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1. Suppose that we are interested in estimating the median survival time from a sample of
right censored observations. We have a random sample {(Yi, δi), i = 1, . . . , n} where, as
usual,

Yi = min{Ti, Ci}
δi = I(Ti < Ci}

with the Ti iid F , the Ci iid G, and Ti and Ci independent. We want to estimate
θ0 = F−1(1/2). An obvious candidate estimator is θ̂KM , the median of the Kaplan-Meier
estimate of F . Another candidate estimator is Powell’s (1984) censored regression esti-
mator specialized to this simple setting,

θ̂p = arg minθ

n∑
i=1

|yi − min{θ, ci}|.

Note that the latter estimator presumes that we know Ci for all the observations, not just
the censored ones with δi = 0, so one might expect the Powell approach to do better,
since it uses more information. On the other hand, Kaplan-Meier has known optimality
properties in this context.

(a) Asymptotic theory should be helpful in resolving this dispute. Based on Powell’s
asymptotics for the regression case, show that

√
n(θ̂p − θ0) N (0, (4f 2(θ0)(1 − G(θ0)))

−1).

In contrast the theory of θ̂KM is more involved. Using delta-method arguments show
that √

n(θ̂KM − θ0) N (0, Avar(Ŝ(θ0)/f
2(θ0))

Unfortunately,

Avar(Ŝ(t)) = S2(t)

∫ t

0

(1 − H(u))−2dF̃ (u)

where 1 − H(u) = (1 − F (u))(1 − G(u)) and F̃ (u) =
∫ t

0
(1 − G(u))dF (u) is difficult

to evaluate and compare.

(b) Instead, consider a toy Monte-Carlo experiment as a way to make the comparison.
The KM estimator of the median can be quite easily computed as,

KM.median <- function(y,d){

g <- survfit(Surv(y,d))

g$time[min(which(g$surv<=.5))]

}

Whereas the Powell estimator has a piecewise linear objective function with kinks at
the observed Yi’s so it can be evaluated using,
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Powell.median <- function(y,c){

R <- function(a,y,c){

sum(abs(y-pmin(a,c)))

}

r <- a <- sort(y)

for(i in 1:length(a)) {

r[i] <- R(a[i],y,c)

}

mean(a[which(r == min(r))])

}

Verify with some plotting that these functions do what they are claimed to do. Note
that you will need to use the survival package for the KM estimator. In order to
enforce some degree of consistency across experiments, I suggest the following setup
with F standard lognormal, G exponential with rate .25. Thus, conveniently, θ0 = 1.

t <- exp(rnorm(n))

cen <- rexp(n,.25)

y <- pmin(t,cen)

Design a small experiment to evaluate which of these estimators is better. For laughs
try including the naive sample median of the Y ’s as a third alternative.

2. An estimator may be called an efficient likelihood estimator (ELE) if it asymptotically
achieves the CRLB. The following result is central to the theory of “Hausman-type” tests
in econometrics and describes the relationship between ELE’s and competing estimators.

Theorem: Suppose θ̂n is an ELE, θ̃n is a
√

n-consistent estimator of θ0, and

Ẑn =
√

n(θ̂n − θ0) Ẑ0

Z̃n =
√

n(θ̃n − θ0) Z̃0

where (Ẑ0, Z̃0) have a joint normal distribution with mean zero and covariance matrix

Σ = (σij). Then the asymptotic relative efficiency of θ̃n with respect to θ̂n, i.e. the ratio
of their limiting variances σ11/σ22, is given by e = ρ2 where ρ = σ12/

√
σ11σ22 is the

correlation coefficient of Ẑn and Z̃n.

Prove the result by considering Avar((1 − α)Ẑn + αZ̃n) and showing that its limit is
minimized at α = 0 which implies σ11 = σ12.

Explain the connection of this result to the Hausman test.

3. Generalize the following question from the 2002 Final Exam (available on the web along
with a sketchy answer) to the case of regression with µ = x>

i β.

Suppose {y1, ..., yn} are iid random variables, each normally distributed with mean µ
and variance µ2. Find the mle of µ and argue its consistency. Compare the asymptotic
efficiency of the mle in this problem with that of the sample mean. This problem is related
to estimating models of heteroscedasticity in linear regression which have parameters in
common with the model for the conditional mean.
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