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1. Model Selection

Classical hypothesis testing plays a central role in econometrics, but in
many applied problems we face a preliminary stage of the analysis in which
we need to make decisions about model specification. These decisions are not
very well formalized in terms of classical hypothesis testing, and gradually
specialized procedures have been developed for this under the rubric “model
selection.” In this lecture I will describe two of these procedures and relate
them to more classical notions of hypothesis testing.

The framework for model selection can be described as follows. We have
a collection of parametric models

{fi(x, θ)}
where θ ∈ Θj for j = 1, . . . , J. Some linear structure is usually imposed
on the parameter space, so typically Θj = mj ∩ θJ , where mj is a linear
subspace of <pJ of dimension pj and p1 < p2 < . . . < pJ . To formally
justify some of our subsequent connections to hypothesis testing it would be
also necessary to add the requirement that the models are nested, i.e., that
θ1 ⊂ θ2 ⊂ . . . ⊂ θJ .

Akaike (1969) was the first to offer a unified approach to the problem
of model selection. His point of view was to choose a model from the set
{fi} which performed well when evaluated on the basis of forecasting per-
formance. His criterion, which has come to be called the Akaike information
criterion is,

AIC(j) = lj(θ̂)− pj
where lj(θ̂) the log likelihood corresponding to the jth model maximized over
θ ∈ Θj . Akaike’s model selection rule was simply to maximize AIC over the
j models, that is to choose the model j∗ which maximizes AIC(j). This
approach seeks to balance improvement in the fit of the model, as measured
by the value of the likelihood, with a penalty term, pj . Thus one often
sees this and related procedures referred to as penalized likelihood methods.
The trade-off is simply: does the improvement which comes inevitably from
expanding the dimensionality of the model compensate for the increased
penalty?
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Subsequent work by Schwarz (1978) showed that while the AIC approach
may be quite satisfactory for selecting a forecasting model it had the unfor-
tunate property that it was inconsistent, in particular, as n→∞, it tended
to choose too large a model with positive probability. Schwarz (1978) for-
malized the model selection problem from a Bayesian standpoint and showed
that as n→∞, the modified criterion1

SIC(j) = lj(θ̂)−
1

2
pj log n

had the property that, presuming that there was a true model, j∗, then
ĵ = argmax S(j), satisfied

p(ĵ = j∗)→ 1.

Note that since 1
2 log n > 1 for n > 8, the SIC penalty is larger than the

AIC penalty, so SIC tends to pick a smaller model. In effect, by letting the
penalty tend to infinity slowly with n, we eliminate the tendency of AIC to
choose too large a model.

How does this connect with classical hypothesis testing? It can be shown,
in my 574 for example, that under quite general conditions for nested models,
that

2(lj(θ̂j)− li(θ̂i)) ; χ2
pj−pi

for pj > pi = p∗. That is, when model i is true, and model pj > pi, twice
the log likelihood ratio statistic is approximately χ2 with degrees of freedom
equal to the difference in the parametric dimension of the two models. So
classical hypothesis testing would suggest that we should reject an hypoth-
esized smaller model i, in favor of a larger model j iff

Tn = 2(lj(θ̂j)− li(θ̂i))
exceeds an appropriately chosen critical value from the χ2

pj−pi table. In

contrast Schwarz would choose j over i, iff

2(lj − li)
pj − pi

> log n

The fraction on the left hand side of this inequality may be interpreted
as the numerator of an F statistic. Under H0 : j∗ = i, it is simply a χ2

divided by its degrees of freedom which is an F with pj − pi numerator
degrees of freedom and ∞ denominator degrees of freedom. Thus, log n can
be interpreted as an implicit critical value for the model selection decision
based on SIC.

Does this make sense? Why would it be reasonable to let the critical
value tend to infinity? We are used to thinking about fixed significance
levels like 5% or 1%, and therefore about fixed critical values, but a little
reflection suggests that as n → ∞ we might like to have α, the probability
of Type I error, bend to zero. This way we could arrange that both Type

1Unless otherwise specified, all my logs are natural, i.e., base e.
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I and Type II error probabilities tend to zero simultaneously. This is the
practical consequence of the Schwarz connection between sample sizes and
α-levels based on the SIC choice.

Note that AIC uses a fixed critical value of 2, in contrast to SIC, and this
is an immediate explanation of why with positive probability it picks too
large a model. Unless the critical value tends to infinity with n, there will
always be a positive probability of a Type I error.
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Figure 1. Effective Significance Level of SIC Criterion: The
figure illustrates the implied significance level of using the
Schwarz Criterion for Model Selection in linear regression.
In the figure p refers to the number of parameters under
consideration, so for example with one parameter considered
for deletion, the effective level α of the Schwarz “test” is
about .05 at n = 100 and about .01 at n = 1000 .

1.1. SIC in the linear regression model. Recall that for the Gaussian
linear regression model

l(β, σ) = −n
2

log(2π)− n

2
log σ2 − S

2σ2

where S = (y −Xβ)′(y −Xβ)
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Evaluating at β̂, and σ̂2 = S/n we get

l(β̂, σ̂) = −n
2

log(2π)− n

2
− n

2
log σ̂2

Thus, maximizing SIC

li −
1

2
pi log(n)

is equivalent to minimizing

n

2
log σ̂2j +

1

2
pi log n

or minimizing,

log σ̂2j + (pj/n) log n.

In statistical packages one needs to be careful to check exactly what is being
computed before reporting such numbers as SIC. In R, their is a generic
function, AIC that can be used for most maximum likelihood fitting; it de-
fines the AIC value as −2`i + kpi, so we are minimizing not maximizing
and the value of the parameter k determines the nature of the penalty. By
default k = 2, but it can be set to another value at the user’s discretion.

How does this connect to the F test in regression? We “know” that there
is generally a close connection between F and LR tests, but how does this
work in regression? Note,

li − lj =
n

2
(log σ̂2j − log σ̂2i )

=
n

2
log(σ̂2j /σ̂

2
i )

=
n

2
log

(
1−

σ̂2i − σ̂2j
σ̂2i

)
and using the usual Taylor-series approximation for log(1 ± a) for a small
we have

2(li − lj) ≈
n(σ̂2j − σ̂2i )

σ̂2i
.

Dividing the right hand side by pj − pi yields the usual F statistic.
As a final remark, we might observe that in the case that pj−pi = 1 so we

are only considering adding one variable to the regression, we can relate the
SIC and AIC rules to conventional hypothesis testing in the following simple
way. Recall that in the case of a single linear restriction in the regression the
F statistic is simply the square of the the corresponding t statistic. Thus,
in the case of the conventional regression t-test, SIC implicitly proposes the
critical value,

√
log(n) while the AIC uses

√
2. Note that the latter is quite

lenient, but this is perhaps reasonable if the final intent is forecasting. Note
also that the classical two-sided critical value for the t-test, illustrated by the
dotted line, converges to the familiar number 1.96, and crosses the SIC curve
at about sample size n = 50. In contrast the AIC selection criterion is fixed
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Figure 2. Comparison of effective critical value for model
selection using SIC, AIC, and conventional t-test: The figure
illustrates the implied critical values for SIC and AIC model
selection in linear regression for the case of adding a single
variable to the regression.

at
√

2 and thus is much more lenient than either of the other procedures in
accepting new covariates.

2. Model Selection, Shrinkage and the Lasso

The basic idea of the information criterion approach to model selection
is to penalize the likelihood by some function of the parametric dimension
of the model in an effort to balance the two objectives of parsimony, or
simplicity, of the model and goodness of fit, or fidelity. A variety of fidelity
and penalty criterion have been suggested.

One way to think about this balance is that combines prior information
about the problem with the information contained in the current data. The
standard paradigm for doing this is Bayesian updating. Recall that Bayes
Theorem asserts that

P (A|B) =
P (B|A)P (A)

P (B)
.
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It is easy to remember this since the proof is obvious from the usual definition
of conditional probability for discrete events. Of course, we need to be
cautious when P (B) = 0. My usual illustration of this is the following
Economics 506 problem:

Q. On a trip from Tomsk to Urbana I changed planes in Moscow, Lon-
don and Chicago. The probabilities of a missed baggage transfer at
these cities was .4, .2 and .1 respectively. Given that my luggage was
missing in Urbana, what is the probability that the loss occurred at
in Moscow?

A. Let mi : i = 1, 2, 3 denote the simple unconditional loss at each of
the three cities, and Mi : i = 1, 2, 3 the events that a loss occurs at
city i for my trip. Thus:

P (M1) = 0.4

P (M2) = P (m2 ∩ M̄1)

= P (m2|M̄1)P (M̄1)

= 0.2 · (1− 0.4)

= 0.12

P (M3) = P (m3 ∩ M̄2 ∩ M̄1)

= P (m3|M̄2 ∩ M̄1)P (M̄2|M̄1)P (M̄1)

= 0.1 · 0.8 · 0.6
= 0.048.

Now,

P (M1|M1 ∪M2 ∪M3) =
P (M1)

P (M1) + P (M2) + P (M3)

since the Mi events are mutually exclusive, so,

P (M1|M1 ∪M2 ∪M3) =
0.4

0.4 + 0.12 + 0.048
≈ 0.704.

In regression settings we have a similar situation. We need to combine the
information provided by the data, via the likelihood, with whatever prior
information we might have from prior experience or introspection.

A theme of the course will be the trade-off between bias and variance
in model selection problems: too simple a model risks serious bias that
may distort policy conclusions of the model, too complicated a model risks
obscuring the important effects in a cloud of uncertainty. Until now we
have tried to balance these risks by selecting a model that represents a
compromise between our objectives. This requires a slightly schizophrenic
viewpoint. On one hand we appear to believe that there are many possible
models for our problem, but in the end only one will be taken seriously.
(This is rationalized by Schwarz’s 0-1 loss function, but often this all or
nothing view of models isn’t appropriate.)
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We will now consider a new approach to reaching a compromise be-
tween simple and complex models. We will begin with a brief exposition
of Bayesian methods for linear regression, in non-Bayesian statistical circles
these methods are sometimes referred to as “shrinkage methods,” or Stein-
rule methods. After briefly discussing some connections to random effects
models for panel data we will then consider non-parametric regression.

Consider (once more) the linear model,

y = Xβ + u

If we assume (as usual) that u ∼ N (0, σ2I), then we have likelihood,

L(y|b) = (2π)−n/2σ−n exp{− 1

2σ2
(β̂ − b)′X ′X(β̂ − b)}

Suppose that we have a prior opinion that β ∼ N (β0,Ω), i.e. that β has
density

π(b) = (2π)−p/2|Ω|−1/2 exp{−1

2
(b− β0)′Ω−1(b− β0)}

Bayes rule says that we should update our prior opinion about β, to obtain,

p(b|y) =
L(y|b) · π(b)∫
L(y|b)π(b)db

.

Focusing on the exp{·} term in the numerator we obtain, after some algebra,

p(b|y) = κ exp{1

2
(b− β̃)′(σ−2X ′X + Ω−1)(b− β̃)}

where κ is a constant independent of b and

β̃ = (σ−2(X ′X) + Ω−1)−1(σ−2(X ′X)β̂ + Ω−1β0).

This result shows that the posterior distribution in this very simple setting
is also Gaussian, and has mean β̃. We can elaborate on this quite a lot by,
for example treating σ as a parameter on which we also have a prior opinion
rather than effectively assuming it is known as we have here. But we will
postpone this line of inquiry.

The final formula is yet another application of a general strategy for com-
bining two estimates: we have β̂ and β0 and they have covariance matrices
σ2(X ′X)−1 and Ω respectively. They are combined accordingly – weighted
by the inverses of the covariance matrices – provided the normality assump-
tions are reasonable. We will see several other examples of this combination
phenomenon later in the course.

Some special cases to consider:

(1) When σ2 → 0 then the likelihood dominates the prior.
(2) When σ2 →∞ then the prior dominates the likelihood.
(3) As n → ∞, typically we assume n−1X ′X → D a positive definite

matrix, so σ−2(X ′X) → nσ−2D and the factor n causes the likeli-
hood to dominate as n grows.
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(4) Suppose

Ω =

[
w0Ip 0

0 w1Iq

]
then by varying w’s we get some interesting cases. E.g. w0 = ∞
would express the view that we were clueless about the first p ele-
ments, but we might still want to shrink the last q elements towards
their prior mean.

Some Practicalities
If we diagonalize Ω−1 = Q′Q, then

λQβ ∼ N (λQβ0, λ
2QΩQ′) ∼ N (Qβ0, λ

2I)

and we can now write the model augmented by the prior information as(
y

λQβ0

)
=

(
X
λQ

)
β

+

(
u
v

)
where the vector (u, v)′ ∼ N (0, Ω̃) where

Ω̃ =

[
σ2I 0
0 λ2I

]
.

and we can “run” this regression to get β̃ or “run” several of these regressions
to get the whole “decolletage”, β̃(λ). Another special case is Ω = I so Q = I;
this is often called ridge regression. All coefficients are shrunken toward zero.

Other forms of Shrinkage: The Lasso and TV Smoothing
A recent suggestion by Tibshirani (1996) also considered by Donoho and

Chen (1998) and Koenker, Ng and Portnoy (1994) replaces the AIC/BIC
penalty terms, by the `1 norm of the estimated parameter vector

Pen(θ) =

p∑
i=1

|θi|.

Thus, for the leading example of least squares regression, Tibshirani pro-
poses solving

min
θ

∑
(yi − x′iθ)2 + λPen(θ)

for some appropriately chosen λ. He calls this the lasso, for least absolute
shrinkage and selection operator. This form of the penalty has the effect of
“shrinking” the vector θ̂ toward the origin, but unlike the more conventional
`2 shrinkage penalty also known as “ridge regression” or Stein estimation,
the `1 penalty tends to shrink many of the coordinates of θ all the way to
0, while the `2 penalty tends to shrink each of the coordinates a little way
toward 0, as in the next figure.

Another variant of this approach is to use the `1 fidelity criterion,

min
∑
|yi − x′iθ|+ λPen(θ)
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Figure 3. Bayesian Regression: Contours of the likelihood
and prior are illustrated by the two families of concentric
ellipses. The locus of tangencies between the contours of the
prior and the contours of the likelihood represent a shrinkage
path that connects the mle and the prior mean. Each point
on the path can be interpreted as representing an intensity of
belief in the prior. And each of these points then represents
a posterior mean, β̃ reflecting a particular intensity of belief
in the prior.

This has been studied by several authors, most recently by Wang, Li, and
Jiang (JBES, 2007, 347-355). The variant studied in Koenker, Ng and Port-
noy (1994) is a non-parametric version of this. A crucial question with all
such “shrinkage” methods is: how are we to select λ? There are many
suggestions, none authoritative. Cynics might suggest that the lasso just
replaces an old problem, model selection, by a new problem, λ-selection,
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Figure 4. Lasso vs Ridge Shrinkage

however this isn’t quite fair. For one thing, the choice of a λ drastically re-
duces the scope of the combinatorial problem of choosing a set of covariates.

Yet another variant is the so–called Dantzig Selector of Candès and Tao
(2006?).

min
θ
{Pen(θ) s.t. ‖ X ′(y −Xθ) ‖∞≤ λ}.

At first this looks quite different.2 But note that the constraint ensures that
we are close to a solution to the least squares problem

min ‖ y −Xθ ‖22
so it isn’t really that different than (*) above.

A nice example of how the Dantzig selector works is the following “toy”
communication problem studied in Candès and Randall (2006).

Problem 0: A message x ∈ <n needs to be transmitted through a noisy
channel. If the noise is Gaussian we may consider the following strategy:
Let A be a m×n matrix, m >> n, with (approximately) orthogonal columns.
We transmit Ax ∈ <m and y = Ax+u is received with u iid Gaussian. The
receiver then solves the least squares problem

x̂ = arg minx ‖ y −Ax ‖22
This solution has strong optimality properties under Gaussian assumptions.
In effect, using the longer message, y instead of x allows us to remove much of
the noise introduced by transmission. But what if the noise isn’t Gaussian?

Problem 1: Now suppose we modify the problem so that there is an addi-
tional error component, instead of receiving y we receive ỹ = y + ν where

2Here ‖ x ‖∞= maxi |x|
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ν is sparse, i.e., most coordinates are 0, but otherwise arbitrary. Consider
solving the Dantzig Selection problem

ν̂ = arg min{‖ ν ‖ s.t. ‖MA(ỹ − ν) ‖∞< K}

where MA = I −A(A′A)−1A′. Given ν̂ we can estimate y, by ŷ = ỹ− ν̂ and
compute

x̂ = argmin ‖ ŷ −Ax ‖22
= (A′A)−1A′ŷ

It turns out that this is almost as good as knowing y in the first place as
the following figure illustrates.
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Figure 5. The Dantzig Selector Decoding: Estimated val-
ues of the signal x plotted versus the true values for three
procedures: Gauss ignores the ν component, Dantzig uses
the Dantzig Selector, and Oracle removes ν as if there were
no contamination component.

3. Omitted Variable Bias and Irrelevant Variable Variance
Inflation

Much of statistical theory (and therefore practice) boils down to intelligent
treatment of bias-variance tradeoffs. (This presumes that science brings to
the table problems that are sufficiently well specified so as to make this
tradeoff clear, much of what econometricians, and statisticians do involves
struggling with this specification stage.)

Consider the following stylized situation in regression in which we want
to compare the models,

y = Xβ + Zγ + u (long-model)

and

y = Xβ + v (short-model)
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If we assume that the long model is true and we estimate the short model
instead we have committed the sin of “omitted variables” and we must pay
the price in terms of bias in the estimate the parameter vector, β.

Taking expectations, conditional on [X
...Z] we have

Eβ̂S = E(X ′X)−1X ′y

= E(X ′X)−1X ′(Xβ + Zγ + u)

= β + (X ′X)−1X ′Zγ

and we find that the bias associated with estimation of β using the short
regression is

Gγ = (X ′X)−1X ′Zγ

where the matrix G is what would be obtained by regressing the columns
of Z on the columns of X. Note that this bias vanishes if γ = 0, or if X is
orthogonal to Z.

3.1. Example. An important example of this so-called omitted variable
bias, one that is relevant to the problem set on gasoline demand concerns
the bias of estimating a static model when a dynamic one is really called
for. Suppose the correct specification is

yt = α+

p∑
i=0

βixt−i + ut

where xt is (scalar) exogenous variable. In our näıvety we estimate instead
the static model,

yt = α+ β0xt + vt

What can we say about the relationship between our estimate of β0 in the
static model and the coefficients of the dynamic model?

At first sight you might expect that the static model estimate, β̂0, should
estimate the “impact effect” of changes in xt, that is the coefficient β0.
However, our omitted variable bias expression looks like this

Eβ̂0 = β0 +

p∑
i=1

giβi

where gi is slope coefficient of the obtained in a regression of xt−i on xt, and
an intercept. If xt is strongly trended, then these gi will tend to be close
to one and consequently Eβ̂0 will be close to

∑p
i=0 βi, that is the long-run

effect estimated from the dynamic model. Thus in the gasoline data you
should not be surprised to find that the long run elasticities estimated in
your dynamic specifications are not too far removed from the elasticities
you get from the simple static form of the model. Of course, this conclusion
depends crucially on the gi’s, so in other applications the situation could be
quite different.
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What about the opposite case? Suppose the short model is correct, but we
mistakenly estimate the long model instead. Now, there is no bias problem

Eβ̂L = E(X ′MZX)−1X ′MZy

= E(X ′MZX)−1X ′MZ(Xβ + u)

= β

However, there is a price to be paid for our extravagance of estimating the
parameters, γ, when we didn’t need to; this price comes in the form of
variance inflation in the estimate of β. To see this we need to do some
computations.

Another variant of the omitted variable bias result stated above is that,

Prop. β̂S = β̂L +Gγ̂L

Pf.

β̂S = (X ′X)−1X ′y

= (X ′X)−1X ′(ŷL + ûL)

= (X ′X)−1X ′(Xβ̂L + Zγ̂L)

= β̂L +Gγ̂L2

And consequently we have

Prop. Assuming V (y) = E(y − Ey)(y − Ey)> = σ2I, V (β̂L) = V (β̂S) +
GV (γ̂L))G′

Pf. Writing, β̂L = β̂S −Gγ̂L And noting that

Cov (β̂S, γ̂L) = E(γ̂L−γ)(β̂S−β) = E(Z>MXZ)−1Z>MXuu
>X(X>X)−1 = 0

the result follows immediately. 2

The result implies that the variability of the long estimate always exceeds
the variability of the short estimate. Note that the variability effect is some-
what more benign than the prior bias effect in the sense that it tends to zero
as the sample size grows, whereas the bias effect persists irrespective of the
sample size. Now, if we admit that neither of our extreme cases holds, that
γ 6= 0, and G 6= 0, then the choice between β̂S and β̂L becomes one of trying
to carefully weigh the relative magnitudes of the bias and variance. For this
we would need to be more explicit about the loss function describing the
cost of making an error in estimation of β.

4. Fishing for Significance

The last part of this lecture concerns the difficulties associated with pre-
liminary testing and model selection from the point of view of eventual
inference about the selected model. This is an old topic which has received
considerable informal attention but it is rather rare to find serious formal
consideration of it. My discussion will be based largely on Freedman (1983).
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For a more technical version of some of the same material see Leeb and
Pötscher(2005).

Freedman, early in his career, was a leading light in probability theory
and wrote several fundamental books on Markov Chains. Later, he began
to take an interest in matters more applied and statistical in nature. One of
his earlier ventures in this direction was a project to evaluate the swarm of
“energy models” which emerged from the 1973 oil shock. These were models
which purported to “explain” energy demand and how we might control it.

Freedman’s model of energy models is highly stylized, and mildly ironic.
He presumes a model of the form

(∗) yi = xiβ0 + ui

with ui iid N (0, σ2). The matrix X = (xi) is n by p and satisfies X ′X = Ip.
And p → ∞ as n → ∞ so that p/n → ρ for some 0 < ρ < 1. That is, as
the sample size grows the modeler introduces new explanatory variables in
such a way that the ratio p/n tends to a constant. Further, he assumes that
β0 = 0.

Theorem 1: For model (*), R2
n → ρ and Fn → 1.

Proof: The usual Fn statistic for the model, since β0 = 0, is really
distributed as F so EFn = (n− p)/(n− p− 2) which tends to 1. However,
recall that

Fn =
n− p− 1

p
· R2

n

1−R2
n

so

R2
n = F/

(
n− p− 1

p
+ F

)
and thus since F → 1 we have that R2

n → ρ.
This result is rather trivial and is just a warm up for a more interesting

question which really reveals David Freedman’s model for energy economists.
Consider the following sequential estimation strategy: all p variables are
tried initially, those attaining α-level of significance in a standard t-test are
retained, say, qn,α, of them, then the model is reestimated with only these
variables. Let R2

n,α and Fn,α denote the R2 and F statistics for this second
stage regression.

Theorem 2: For model (*)R2
n,α → g(λα)ρ and Fn,α →

(
g(λα)
α

)
/
(
1−g(λ)ρ
1−αρ

)
where

g(λ) =

∫
|z|>λ

z2φ(z)dz

and λ is chosen so Φ(λ) = 1− α/2.
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Example: Suppose n = 100, p = 50, so ρ = 1/2. Set α = .25 so
λ = 1.15, and g(λ) = .72 then

E(Z2| |z| > λ) ≈ 2.9

R2
n,α
∼= g(λ) ≈ 0.72 · 0.5 ≈ 0.36

Fn,α ∼=
(
g(λ

α

)
(1− g(λ)ρ)

(1− αρ)
≈ 4.0

Eqn,α = αρn = .25 · .50 · 100 ≈ 12.5

F12,88,.05 = 1.88

P (F12,88 > 4.0) ≈ .0001 2

Proof of Theorem 2 is a really good exercise for 574. For purposes of 472
the example is sufficient to warn you that the consequences of preliminary
testing are serious and you need to adjust your expectations and significance
levels in light of such activity. I’ll say a little more about this when we talk
about the bootstrap.
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