Economics 536: Applied Econometrics Problem Set 5

This problem set concerns predicting productivity of new workers in a large American manufacturing firm. There are five variables: $y_{i}-$ an observed standardized physical productivity measure for the $i^{\text {th }}$ worker after the initial training period, sex x_{i} - a dummy variable for the workers' sex (males are 1) dex - a score on a physical dexterity exam administered before the worker was hired, lex - the number of years of education of the worker, and quit - whether the person quit within the first six months (quitters are 1). The last two columns of the data provide actual duration of employment and a censoring indicator, respectively. If the censoring indicator is 0 then the corresponding duration is censored. These last variables are used only in Question 5.

1. Estimate the model

$$
y=\alpha_{0}+\alpha_{1} s e x+\alpha_{2} d e x+\alpha_{3} l e x+\alpha_{4} l e x^{2}+u .
$$

(a) Test the hypotheses: $H_{0}: \alpha_{3}=\alpha_{4}=0$ and $H_{0}: \alpha_{4}=0$. Interpret the results of the tests in economic terms.
(b) Given the results of part a) draw a diagram illustrating the dependence of "mean productivity" on education. Set dexterity at its mean and $s e x=0$. Interpret the picture. How does it change for men? Suppose you thought the whole shape of the education effect was different for men and women; reestimate your respecified model. Does this improve things?
(c) Use the δ-method and/or the bootstrap to construct a confidence interval for $l e x^{*}=$ level of education maximizing expected productivity.
(d) As a check of the quadratic specification used above, estimate a (more) nonparametric version of the model using a cubic B-spline expansion and compare the plotted fits.
2. Now consider the possibility that the dispersion and perhaps even the shape of the conditional density of productivity depends on the sex-dex - lex variables.
(a) Propose a quantile regression model of this type, estimate and interpret it. For this purpose, redoing the prior plots of mean productivity for several quantiles would be helpful.
(b) Admitting that the whole distribution of productivity changes with the observable covariates leads to a much more complex, and richer, view of the employers decision problem. Suppose that the firm chooses a cutoff of 14 for productivity so that workers who do not acheive this level after one year on the job are dismissed. What proportion of the workers at various education levels (assume mean dexerity scores) would be retained? How would this be likely to affect hiring decisions?
(c) Now suppose that it is very difficult to fire less productive workers, and that the employer want to hire workers to maximize the probability that they would be able to acheive productivity 13 . Suggest a hiring strategy. This question is quite similar to the decision problem faced by many public universities who have to decide on admission policies for diverse applicants who have somewhat predictable performance and retension probabilities.
3. Now consider a similar model for quits

$$
\operatorname{logit}(P(q u i t=1))=\left(\beta_{0}+\beta_{1} \operatorname{sex}+\beta_{2} d e x+\beta_{3} l e x+\beta_{4} l e x^{2}\right)
$$

where quit $=1$ if the worker quit within the first 6 months after employment, and is 0 otherwise.
(a) Estimate this model by logit, interpret the estimated parameters, in particular the estimated education effect. Draw a picture as in part (1b.) above of the probability of quitting as a function of years of education. Explain the connection between the parameter estimates and the picture.
(b) Explore the effect of gender along the lines of question 1b.
(c) Evaluate the logit specification by computing the Pregibon diagnostic suggested in class and interpret.
(d) Presumably, there is a fixed cost of hiring and training so there is an incentive on the part of the firm to avoid hiring workers who are likely to quit after only a few months. How would your findings be expected to influence the firms willingness to hire workers of various education levels?
4. Now we wish to reconsider the sexdexlex productivity model of Part 1 exploring the consequences of "sample selectivity". Suppose instead of observing the entire sample of 683 individuals, we instead observed productivity only for those who didn't quit.
(a) Use the Heckman two-step procedure to estimate the productivity equation of Part 1 , using only the non-quitters.
(b) Compare and contrast the results from (1.) with your previous results using the full sample, and the results from (naively) applying OLS to the restricted sample. In particular, discuss how the inferences drawn above are altered by the sample selection of non-quitters.
5. We would like to consider a more detailed analysis of quit behavior based on a sample of (censored) survival times rather than the binary dependent variable used in question 2.
(a) Exploratory data analysis of these survival times is usefully done via the Kaplan Meier estimator. Investigate the efect of gender on quit behavior by estimating separate survival curves for men and women. Then stratify the sample into three education levels: less than 12 years, exactly 12 , and more than 12 , and plot the corresponding KM curves for the three groups and interpret.
(b) Now estimate a Cox proportional hazard model like the one used in question 3.) based on the survival time data and interpret the model, comparing with the results in that question.
6. Finally, we would like to analyse the success of a training program that was instituted for those staying beyond the 6 month cutoff. In the augmented dataset called WECO14.txt you will find two additional variables: treatment and ypost. The former is an indicator of whether a subject was selected to participate in the training program, and the latter is a post training period measure of productivity. Eligibility for the training program was based on a randomized decision rule that depended solely on the observed covariates, sex, dex, and lex that were known at the time of initial employment.
(a) Estimate a model for the propensity score $p(x)=P\left(D_{i}=1 \mid X\right)$, interpret the model and explore the overlap the propensity score for those in and out of the treatment group.
(b) Compare the regression and propensity-score (Horvitz-Thompson) and average treatment effect on the treated estimates of the treatment effect of the training program.

