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Counts, Tobit, Sample Selection, and Truncation

The simplest of this general class of models is Tobin’s (1958) model for durable demand

y∗i = x>i β + ui ui ∼ iid F

yi = max{y∗i , 0}
That is, we have a propensity, a latent variable, which describes demand for something – when y∗i > 0
we act on it otherwise we do nothing. This model is the simplest form of the Censored regression
model. The first question we should address is Why not estimate by OLS? First, we must clarify:
“OLS on what?” Let’s consider OLS on just the yi > 0 observations. Recall that OLS tries to estimate
the conditional mean function for y so let’s try to compute this in our case:

y∗i = xiβ + ui

so

E(yi|y∗i > 0) = x>i β + E(ui|y∗i > 0) = x>i β + E(ui > −x>i β)

by the Appendix A

= xiβ +
σφ(x>i β/σ)

Φ(x>i β/σ)

when ui ∼ iid N (0, σ2). Thus

Eβ̂ = (X>X)−1X>Ey = β + σ(X>X)−1X>λ

where λ = (φi/Φi). Note that all the mass corresponding to y∗ < 0 piles up at y = 0. So we get a
nonlinear conditional expectation function.

1. The Heckman 2-step Estimator

This suggests that if we could somehow estimate β/σ = γ we might be able to correct for the
bias introduced by omitting the zero observations. How to estimate γ? The tobit model as expressed
above is just the probit model we have already considered except that in the previous case σ ≡ 1, but
note here we can divide through by σ in the first equation without changing anything. Then it is clear
that we are estimating γ = β/σ by the usual probit estimator. So Heckman(1979) proposes:

(1.) Estimate binary choice model by probit.

(2.) Construct λ̂i = φ(x>i γ)/Φ(x>i γ̂).

(3.) Reestimate original model using only yi > 0 observations but including λ̂i as additional
explanatory variable the coefficient estimated on λ is σ.

This approach is helpful because it clarifies what is going wrong in OLS estimation and how to
correct it, but it is problematic in several other respects. In particular, it is difficult to construct s.e.’s
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Figure 1. Bias of OLS estimator in the Censored Regression Model: The figure illus-
trates the conditional expectation of the latent variable y∗i given x as the solid straight
line in the figure. The conditional expectation of the observed response yi is given by
the curved dotted line. And the least squares linear approximation of the conditional
expectation of the observed response is given by the dashed line. Note that in this
model the conditional median function of yi given x is the piecewise linear function
max{a+ bx, 0}, where E(y∗i |x) = a+ bx.

for the estimates since the effect of the preliminary estimate of γ is non-negligible. It is also instructive
to consider the mle in this problem. The likelihood is straightforward to write down:

L(β, σ) =
∏
i:yi=0

F

(
−x
>
i β

σ

) ∏
i:yi>0

σ−1f((yi − x>i β)/σ)

for F = Φ we have

=
∏
i:yi=0

(1− Φ

(
x>i β

σ

)
)
∏
i:yi>0

σ−1φ((yi − x>i β)/σ)

It is useful to contrast this censored regression estimator with the truncated regression estimator with
likelihood,

L(β, σ) =

n∏
i=1

(Φ(x>i β/σ))−1φ((yi − x>i β)/σ)
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2. Powell’s estimator

A critical failing of the Gaussian mle is that it can perform poorly in non-Gaussian and/or het-
eroscedastic circumstances. If we go back to our picture we can see that the primary source of the
difficulty we have been discussing is due to the wish to estimate conditional expectations. If, instead,
we tried to estimate the condition median then we have

(∗) med(yi|xi) = max{x>i β, 0}

so we can following Powell (1984) consistently estimate β by solving

min
∑
|yi −max{x>i β, 0}|

This works for any F as long as (*) holds, even if there is heteroscedasticity. This can be easily extended
(Powell (1985) to quantile regression in general. An interesting question is what quantiles offer optimal
efficiency in estimating β. The computational difficulty of this approach is substantially greater than
conventional quantile regression due to the fact that the objective function is no longer convex. This
problem has been addressed by several authors, notably Fitzenberger (1997). Chernozhukov and
Hong (2000) have suggested an alternative simpler approach that employs a multi-step procedure that
has the advantage that it only requires solution to linear-in-parameters quantile regression problems.
Portnoy (2003) has introduced a new method for fitting randomly censored quantile regression models.

Models for Count Data

Often we have data that is integer valued and nonnegative: number of doctors visits per year, or
number of patents awarded per year, etc. A natural first choice for such data is the Poisson model.

P (Yi = k) = f(k) = e−λλk/k! k = 0, 1, 2, . . .

Given covariates, we would like to formulate a regression type model, so we may take

λ = ex
′
iβ

The log likelihood for the parameter β given a sample (xi, yi : i = 1, . . . , n). is,

`(β) =
∑

yix
>
i β − exp(x>i β)− log(yi!)

and maximizing leads us to the “normal” equations,∑
(yi − exp(x>i β))xi = 0

Again, we have a system of nonlinear equations to solve in β, but the equations are rather benign,
and can be again solved by iteratively reweighted least squares methods as with probit and logit.

In a now classic (i.e. forgotten) study of meta-econometrics Koenker (1988) estimated a model of
this type purporting to explain the number of parameters ki, as a function of the sample size ni of the
study, estimated in published studies of wages in the labor economics literature. Two of the estimated
models were:

log λi = 1.34
(.14)

+ .235
(.017)

log ni(1)

log λi = −0.78
(.31)

+ 1.947
(.148)

log(log ni)(2)
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Censored QR
Naive QR
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Figure 2. Powell estimator: The figure illustrates three families of estimated quintile
lines to the points appearing in the plot. In accordance with the classical tobit model,
the points with y less than zero are censored so they are recorded as zero. The dashed
lines illustrate the naive QR fit that ignores the fact of the censoring, the grey lines
represent the omniscient version of the fitting obtained if we “know” the latent values of
the censored observations, and the solid black lines are the estimated Powell quintiles.
Note that the Powell estimates are quite close to omniscient estimates as we might
hope, except when the estimated line bends to reflect the censoring at zero. This
plot is essentially what is obtained by running example(rq.fit.cen) in the quantreg
package of R. The algorithm of Fitzenberger is employed for the Powell fitting.

Mean sample size for the sample of wage equations was about n̄ = 1000. If one were mainly
interested in the effect,

π =
∂ logEk

∂ log n
.
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which we might call the parsity, or elasticity of parsimony for lack of better terms, how different are the
two models? Recall that expectation of a Poisson random variable with rate λ is simply λ. Contrast
the implications of the two models with respect to the behavior of E(ki|ni) as ni →∞.

The Poisson model has the feature that it assumes that the variance of a Poisson variable is
the same as its mean. This may be sensible in some applications, but uncritical acceptance of this
hypothesis sometimes leads to very unreliable inference. Classical MLE theory suggests that the
variance covariance of β̂n solving the normal equations is

VMLE = (
∑

λ̂ixix
>
i )−1

adhering to this assumption, but it is safer to admit that the the variance may depend on the mean in
some more general way. When the Poisson assumption fails a general form for the covaraince matrix
of β̂n is,

VMLE = (
∑

λ̂ixix
>
i )−1(

∑
ν̂ixix

>
i )(
∑

λ̂ixix
>
i )−1

where ν̂i is an estimate of V (yi|xi). There is a good discussion of various strategies for estimating this
conditional variance in the monograph of Cameron and Trivedi (1998).

Simple Heckman Sample Selection Model

Now, we will extend the tobit model to a somewhat more general setup which is usually associated
with a labor supply model of Gronau. Gonsider two latent variable equations,

y∗1 = x>1 β1 + u1

y∗2 = x>2 β2 + u2

and assume that we observe

y1 =

 1 y∗1 > 0
if

0 y∗1 ≤ 0
y2 =

 y∗2 y1 = 1
if

0 y1 = 0

where in the labor supply model y1 may be interpreted as the decision to enter the labor force and y2
is the number of hours worked. Then,

E(y2|x2, y1 = 1) = x>2 β2 + E(u2|u1 > −x>1 β1)

but by Appendix B u2|u1 ∼ N (σ12
σ2
1
u1, σ

2
2 − σ212σ

−2
1 ) so

E(y2|x2, y1 = 1) = x>2 β2 + E(
σ12
σ21

u1|u1 > −x′1β1)>

Recall from Tobit case

E(u1|u1 > −x>1 β1) =
σ1φ(x>1 β1/σ1)

Φ(x>1 β1/σ1)
= σ1λ

so

E(y2|x2, y2 = 1) = x>2 β2 +
σ12
σ1

λ(x>1 β1/σ1)

which may now be estimated by Heckman 2-step as follows.
(1.) Probit of y1 on x1 to get γ̂ if β1/σ1.

(2.) Construct λ̂ and regress y2 on [X2
...λ̂].
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(3.) Test for Sample Selection bias using σ12/σ1 estimate. Or, this could be estimated via mle
methods.

Increasingly, researchers have grown dissatisfied with the Heckman latent variable model recog-
nizing that under misspecification of either the normality assumption or due to various forms of
heterogeneity large biases may ensue. Manski (1989) offers a radical reappraisal of the problem. He
begins with the observation that we can write,

(1) P (y|x) = P (y|x, z = 1)P (z = 1|x) + P (y|x, z = 0)P (z = 0|x)

when z denotes the binary selection variable. We would like to know P (y|x), but since P (y|x, z = 0)
is unobserved – we don’t know for example what wages are like for the unemployed – there is a
fundamental identification problem. This can be addressed in various parametric ways. The simplest
of these is to assume selection away. It turns out to be particularly difficult to identify mean response
given general assumptions for (1). In contrast quantiles of y are somewhat more tractable. Let

Q̂y(τ |x) = inf {ξ|P (y ≥ ξ|x) ≥ τ}
and define

Qy(τ |x) =

{
Qy(1− (1− τ)/P (z = 1|x)|x, z = 1) if P (z = 1|x) >= 1− τ
−∞ otherwise

Q̄y(τ |x) =

{
Qy(τ/P (τ/P (z = 1|x)|x, z = 1) if P (z = 1|x) >= τ
∞ otherwise

Then, Manski shows that

Qy = (τ |x) ≤ Qy(τ |x) ≤ Q̄y(τ |x)

The upper and lower bounds are increasing in τ . As along as P (z = 1|x) < min{tau, 1−τ} the bounds
are informative about the τth quantile. The implication of this, of course, is that we can’t bound
quantiles in the tails and therefore we can’t bound the mean effect.
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APPENDIX A:
Some Notes on Conditional Expectations for the Tobit Model

If Z has dfF with density f , then the conditional density of Z given Z > c is

fc(z) = f(z)/(1− F (c))

Note ∫ ∞
c

fc(z)dz = (1− F (c))−1
∫ ∞
c

f(z)dz = 1

as expected. The condition expectation of Z given Z > c is

E(Z|Z > c) =

∫
zfc(z)dz = (1− F (c))−1

∫ ∞
c

zf(z)dz.

For F standard Gaussian we have zf(z) = zφ(z) = −φ′(z) so,

E(Z|Z > c) = (1− Φ(c))−1(−
∫ ∞
c

φ′(z)dz)

= φ(c)/(1− Φ(c)).

Finally, consider Y = σZ so Y ∼ N (0, σ2).

E(Y |Y > c) = E(σZ|σZ > c)

= σE(Z|Z > c/σ)

= σφ(c/σ)/(1− Φ(c/σ)).

APPENDIX B
Conditional Normality

Theorem: Let Y be p-variate normal N (µ,Ω) with sub-vectors Y1 and Y2 having EYi = µi, and
Cov(Yi, Yj) = Ωij . Assume Ω11 and Ω22 are nonsingular. Then the conditional distribution of Y2 given

Y1 is N (µ2 + Ω21Ω
−1
11 (Y1 − µ1),Ω22 − Ω21Ω

−1
11 Ω12).

Proof: (This is a simplified version of Rao, Linear Stat Inference, 1973, p. 523. Rao relaxes
the nonsingularity condition.) Consider

Cov[Y2 − µ2 − Ω21Ω
−1
11 (Y1 − µ1), Y1 − µ1] = Ω21 − Ω21Ω

−1
11 Ω11 = 0 (∗)

Similarly, let U = Y2 − µ2 − Ω21Ω
−1
11 (Y1 − µ1) clearly EU = 0 and

V (U) = V [Y2 − Ω21Ω
−1
11 Y1]

= Ω22 + Ω21Ω
−1
11 Ω12 − Cov(Y2,Ω21Ω

−1
11 Y1)− Cov(Ω21Ω

−1
11 Y1, Y2)

= Ω22 − Ω21Ω
−1
11 Ω12

Since U is a linear function of normal r.v.’s it is normal, and therefore,

U ∼ N (0, Ω22 − Ω21Ω
−1
11 Ω12) (+)

Further, (∗) establishes that U and Y1 − µ1 are independent, hence (+) may be interpreted as the
conditional distribution of U given Y1, which is equivalent to what we wished to prove.


