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1. Part (a.) of this question seemed to be more difficult than I expected it to be, perhaps I
didn’t emphasize sufficiently in lecture the difficulties associated with the Wald approach.
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The last term is 0,(1) due to the 1L of u's and 2’s, but the second terms creates
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problems. Consider*
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Note that we rely crucially on the multivariate normality of (v, z) to write the con-

ditional expectation
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and clearly, 0,, = F(vz) = E(v(z 4+ v)) = o2. Similarly,
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Furthermore,
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This bias factor is the same as for the LS estimator. When p is estimated, we have
it — 1 and the conditional expectations tend to the same limits given above, so the

asymptotic bias is the same as in the fixed pu case.

*We (provisionally) treat ji as fixed.



(b) When o2 = 0 we have,
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(c) Obviously, in the normal case the Wald estimator isn’t very successful as a bias
reduction device. In non-normal cases there is somewhat more hope that it could
be successful, but given the cost in variability as well there is not much to suggest,
based on the normal theory, that it would be advantageous.

2. This question seemed to cause less trouble. I've included my R code and the resulting
table.

#Spring 2002 Econ 476 Final Exam Question 2
1lik <- function(theta,x){
#log likelihood function for iid cauchy location model scale ==
sum(-log(1/(1+(x-theta)~2)))
}
onestep <- function(theta,x){
#onestep mle for the iid cauchy location model scale ==
grad <- sum(2x(x-theta)/(1+(x-theta)~2))
hess <- sum(+4*(x-theta) 2/(1+(x-theta) " 2)"2 - 2/(1+(x-theta)"2))
theta - grad/hess
}
R <- 1000
ns <- ¢(20,40,100)
A <- array(0,c(4,3,R))
for(j in 1:3){
n <- ns[j]
for(i in 1:R){
x <= rt(n,1)
Al1,j,i] <- mean(x)
A[2,j,i] <- median(x)



A[3,j,1] <- onestep(median(x),x)
Al4,j,i] <- nlm(lik,median(x),x=x)$estimate
}

}
a <- apply(A~2,c(1,2) ,mean)

#make latex table for exam.R output

dimnames(a) <- list(c("mean","median","onestep","mle"),c("n=20","n=40","n=100"))

caption <- "Mean Squared Errors for 4 estimators of location for iid Cauchy
observations and 3 sample sizes: 1000 replications"

tab <- format(round(a,3))

latex.table(tab ,caption=caption)

This yields the following results.

tab n=20 n=40 n=100

mean 7850.153 | 2653.092 | 381.843
median 0.148 0.069 0.025
onestep 0.137 0.059 0.020
mle 0.129 0.059 0.020

Table 1: Mean Squared Errors for 4 estimators of location for iid Cauchy observations and 3 sample
sizes: 1000 replications

3. The log likelihood is
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Obviously, we want to choose the positive root. To find variance of mle, write
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so the mle satisfies v/n(i—p) ~ N (0, u?/3) whereas v/n(y—u) ~ N (0, z?) which requires
3 times as many observations to achieve the same precision.



