
University of Illinois Final Exam Department of Economics
Spring 2009 Economics 574 Professor Roger Koenker

The ultimate objective of field courses is (presumably) to prepare you to digest new material
in future research. Thus, the exam is structured to allow you to demonstrate some facility for
this, and in the process to learn some (marginally) fun, new stuff. The exam is due friday, May
15 at 5pm. Feel free to email or stop by my office if you feel that there are points that need
clarification; I’ll post corrections or clarifications on the course webpage, if necessary.

1. (Extreme Econometrics) In Problem Set 1 we saw that for iid standard GaussiansX1, . . . , Xn:

Mn = max
i
{X1, . . . , Xn} ∼

√
2 log n,

but inquiring minds may want to know more. Could we normalize Mn in some way so
that say, an(Mn− bn) converged in distribution. In particular, we would like to show that
by appropriate choices of an and bn our normalized Mn has a Gumbel, or Type I extreme
value distribution.

Theorem 1 If {X1, . . . , Xn} are iid N (0, 1), then Mn = max{X1, . . . , Xn} satisfies

P (an(Mn − bn) ≤ x)→ e−e
−x

where an =
√

2 log n and bn =
√

2 log n− 1
2
(log log n+ log 4π)/

√
2 log n.

(a) Recall that the limiting distribution appearing in this theorem is the one appearing in
the McFadden multinomial choice model. If individual i gets utility Uij from choice
j given by

Uij = µij + εij

where µij are some constants depending upon characteristics of the individual i and
choice j, and the εij are independent random variables with distribution function

F (x) = e−e
−x

, then the utility maximizing choices take the multinomial logit form

P (Yi = j) =
eµij∑
k

eµik

where Yi = arg maxj{Uij : j = 1, . . . , J}. Derive this result justifying each step,
following if necessary Lecture 20 for my 508 course. Comment on whether you think
that the interpretation of F as a limiting distribution for a maximum of normals
makes the McFadden model more appealing.

(b) To establish the Theorem consider the following

Lemma 1 Suppose {ξ1, . . . , ξn} are iid with df F , and Mn = max{ξi}. Let 0 ≤ τ <
∞ and {un} be a sequence of real numbers such that

n(1− F (un))→ τ as n→∞.

Then
P (Mn ≤ un)→ e−τ as n→∞.
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Complete the proof of the lemma by first noting that,

P (Mn ≤ un) = F n(un)→ (1− (1− F (un)))n.

(c) To complete the proof of the theorem, take τ = e−x in the lemma so

1− Φ(un) = n−1e−x.

Using Feller’s inequality from Lecture 3 we have

1− Φ(un) ∼ φ(un)/un

so for un →∞
n−1e−xun/φ(un)→ 1

or
−2 log n− 2x+ 2 log un + log 2π + u2

n → 0

hence (why?) u2
n/(2 log n)→ 1, so

2 log un − log 2− log log n→ 0.

Now, substituting back we have

un =
x

an
+ bn + σ((log n)1/2)

=
x

an
+ bn + σ(a−1

n )

Fill in the missing details.

(d) As a check on the foregoing try simulating some moderately large number of Gaussian
maxima. In R you can use, Mn <- apply(matrix(rnorm(n*m),n,m),2,max), and
plotting their empirical cdf against the cdf of the limiting distribution.

(e) Suppose we wanted to find the asymptotic distribution of the sample minimum how
would this modify the result of the theorem?

(f) Suppose X1, . . . , Xn were 3 parameter lognormal, i.e., log(Xi−α) ∼ N (0, 1) how does
this change things? Hint: For any monotone transformation, g, so Yi = g(Xi) i =
1, . . . , n

Mn(Y1, . . . , Yn) = g(Mn(X1, . . . , Xn))

so since

P

(
Mn(X1, . . . , Xn) ≤ x

an
+ bn

)
→ e−e

−x

it follows that

P

(
Mn(Y1, . . . , Yn) ≤ g

(
x

an
+ bn

))
→ e−e

−x

.
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In the lognormal case g(x) = ex + α so one can find new normalizing constants by
expanding as follows

g

(
x

an
+ bn

)
= ebn exp

(
x

an

)
+ α

= ebn

(
1 +

x

an
+ ν

(
x

an

)2
)

+ α, ν ∈ (0, 1)

= ebn +
ebn

an
x

(
1 + ν

x

an

)
+ α

but an → ∞ so the term in parentheses converges to 1, and we have new constants
b′n = α + ebn , and a′n = ane

−bn . Explain briefly steps that look unclear, or incorrect.

(g) Now suppose that we would like to use the foregoing theory to estimate α using the
“method of moments.” Note that this means we are really interested in the theory
for the sample minimum not maximum. Find an asymptotically median unbiased
estimator of α based on X(1), the smallest order statistic.

(h) Compare performance of your α̂ with the pseudo-maximum likelihood estimator of
α based on maximizing the likelihood as a function of α and conscientiously staying
away from limit α → X(1), which we know causes problems. In R the function
optimize() is useful in such situations since you can specify an interval to search for
the optimizer.

2. (Harmless Econometrics) Consider a model with a covariate f with many levels f ∈
{1, . . . , J} say, indicating industry or occupation. In R such covariates are referred to
as “factors”. We have a response variable y and a covariate of primary interest z which
we regard as “endogenous.” Perhaps we also have some other covariates X. Note that
in above formulation the we will define a matrix F denoting the matrix of “dummy”
(indicator) variables corresponding to the levels of the factor variable f , i.e., Fij = 1 if
fi = j and Fij = 0 otherwise. And we will assume that X includes an intercept, so one
level of fi is excluded, and consequently values of the parameters γj and δj below can
be interpreted as differences between the conditional means of jth level and that of the
omitted reference level.

We proceed as follows:

(a) Estimate the two “reduced form” regressions

ŷ = Xβ̂ + F γ̂

ẑ = Xα̂ + F δ̂

to obtain the two (J − 1)-vectors γ̂ and δ̂.

(b) Plot these pairs of coefficients γ̂ vs. δ̂ and now estimate, by least squares, the model

γ̂i = a+ bδ̂i + ui

(c) Show that b̂OLS in this regression has the same limiting value as the 2SLS estimator

b̂2SLS = (z̃′P z̃)−1z̃P ỹ
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where z̃i = zi − z̄, ỹi = yi − ȳ and P is the projection matrix onto the columns of

[X
...F ].

(d) Try to characterize the asymptotic relative efficiency of the two procedures. Note
that the claim in part (c.) is only that the two unnormalized estimators have the
same asymptotic limit, not that their normalized versions have the same asymptotic
distribution.

(e) Discuss assumptions under which the proposed estimator might be entitled to a claim
of being a “causal effect.”

Hint: To get started with this question I recommend first simplifying drastically so there is
just a binary variable f , and X is just an intercept. Then we have (explain)

γ̂ = ȳ1 − ȳ0

δ̂ = z̄1 − z̄0

and γ̂/δ̂ is the usual Wald estimator. Well, it is when the sample sizes are the same in both
samples, but perhaps not otherwise. Note that in this case there is only one point to plot so
what is meant by least squares must be fitting a line “through the origin.” Now generalize.
This question is based on a suggestion appearing in Angrist’s Ph.d. thesis and in an (unpub-
lished?) paper by Holzer, Katz and Krueger (1988) where the plotting technique is referred to
as “visual IV.” The idea has been recently revived by Angrist and was mentioned in his recent
departmental seminar.
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