
University of Illinois Final Exam Department of Economics
Spring 2010 Economics 574 Professor Roger Koenker

The ultimate objective of field courses is (presumably) to prepare you to digest new material
in future research. Thus, the exam is structured to allow you to demonstrate some facility for
this, and in the process to learn some (marginally) fun, new stuff. The exam is due friday, May
14 at 5pm. Feel free to email or stop by my office if you feel that there are points that need
clarification; I’ll post corrections or clarifications on the course webpage, if necessary.

1. (Yet another weird interpretation of 2SLS) Given a conventional linear model specification

y = Zα +Xβ + u

Suppose we have instrumental variables W as well as exogonous variables X and we
consider the 2SLS estimator of the vector α

α̂2SLS = (Z>PMXWZ)−1Z>PMXWy

(a) Explain the notation, show that this really is 2SLS, and explain how you would
go about computing α̂2SLS using only OLS steps. (Note that this is just the usual
Frisch-Waugh partial residual plot algebra combined with the usual 2SLS algebra.)

(b) Now consider an expanded version of the model,

y = Zα +Xβ +Wγ + v

Denote the least-squares estimator of γ in the expanded model, holding α at a fixed
value, by γ̂(α) = (W>MXW )−1W>MX(y − Zα). Let ‖x‖2A = x>Ax. Carefully
choosing a matrix A, show that argminα ‖ γ̂(α) ‖2A= α̂2SLS.

(c) Interpret the result in (b.), that is, provide some sort of intuitive motivation for why
it is (might be) true.1

2. (How to get rich quick) “Assume that we are hardened and unscrupulous types with an
infinitely wealthy friend.” Breiman (1961). The friend agrees, à la Samuelson at lunch,2

to flip a coin biased in your favor on which you may bet any amount B > 0. The payoff
of the bet will be {

B with probability p > 1
2

−B with probability q = (1− p)
Suppose, perhaps because we have little imagination, we adopt a strategy of betting a
constant fraction, θ, of our wealth Wn in each period. Thus, if we have initial wealth W0,

Wn = W0(1 + θ)Sn(1− θ)Fn

1This problem is motivated by the Chernozhukov and Hansen IV estimator for quantile regression.
2Samuelson (1963) describes an incident at lunch at MIT in which he asked his department chair, E Cary Brown,

if he would be willing to make a 50-50 bet (a coin flip) for which if Brown called the coin correctly Samuelson would
pay $200, while if the coin was called incorrectly Brown would have to pay Samuelson $100. Brown said “no, but I
would be willing to accept 100 such bets.” This engendered a small literature because Samuelson felt that Brown’s
response was deeply irrational. On further reflection Brown’s response seems very reasonable, why risk losing $100 at
lunch? But who could resist the temptation to earn/win an expected 5,000, when the probability of losing money was
roughly 1/2300. So Samuelson’s published diatribe seems a bit unfair. (Typical expected utility computations, except
for somewhat pathological utility functions, suggest that if taking 100 bets is good, then taking one should be too.)
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where Sn is the number of “successes” in the flipping, and Fn = n− Sn is the number of
“failures.”
A measure of our average rate of increase in wealth is

log((Wn/W0)
1/n) =

Sn
n

log(1 + θ) +
n− Sn
n

log(1− θ)

Following Bernoulli, we might consider maximizing the expectation of this quantity:

E log(Wn/W0)
1/n = p log(1 + θ) + q log(1− θ).

(a) Show θ∗ = 2p− 1 is the maximizer.

(b) Show that there is a θ̃ ∈ (θ∗, 1) such that for θ > θ̃ we almost surely are ruined, that

is we experience the humiliating event Wn → 0, while for θ < θ̃ we will have Wn

eventually exceeding any fixed bound.

(c) Taking p = .6 do some simulations to support your findings in parts (a) and (b). In

the process find an approximate value for θ̃ in part (b).

(d) Generalize the foregoing to a situation in which you are offered several coins with
differing pi’s to bet on in each period and you can allocate your bets among these
coins and the safe option.

3. Suppose Z is N(µ, σ2) and Z ≡ g(X) = log(X−α), then X is said to have a 3-parameter
log-normal distribution.

(a) Show that the density of X is

fX(x|α, µ, σ2) =
1√

2πσ2
exp{−(log(x− α)− µ)2/2σ2}[x− α]−1

(b) Note that for any fixed α we have a standard normal mle problem for the parameters
µ and σ2 so we may concentrate the likelihood to get

L(α|x) = Kσ̂−n
n∏
i=1

[xi − α]−1.

Show that for α sufficiently near x(1)

σ̂2(α) = n−1
∑

(log(xi − α̂)− µ̂)2 ≤ (log(x(1) − α))2

so
L(α|x) ≥ K| log(x(1) − α)|−n

∏
[xi − α]−1.

and since,

lim
u→0

1

| log u|nu
=∞.

the likelihood becomes unbounded as α→ x(1).
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(c) Even though the mle is obviously silly, if literally interpreted in this case, the likeli-
hood can still play a useful role in drawing inferences about the parameter α. In R
draw a sample of 200 realizations from the 3 parameter lognormal with parameter
(α, µ, σ2) = (1, 0, 1) and plot the concentrated likelihood as a function of α. Use the
asymptotic theory of the the likelihood at the local maximum below the first order
statistic to construct a confidence interval for α.

(d) Using the R function optim you can easily find the optimizing α̂ for this problem.
To get an idea of how much it is costing you to estimate α, run a small simulation
experiment and compare the bias and mean squared errors for the MLE’s of all three
parameters with the MLE performance of µ and σ2 under the assumption that α is
known. For simplicity, stick with the n = 200, (α, µ, σ) = (1, 0, 1) case.
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