
University of Illinois Final Exam Answers Department of Economics
Spring 2010 Economics 574 Professor Roger Koenker

1. (This is pretty mechanical, but perhaps worthwhile to develop
some facility with the linear algebra of 2SLS.)

a.) Premultiply y, Z,W by MX to get ỹ, Z̃, W̃ , and now do 2SLS
using W̃ as IV’s for Z̃:

α̂2SLS = (Z̃>PW̃ Z̃)−1Z̃>PW̃ ỹ

Note that PW̃ = PMXW .
b.) Let A = W>MXW , then ‖γ̂(α)‖22 = (y − Zα)>PW̃ (y − Zα) so

minimizing gives α̂2SLS by the idempotency of MX .
c. The model asserts that W satisfies an exclusion restriction, so the

intuition, or at least my intuition, for the procedure is that we want
to choose α in such a way that it makes this exclusion as ”true as
possible.”

2. This was an LLN question.
a.) Trivial
b.) Checking SOC for a.) confirms that

f(θ) = p log(1 + θ) + (1− p) log(1− θ)

is increasing for θ < θ̂, and decreasing for θ > θ̂. A picture reveals that
there are two points at which f(θ) = 0, one at θ = 0 where as they
say, “nothing ventured, nothing gained” (or lost), another at ≈̃0.389.
Let Xn be the Bernoulli random variable taking the value one with
probability p and zero with probability q = 1− p. Then,

logWn = logWn−1 + log(1− θ) +Xn logR(θ)

= logW0 + n log(1− θ) + Sn logR(θ)

where Sn =
∑n

i=1Xk and R(θ) = (1 + θ)/(1− θ). Taking expectations,
the crucial thing is whether the “drift” term is positive or negative.
In the former case wealth increases without bound, in the latter it
converges to zero by the LLN. Solving for the driftless case yields θ̃.

c.) My intention in this part was that in each period you were entitled
to invest proportions θk, k = 1, ..., K of your wealth on K coins having
success probabilities pk. With two coins things are simplest and we
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have payoffs:

Z =


1 + θ1 + θ2 p1p2

1 + θ1 − θ2 p1(1− p2)
wp

1− θ1 + θ2 (1− p1)p2

1− θ1 − θ2 (1− p1)(1− p2)

It is advantageous to put money on any coin with pk > 1/2 for diver-
sification reasons. As one might expect, more money is allocated to
higher probability coins, but you shouldn’t neglect the less profitable
ones entirely. At this point the problem becomes numerical, and I
didn’t expect anyone to go further, although some did.

3. This was a somewhat perverse MLE problem, in the sense that
we were using a local maximizer when the global maximizer was known
to be terrible. Surprisingly, the local maximimizer works quite well.

a.) FX(x) = Φ((log(x − α) − µ)/σ) so by the chain rule, fX(x) =
φ((log(x− α)− µ)/σ)/(x− α).

b.) This was intended to be a exercise in inequality manipulation:

σ̂2(α) = n−1
∑

(log(xi − α)− µ̂)2

≤ n−1
∑

(log(xi − α))2 µ̂ is a minimizer

≤ n−1
∑

(log(x(1) − α))2 for αnear x(1)

= (log(x(1) − α))2.

Thus,

L(α) = Kσ̂−n

n∏
i=1

(xi − α)

≥ Kσ̂−n(x(1) − α)

and repeated application of l’Hôpital’s rule implies that this expression
tends to infinity as α→ x(1).

c.) The local likelihood maximizer can be computed easily in R,
and the local likelihood can be used to construct a co:nfidence interval.
Most exams that tried to construct a confidence interval did a Wald
version using the asymptotic covariance matrix – this entails evaluation
of the inverse of the Fisher information matrix and is quite arduous.
Using the likelihood is quite simple as the figure below illustrates.

d. Simulations are also quite easy in R. Code for my version of the
simulations is included along with the code for the figure for part c.) in
an appendix. One problem with the comparison of estimates of µ and
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Figure 1. This figure plots twice the concentrated log like-
lihood, −2 logL, as a function of α for a sample of 200 ob-
servations from the three parameter lognormal distribution.
A point estimate of α is indicated by α̂ and the vertical red
line. The horizontal black line is drawn at −2 logL(α̂) + C
where C is the 0.95 quantile of a χ2

1 random variable, so the
0.95 confidence interval is simply the interval for which twice
the log likelihood is below this horizontal line. Note that the
resulting confidence interval is asymmetric, in this situation
we know “for sure” that α is less than x(1).

σ with and without estimating α is that there is a strong correlation
between the estimates of α and the other parameters. So I thought it
might be interesting to compare estimates of some functional that was
invariant like the median. When you run the simulation you see that
estimating α seems very costly in terms of estimating µ and σ, but if
you are really interested ultimately in using these estimates to estimate
the median, then estimating α is almost costless: the first component
of MSEE is only slightly bigger than the second one based on knowing
that α = 1, and both of these parametric estimates are quite a bit
better than the sample median. Of course knowing that we are in the
three parameter lognormal model is quite a leap of faith.

Appendix A. Code for the Lognormal Figure

# Plot likelihood for 3 parm lognormal

loglik <- function(a,x){
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n <- length(x)

y <- log(x-a)

s <- sqrt(var(y))

n * s + sum(log(x-a))

}

x <- 1 + exp(rnorm(200))

minx <- min(x)

as <- seq(minx - .4, minx - .01,length = 100)

fs <- as

for(i in 1:length(as)){

fs[i] <- 2 * loglik(as[i],x)

}

pdf("lnorm.pdf", height = 5, width = 7)

plot(as,fs,xlab = expression(alpha), ylab = expression(-2~logL( alpha )))

a <- optimize(loglik,c(minx - .5, minx - .01),x = x)

ahat <- a$minimum

lhat <- a$objective

calpha <- qchisq(.95,1)

abline(h = 2*lhat + calpha)

mtext(expression(x[(1)]),1,0,at = min(x))

mtext(expression(hat(alpha)),1,0,at = ahat)

abline(v = ahat,col = "red")

abline(v = min(x),col = "black")

dev.off()

Appendix B. Code for the Lognormal Simulation

# likelihood for 3 parm lognormal

loglik <- function(a,x){

n <- length(x)

y <- log(x-a)

s <- sqrt(var(y))

n * s + sum(log(x-a))

}

R <- 1000

n <- 200

A <- matrix(0,3,R)

B <- matrix(0,2,R)

E <- matrix(0,3,R)

for(j in 1:R){

x <- 1 + exp(rnorm(n))

B[1,j] <- mean(log(x - 1))
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B[2,j] <- var(log(x - 1))

minx <- min(x)

ahat <- optimize(loglik,c(minx - .1, minx - .0001),x = x)$minimum

A[1,j] <- ahat

A[2,j] <- mean(log(x - ahat))

A[3,j] <- var(log(x - ahat))

E[1,j] <- ahat + exp(A[2,j])

E[2,j] <- 1 + exp(B[1,j])

E[3,j] <- quantile(x,.5)

}

A <- t(A - c(1,0,1))

B <- t(B - c(0,1))

E <- t(E - 2)

MSEA <- apply(A^2,2,mean) # MSE for estimated alpha

MSEB <- apply(B^2,2,mean) # MSE for known alpha

MSEE <- apply(E^2,2,mean) # MSE for median estimates


