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(a.) For k ¢ {i,j} E((—)(—)) = E(—)E(—) by 1L of {X;} but both factors have mean zero.

(b.)

For k =i # j, condition on X; = X; so we have

B ((Hy. — 0) (i — Hy. — Hj + H-)|X,)
= (Hy. — 0)(Hy. — Hy. — Hj. + 0)
= (Hy. — 0)(—H;. + 0)

Now take expectations wrt to X or X;. To make some heuristic connection to regression,
we can view the decomposition of U,, into the Y, and V,, parts as analogous to the usual
decomposition of a random variable (regression response variable y) into a conditional
mean component (§ = 2’ B) and a residual @ component. In such decompositions the
conditional mean component is the orthogonal projection of y into the lower dimensional
subspace spanned by the z’s. And we have: 4 L g, since @'y = u'(I — Px)Pxy = 0 by the
idempotency of Px.

Vo= (n(n—1))71303,.,Vij but EVy; =0 so

Var (V,) = (n(n—1)) ZZZ#Z Zk# (VijVie)

= (n(n—l)) 2EViyn(n — 1)

only the terms with ¢j matching k¢ contribute. There are n(n — 1) ij pairs, for each we
have a matching k¢ pair one as k¢ = ij, one as k¢ = ji so we get the expression above.
Note that this term is O(n=2) and therefore negligible relative to the conditional mean
contribution of the Y;’s.

(c.) V(Un = 0) = /n2(Y, — 0) +/nV,

(d.)

By (b.) 4/nV, has mean zero and variance converging to zero, in fact, Var(\/ﬁVn_) ~
0,(1/n), so y/nV,, — 0, since it converges in quadratic mean. On the other hand /n(Y; —
0) is a classical iid CLT situation with limiting A(0,c?) behavior. Thus by the Slutsky
lemma,

V(U — 0) ~ N(0,40?)

Y, = (Xi—p)’+E(X;—p)? —2(X; — p)E((X; — p)| X;)

Y; = E(|X;—Xj| |Xj)



= /Xj (X; — z)dF (z) + /Xoo(x — X;)dF (z)

—00 i

= X,F(X;) - X;(1 - F(X,) + / " dF(z) — / Y pdF ()

’ F(x;) _ocl)
- Xj(2F(Xj)—1)+/F(Xj)F (t)dt—/o Fl(t)dt
= Xj(QF(Xj) — 1)+ p = 29(F(X;))

where i = [ F~'(t)dt = [*°_xdF(z), and ¢(t) = [, F~'(s)ds. Thus,

1

(f.)
EY; = 2E[XF(X) = ¢(F(X))]

But note that

EXF(X) = / " P (2)dF (z)

—oQ

= /01 F1(t)tdt

_ _/0 b(t)dt + P (t)t]S

= —/w(t)dt+u

EyF(X) = / / (s)dsdF(z)
= // s)dsdt
- /0 w(t)dt

BYi =22 | bt

Now the Lorenz curve corresponding to the distribution, F', is given by

and

SO

A0 =ttt =i [ P (s)ds

so we have
EY; =2p[1 — 2A(1)]
So, EY; = 2uy where v is the usual Gini coefficient of inequality. So a nice way to write

v, 1s
E(X; — X))

T E(X T X))

2



For the variance we have,

V(Y) = EY;-(BY;)’
E(BE(1X; - X;1X;))* - ¢

B /(/(|x — y|dF (z)))*dF (y) - 6*

(g-) This part caused more difficulty than I had intended. Given the form of the R;;(d) terms
in the exam, we can compute the conditional mean (projection) bits to get our Y;’s. Note
that the Y;’s here depend on ¢ since the U-statistic is a function. The first term yields,

sen (X + X,)|X;) = / sgn(z — X;)dF (z)

- —/: dF(z)+/:odF(x)

Note that this is a random variable, but very conveniently F'(X;) are iid standard uniform.
For the second term,

20/v/n
BU[ U+ X < 8) = 16+ X; < )X
25/v/m
- / (P(s = X)) = F(=X,)ds
= = [ - x) - X

=n""f(X;) / tdt
0
= ’I’L_12f(XJ)(52

So we can write the objective function

D,(6) = (g)_lszj(é)
= W+ (nn—1)"Y YV

where the later term is asymptotically negligible by the same arguments we have made
earlier, and

where (why?)
Wo=n""23"(1-2F(X;)) ~ N(0,1/3)
and (why?)

&=n 'Y 106) > [ Flot=g



(h.)

Now consider the minimizer of the limiting form of the objective function,

This is a pseudo-estimator. It obviously can’t be computed from the data, it is the
minimizer of the limiting form of the objective function, but the crucial thing is that
asymptotically it behaves like the Hodges-Lehmann estimator because the two objective
functions are (eventually) nearly the same. By Slutsky’s lemma, we have,

O ~ N(0, (1262)71),

Since Dy, (d) converges uniformly in 4, it follows that b, has the same limiting distribution
as o,,.

We would expect that the median of the pairwise averages would behave more robustly
than the mean, and perhaps someless less robustly than the sample median. This is the
case. As F becomes heavier tailed, the contribution of o2(F) in the ARE expression blows
up, but the asymptotic variance of the Hodges-Lehmann estimator is affected very little.
In the extreme Cauchy case we have inconsistency of the sample mean, and therefore the
ARE is unbounded.

(i.) Finding the least favorable distribution involves minimizing the expression for the ARE. If

we fix the scale of the distribution F' we can set ¢ = 1, and then the problem reduces to
minimizing ffooo f?(x)dz. This is just the problem of finding the optimal kernel in density
estimation, and leads to the Epanechnikov quadratic kernel. Plugging that into the ARE
expression yields worst case ARE of .864. This is rather remarkable: the sample mean
can be arbitrarily worse than Hodges Lehmann, but it can’t be any better than about 15
percent.



