
University of Illinois Econ 574 Department of Economics
Spring 2008 Final Exam Professor Roger Koenker

This is a take home final exam. It will be available on the web at 9am Friday May 2 and
it is due on Friday, May 9 by 5pm. You can put it in my mailbox in 484 Wohlers Hall. The
two questions are meant to be representive of the kind of questions that you might face later
in research, and for which (I hope) the course provided some general preparation.

1. (Slicing Dicing and Stein’s Lemma.) This question was inspired by the talk by Ker-Chau
Li at the 2008 Bohrer Workshop.

(a) Suppose that u ∼ U [0, 1] and G is a continuously differentiable function with deriva-
tive, g, on [0, 1]. Show that

Eg(u) = G(1)−G(0)

(b) Now suppose that you would like to compute

M =

∫ 1

0

(log(1/x))1/2dx

use the result in (a.) to approximate M by the sample mean

Mn = n−1

n∑
i=1

√
log(1/ui)

and evaluate the quality of the approximation for several sample sizes. Do the results
conform to what you are led to expect by the CLT?

(c) Suppose instead that Z ∼ N (0, 1) and G is continuously differentiable with derivative
g on the whole real line. Show (Stein’s Lemma) that:

Eg(Z) = Cov(Z,G(Z)).

And illustrate numerically with the simple example g(z) = cos(z).

(d) A slight generalization of the foregoing result, usually attributed to Brillinger, is

Suppose (X,Y ) are jointly normal with G, g as in Stein’s lemma,

cov(G(X), Y ) =
cov(X, Y )

V (X)
Eg(X)

Prove. Hint: Use the fact that,

Cov(G(X), Y ) = cov(G(X), E(Y |X))

and Stein’s Lemma.
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(e) Now, (finally!) we are getting close to modern developments in econometrics, consider
the transformation model

E(Y |X = x) = h(x>β) ≡ m(x)

where h is a monotone (increasing) transformation. We would like to be able to
estimate β without prior knowledge of h. That is, we are interested in the gradient
vector

∇m(x) =

(
∂E(Y |X = x)

∂xi

)
= h′(x>β)− β

Obviously, ∇m(x) depends upon where we evaluate the function

γ(X) = h′(x>β)

but suppose that we are satisfied to estimate the average derivative

EX∇m(x) =

∫
∇m(x)fX(x)dx

where fX denote the joint density of X. Show that if X happens to be jointly normally
distributed then this average derivative is consistently estimated up to scale by the
least-squares regression coefficients of Y on X. That is, for some scalar κ,

EX∇m(X) = κΣ−1
XXΣXY

where

Cov(X, Y ) =

(
ΣXX ΣXY

Σ>
XY ΣY Y

)
.

Epilogue: There is an extensive literature dealing with the application of these results
to the diagnosis of non-linearities in regression modeling. Unfortunately the normality
of X is quite implausible in most applications. but similar results can be extended to
elliptically symmetric X But I will resist the temptation to expand this line of questions
further.

2. (Non-parametric Regression) This question was motivated by an R-help inquiry I had a
few months ago from a geneticist, and uses one of the data sets that he provided. Consider
the following pair of scatter plots:

The panel on the left illustrates a complete x− y scatter plot of 311 points; the panel on
the right illustrates a plot of the subset of points with |yi| < 1. The objective is to find
a simple and fairly automatic method of fitting a piecewise linear “curve” to the points
that is not too badly influenced by the outliers.

Data is available in the file Data.d and the R-code for the Figure above is also available
as fig1.R.
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Figure 1: Scatterplots with and without Outliers

(a) The function smooth.spline in base R computes the classical L2 smoothing spline of
Reinsch and Wahba. Try fitting the full and reduced data with this function using the
default selection of λ in both cases, and then experiment with alternative λ-selection
strategies.

(b) Repeat the exercise in (a.), but instead of using smooth.spline use the quantreg
function

f <- rqss(y ~ qss(x, lambda=.5))

Note that you can overplot the fitted function on the scatterplot with the command,
e.g.

plot(f, col="red").

Experiment with the λ choice and also compare using the full and reduced samples.
Compare and contrast briefly with the results in (a.).

(c) Explore more formally automatic procedures for choosing λ based on the AIC num-
bers returned by the rqss function.
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