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1. Evaluating the asymptotic variance of the Kaplan Meier median for the example distri-
bution is fairly easy and running the simulation for 1000 replications yields the following
table. In addition to the two original contestants I’ve added as a benchmark the sample
median of the uncensored lognormal observations and two versions of the Leurgans (1987)
“synthetic” estimator of the median. One weights by the true censoring distribution and
the other by the empirical cdf of the censoring points. It is clear from the table that the
KM median is better than Powell’s with an ARE of about .91. Oddly the “synthetic”
median based on the empirical df is much better than plugging in the true df.

MSETab median KM median P Median Ghat median G median

n= 50 1.574436 1.889427 2.270548 2.738291 3.447275

n= 200 1.517478 1.868284 2.081350 2.168050 2.633713

n= 500 1.604791 1.913080 2.025012 2.060395 2.573321

n= 1000 1.550201 1.800137 1.991151 2.002257 2.404124

n = ∞ 1.570796 1.838857 2.016942 2.016942 2.463088

Table 1: MSE for several estimates of the median: Mean squared errors from the simulations are

multiplied by the sample size n so that they can be easily compared to the asymptotic variances given

in the last row.

A coffee argument beyond any expectations for the exam shows that in general

Avar(θ̂KM) ≤ Avar(θ̂p)

First note that dF̃ (t) = (1 − G(t))dF (t) so for t = θ0

f 2(t)Avar(θ̂KM) = S(t)2
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since F (θ0) = 1/2, which was what we wanted to show.
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2. The trick here, as mentioned in 508, is to note that the linear combination appears to be
able to improve upon the ELE unless σ12 = σ11 and since improvement is impossible the
equality must hold. This relies on seeing that for small α, the linear term in α dominates
the quadratic ones.

3. The log likelihood is now
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where µi = µi(β) = x>

i β. Differentiating as before and using the chain rule, we have,

∇` = −
∑

(µ−1

i xi +
1

µ3

i

yi(yi − µi)xi

∇2` =
∑

µ−2

i xix
>

i −
3

µ4

i

yi(yi − µi)xix
>

i −
1

µ3

i

∑

yixix
>

i

=
∑

(µ−2

i −
3

µ4

i

yi(yi − µ2

i ) −
1

µ3

i

)xix
>

i

so Fisher information for β is,

I(β) = −E∇2` = −
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So the asymptotic variance of the MLE of β is 1

3
(
∑

µ−2

i xix
>

i )−1. In contrast, if we use
OLS, we have the usual Eicker-White sandwich formula implying that

(β̂OLS − β) N (0, (X>X)−1XWX(X>X)−1)

where W = diag(µ−2

i ). If we used GLS and weight inversely proportional to variance, then

β̂GLS − β  N (0, (X>WX)−1)

Thus, the MLE which uses the information that V (yi) = µ2

i still gains in efficiency by a
factor of 3 over GLS and by even more than 3 over OLS.
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