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Lecture 5
The 6-Method and the Bootstrap
Introduction to Nonlinear Inference

Let me begin with a very simple inference problem which has a personal
attraction to me, because it was one of the first interesting applied problems
I faced (while writing my thesis). I had estimated a cost function of the
quadratic form,

(1) Yi = oo + a1x; + 062%2 + ziTﬁ + u;

where y; was log cost of firm i, x; = log(g;) was log output and z; was

a vector of other characteristics of the ¢t firm. It is easy to show that
minimum average cost occurs at output level

(j* = exp{(l — @1)/2@2}.

It is easy enough to make a point estimate of this quantity, but the question
of how to compute a confidence interval for this estimate is not quite as easy.

One approach is the §-method, write 6 = («, 5) and ¢* = h(#), then the
asymptotic normality of 6,

(0 — ) ~ N(0,V)

where V = 02(X"X)™! and X = [1,2;, 22, z,'] implies that

(G — q*) ~ N(0,Vh'VVh)

where Vh is quite easily computed. In effect we have pretended that the
nonlinear function h(-) can be well approximated by the linear function

h(0) = h(0) + Vh(B)T (0 —6).
Note that the vector Vh(é) is fixed once the estimation is carried out, so
the expression VAT V'Vh is just a scalar constant.
This works asymptotically because for large n, 6 is concentrated very
close to 0y and h is smooth, i.e., well-approximated by a linear function in
a neighborhood of 6y. However, we can get some idea of why the J-method



might perform badly by asking how linear is h(-) in some appropriately
defined confidence region for 6. For example, we could draw a confidence
ellipse for (a1, a2) based on F-theory and then compute h(-) for various
values of (aj,c9) in this confidence region — would these values be well
approximated by the tangent plane of h(-) at &1, ég, or not?

Digression on confidence ellipses for regression coefficients

In light of these considerations, it is perhaps useful to review some basic
facts about confidence regions for parameters in the classical linear regression
setting. Suppose that we have a simple linear model with two covariates:

Yi = w1351 + w2 P2 + u;
we know that for u spherically normal,
B~ N@B o (XTX)T

so the variance of any linear contrast o ' B is given by evaluating the quadratic
form, JQaT(X TX) 'a. When z; and x5 are positively correlated then 31
and Bg will be negatively correlated. This implies that we will be able to
estimate the sum of the 8’s well, but not their difference. To illustrate this
effect consider the following example from Malinvaud’s classic textbook. We
have the following model of French imports:

ye = 0.13371; + 0.550m9 + 2.10 244 — 5.92
(0.006) (0.110) (0.200) (1.27)

where y,; is French imports, x1; is gdp, xo; is investment, x3; is consumption,
and x4 is dummy variable for EC membership. All variables are in millions
of French Francs in 1959 prices. In this model we are able to make reasonably
precise estimates of the effect of growth of gdp and investment on imports
with 95 percent confidence intervals (respectively)

81 € (0.121,0.145)

By € (0.33,0.77)

However, if we introduce the consumption variable x3;, we obtain,

y = —0.021z1; + 0.559z9; + 0.235x3 + 2.10z4 — 9.79
(0.051) (0.087) (0.077) (0.16) (1.38)

But now note that the confidence interval for /; is (-.123,.081). What
happened? Roughly speaking, we will see that when, as in this example
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Figure 1: Confidence ellipses for two pairs of coefficients in the Malinvaud
import demand equation. In the left panel the coefficients on gdp and in-
vestment are nearly independent, however in the right panel after adding
consumption spending, which is quite strongly correlated with gdp, the co-
efficients of these two variables are very strongly negatively correlated.

the independent variables exhibit an approximately linear relationship, here
T3 = yx1, then the "regression” is incapable of precisely estimating the sep-
arate effects of the two variables. This is made more explicit if we consider
confidence elipses for pairs of coefficients. Without the consumption vari-
able we get a quite precise estimate of the gdp effect, but when we include
consumption the situation changes radically — we have a very imprecise es-
timate of the gdp effect — even the sign of the coefficient is in doubt, and
the joint confidence ellipse of the gdp and consumption coefficients is very
cigar shaped. Given the orientation of the cigar it is clear that we can quite
accurately estimate the effect of circumstances in which gdp and consump-
tion move in the same direction, but we are unable to predict what would
happen when they moved in opposite directions. Why?



As a second example consider the problem of jointly estimating confi-
dence intervals for income and price elasticities of gasoline. In Figure 2 we
illustrate .90 and .99 confidence ellipses for two estimated gasoline models.
One is based on data from 1947-72 prior to the first oil shock, and the other
is based on the entire period 1947-88. Several things are evident from the
figure. First, the full data set yields much more precise estimates (smaller
confidence regions). This is to be expected when there is more data, and
more especially when there is more variability in the x variables, as was
kindly provided by OPEC. Second, the orientation of the ellipses for the
full sample is somewhat more aligned with the coordinate axes indicating
that there is less correlation between the two elasticities than in the earlier
period. This reflects more independent movement of prices in the OPEC
period, whereas price and income were more strongly positively correlated
in the earlier pre-OPEC period. Finally, and most disturbingly note that
the evidence provided by the earlier period is wildly overconfident about
precision of the elasticity estimates. While admitting that the price elastic-
ity might be negative, it rules out very strongly the possibility that it could
be as small as -0.50, the value obtained using the full data set. Similarly, the
confidence in the lower estimate of the income elasticity is also misplaced.

Finally, to conclude this digression, let’s consider the relationship be-
tween the confidence ellipses that we have seen and the conventional one
dimensional confidence intervals. To fix ideas let’s consider the simplest
possible case: a situation in which we have a two dimensional parameter £
that happens to be standard normal, i.e. 8 ~ N(0,1I3). This is a totally
artificial situation in which we imagine that 3 happens to take the value
(0,0)" and have covariance matrix, I>. Then we have that

P(B% + B2 < 5.99) = .95

since the sum of squares of the 3’s is x3. Thus, we get circular confidence
regions and the radius of the .95 region is 2.45. Compare the area of this
circle: 72 = 18.81 with the area of the square formed by two .95 confidence
intervals for the separate parameters: which has area (2 -1.96)% = 15.36.
Why is this square smaller than the circle? Hint: Show that the square that
contains probability .95 has area 20.05.

You can easily generalize this example to the more realistic case that B
is non-zero with correlated elements. In this case we can diagonalize the
covariance matrix of /3’, say V. = PDP’ where D is the diagonal matrix of
eigenvalues and P is the matrix of eigenvectors. The eigenvectors describe
the principle directions of the ellipses, and the eigenvalues represent the
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Figure 2: Confidence ellipses for income and price elasticities of gasoline in
the U.S.
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Figure 3: In the left panel the circular 0.95 confidence region for the bivari-
ate standard normal vector is compared with two “confidence squares” — one
based on univariate 0.95 intervals, the larger one on univariate 0.975 inter-
vals. The two squares have areas 15.36 and 20.05 respectively. Which one
has the same coverage probability as the circle? In the right panel the same
comparison is made except that the ellipse corresponds to a 0.95 confidence
region for a bivariate normal vector with unit variances, and correlation -
0.80. Now the area of the elliptical region is 15.71, and because of the unit
variance assumption the squares are the same as they were in the first case,
so the discrepancy between the elliptical region and the comparable square
is even larger.

variability in these directions. As should be obvious at this point the dis-
crepancy between the rectangular regions and the elliptical regions in these
correlated cases can be much more extreme than in the independent case.
Figure 3 illustrates these differences.

Resampling and the Bootstrap
This suggestion at the end of the first section of this lecture contains

the essential idea for various improvements. Let’s begin by considering how
we might go about computing an exact solution to the confidence interval



problem. If we believed in the full classical linear model conditions for (1),
itd Gausian errors, etc. etc., then we have already seen that

Vn—l/Q(é _ 90) ~ Studentnfpm’ Ip)

where the rhs denotes a multivariate Student-t random vector with mean 0
and dispersion matrix I, and n — p degrees of freedom with

Ve=062(XTXx)7!

Thus, in principle we could find the exact distribution of h(-) by the usual
transformation formulae of the calculus. This is tedious and probably not
worth the effort unless h(-) is something quite important that will be used
repeatedly.

A simpler approach would be to approximate the distribution of h(-) by
simulation. [Now, we are getting closer to the bootstrap!]. How to do this?
Let Z be a draw from Student,,_,(0, I,,) then

Z=0-V\?z

has the distribution represented by the confidence region referred to above,
in particular if we looked just at the two coordinates corresponding to
(a1, a9) of Z, they would fall into the 95% confidence ellipse alluded to
earlier with probability .95. Thus, suppose we now take a random sample
of size R of such Z’s, denote the jth one by Z7 and compute R estimates of
q* from them:

¢ =nz% j=1,...,R

and finally, imagine computing the standard deviation of these, or even
better, computing the «/ 2th and (1-«/ 2)th quantiles of these and defining
a C1I for ¢* as
{¢": ¢ € (Gr(a/2),d5(1 - a/2))}.

As R — oo these sample quantiles converge to the true quantiles of the
distribution that we could have computed analytically, but were too lazy to
undertake. But now it is natural to object to the fact that we may not be
sure about all of the assumptions which underlay the assertion that 6 had
this exact Student-t distribution. What then?

Under the slightly weaker condition that the errors are 7¢d but not nec-
essarily Gaussian we might suggest the following strategy which brings us
even closer to the bootstrap. What would be our best guess about the
distribution of the errors under the conditions specified? Obviously,

Fu(u) =n~"> I(i; < u)

7



We can conveniently think of sampling from this distribution as simply draw-
ing from the set {11, ..., Uy}, assigning probability 1/n to each element, with
replacement. That is, on each draw we select an integer from 1 to n, say k,
making sure that each integer is assigned probability 1/n. Having done this
n times we have a new vector of residuals

i = (g, iy - - » Ty,

then define a new y-vector

J=g+u=y—u+u

and compute a new least squares estimate
6=(X"X)"'xTy

And now repeat this process R times each time getting a new 6 and then
computing a new value for

q* = h(0)
Again this yields a sample of R values of the quantity of interest which can
then be used to estimate a standard error or construct a confidence interval.

Implementation:  In R there are a number of functions which have built-in
capability for bootstrapping. In addition, there are the functions provided
in Davison and Hinkley (1997). The simplest things can be easily imple-
mented using the sample command. To illustrate consider the following
code fragment

fit <= 1m (y ~ x)
uhat <- fit$resid
h <- rep(0, R)
for (i in 1:R) {

yh <- fit$fit + sample (uhat, replace=TRUE)
b <- 1lm(yh ~ x)$coef
h[i] <- exp((1-b[2])/2xb[3]))

}

quantile(h, ¢(0.025, 0.975))



The bootstrap is a important general technique which has sparked in-
tense interest from both applied and theoretically inclined researchers since
Efron’s (1979) paper. There are at least a dozen recent monographs on
the subject among which I would recommend Efron and Tibshirani (1993),
Davison and Hinkley (1997). At an elementary level the paper of Efron and
Gong (1983) is still useful, I believe. It contains among other things a nice
discussion of how to use the bootstrap to evaluate the fishing effect discussed
in the last lecture.

Efron’s bootstrap provides a very general approach to resampling which
avoids some problems inherent in the systematic resampling of the jackknife.
In German the expression an den eigenen Haaren aus dem Sumpf zu ziehen
nicely captures the idea of the bootstrap — “to pull yourself out of the swamp
by your own hair.” The sample itself is used to assess the precision of the
estimate 6.

I will conclude with a prototypical example of the use of the bootstrap.
An enormous variety of other examples may be found in the books by Efron
and Tibshirani (1993) and Davison and Hinkley (1997).

In regression we need not use the residual bootstrap on page 2. A more
direct implementation of the bootstrap would be to “resample (x,y)-pairs”
i.e., at each replication draw a random sample {k1, ks, ..., k,} with k;’s iid
and uniform over the integers 1,...,n. The sample {(zy,,yx,) i =1,...,n}
can then be used to compute / and a covariance matrix of B could be
computed as

R
V=R (B-8pF-p"
=1
This is easily implemented in R in the following way:

bhat <- 1m(y ~ x)$coef
n <- length(y)

p <- length(bhat)

R <- 500

B <- matrix(0,p,R)

for (i in 1:R) {

s <- sample (1:n, replace=TRUE)
B[,i] <- 1m(y[s] ~ x[s,])$coef

}



Vhat <- cov(B - bhat)

This approach is less sensitive to assumptions than the residual based
bootstrap introduced earlier. In particular, it does not assume that the re-
gression errors are iid so it can accommodate heteroscedasticity for example.
Of course it does still assume that the observations are independent. Boot-
strapping dependent observations is an inherently more difficult task which
has generated its own rather large literature. Rather than using V to com-
pute standard errors one could, of course, again use the percentile method
directly on the bootstrap sample of B% vectors. This approach can be used
effectively in M-estimation contexts to generate automatic versions of the
Huber Sandwich. For OLS this approach approximates the Eicker-White
formula.

References

Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals
of Stat, 7, 1-26.

Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap,
Chapmall-Hall: New York.

Davison, A.C. and D.V. Hinkley (1997). Bootstrap Method and their Appli-
cation, Cambridge U. Press: Cambridge.

Efron B. and G. Gong (1983). A leisurely look at the bootstrap, Am. Statis-
tician, 37, 36-48.

10



