative random variable with distribution function F , then

EX =

∫ ∞
0

(1− F (x))dx

Proof: Integrating by parts, for any fixed c > 0,

(∗)
∫ c

0
xf(x)dx = −

∫ c

0
F (x)dx+ xF (x)|c0 =

∫ c

0
(1− F (x))dx− c(1− F (c))

≤
∫ c

0
(1− F (x))dx.

And, it is clear that c(1−F (c)) ≤
∫∞
c xF (x), hence if EX <∞, (1−F (c)) = o(c−1), and

thus letting c→∞ yields the result. If EX =∞, the result follows from (*).
Another interesting variation on this theme is the following result from Lindsey and

Basak (2000).

Theorem Let two distribution functions, F and G, have the same first 2p moments:

mi(F ) = mi(G) = mi i = 0, 1, . . . , 2p

where mi(F ) =
∫
xidF, and m0 = 1. Then for all x,

|F (x)−G(x)| ≤ (Vp(x)′M−1
p Vp(x))−1

where Vp(x) = (1, x, x2, . . . , xp)′ and

Mp =


1 m1 . . . mp

m1 m2

m2 . . .
...
mp mp+1 . . . . . . m2p


Remark I won’t provide a full proof, see Lindsey and Basak, but I will sketch some
salient features of the argument.

A general construction – sometimes called the method of moment spaces leads to the
following characterization of the bounds. Given any point, x0, and target df F we can
construct a new, discrete p+ 1 point distribution, Fp(x) with the properties:
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(i) Fp(x) has mass ωp(x0) at x0

where

ωp(x) = (

P∑
K=1

|Pk(x)|2)−1

and

P0(x) ≡ 1

P1(x) = (x−m1)/
√
D1

...

Pk(x) = Ek(x)
√
Dk−1Dk k = 2, . . . , 3

with

Dp = det Mp

and

Ep(x) = det M̃p(x)

where M̃p denotes the matrix Mp with the last column replaced by the vector Vp(x).

(ii) Fp(x) has the same first 2p moments as F .

(iii) for every df G with given moments Fp(x
−) ≤ G(x) ≤ Fp(x) at every mass point

of Fp.

These discrete Fp(x) distributions constitute the worst case behavior. In particular,
for any continuous df G.

max{G(x−0 )− Fp(x−0 ), Fp(x0)−G(0)} ≥ ωp(x0)

2

Note by construction Fp(x0)−Fp(x−0 ) = ωp(x0) so either G(x0) falls half way between and
the bound is achieved or it falls on one side or the other of halfway and the max{ , } is
then strictly greater than the bound.

Since (iii) provides the bound

Fp(x
−
0 ) ≤ G(x0) ≤ Fp(x0)

we have that for all x0

|F (x)−G(x)| ≤ ωp(x).

To relate this to the bound given in the Theorem, one can show that∑
|Pk(x)|2 = −D−1

p det

[
0 Vp(x)′

Vp(x) Mp

]
= −D−1

p |Mp| |0− V ′pMpVp|
= V ′pMpVp

The last steps are trivial – see e.g. Rao (1973, p. 32) the first step isn’t, or at least doesn’t
appear so to me.
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Figure 1: Approximate discrete distributions matching the first 20 moments of the stan-
dard Gaussian distribution: The left panel illustrates the location and magnitude of the
mass points and the right panel plots the two distribution functions. The distributions
differ by about 0.18 at zero, quite a large difference given that they have the same first 20
moments.

It is an interesting numerical problem to find such Fp(·)’s. Rough approximations
to these least favorable densities can be found by solving for the discrete distribution
supported on the grid points: x1, . . . , xq, 0, xq+1, . . . xn. This produces the following linear
programming problem:

min
p
{c>p |Mp = mp, p ∈ S}

where p is a n vector of probability masses associated with the discrete points, M is
the moment matrix with typical element xki with k = 1, . . . ,K, mp is the K vector of
moments of a standard Gaussian random variable, c = (1q, 0q+1), and S is the n − 1
dimensional simplex. Matching K = 20 moments of the normal distribution yields a
discrete distribution with the mass points in the left panel of Figure 1 and distribution
function as shown in the right panel. Evaluating at zero, the discrete distribution differs
from the normal df by about 0.18, quite a large difference given that we have matched so
many moments. A convenient strategy for computing these solutions can be formulated
in Mathematica, where it is possible to do “exact” linear programming. Recall that once
we have an optimal basis for the LP, the solution simply requires a solution to a linear
system, and for problems defined on the rationals the solutions are also in the rationals.
Further details appear in a forthcoming paper by Steve Portnoy in Am. Statistician.

One can conclude from this that the moments do characterize well the tails of the
distribution – at least when the moments are finite, but they do a poor job of characterizing
the middle of the distribution as our prior examples illustrate.

Lindsey, B. and P. Basak (2000). Moments determine the tail of a Distribution (but not
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much else). Am. Statistician, 54, 248-52.
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