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Binary Response Models

Let’s begin with a model for an observed proportion, or frequency. We
would like to explain variation in the proportion pi as a function of covariates
xi. We could simply specify that

pi = x′iβ + error

and run it as OLS regression. But this has certain problems. For example,
we might find that p̂i /∈ [0, 1]. So we typically consider transformations

g(pi) = x′iβ + error

where g is usually called the “link” function. A typical example of g is the
logit function

g(p) = logit(p) = log(p/1− p)
this corresponds to the logistic df.

The transformation may be seen to induce a certain degree of het-
eroscedasticity into the model. Suppose each observation p̂i is based on
a moderately large sample of ni observations with p̂i → pi.

We may then use the δ-method to compute the variability of logit(p̂i),

V (g(p̂i)) = (g′(pi))
2V (p̂i)

g(p) = log(p/(1− p))

g′(p) =
1− p
p
· d
dp

(
p

1− p

)
=

1

p(1− p)

V (p̂i) =
pi(1− pi)

ni
so

V (logit(p̂i)) =
1

nipi(1− pi)
Thus GLS would suggest running the weighted regression of logit(p̂i) on xi
with weights nipi(1 − pi). Of course, we could, based on considerations so
far, replace logit(p̂i) with any other quantile-type transformation from [0,1]
to |R. For example, we might use Φ−1(p̂i) in which case the same logic
suggests regressing

Φ−1(p̂i) on xi with weights
niφ

2(Φ−1(pi))

pi(1− pi)
1
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An immediate problem presents itself, however, if we would like to apply
the foregoing to data in which some of the observed pi are either 0 or 1.

Since the foregoing approach seems rather ad hoc any way based as it is
an approximate normality of the p̂i we might as well leap in the briar patch
of MLE. But to keep things quite close to the regression setting we will posit
the following latent variable model. We posit the model for the latent (un-
observed) variable y∗i and assume that the observed binary response variable
yi is generated as,

y∗i = x′iβ + ui

yi =

{
1 if y∗i > 0
0 otherwise

so letting the df of ui be denoted by F ,

P (y = 1) = P (ui > −x′iβ) = 1− F (−x′iβ)

P (y = 0) = F (−x′iβ)

For F symmetric F (z) + F (−z) = 1 so f(z) = f(−z) and we have

P (y = 1) = F (x′iβ)

P (y = 0) = 1− F (x′iβ)

and we may write the likelihood of seeing the sample {(yi, xi) : i =
1, . . . , n} as

L(β) =
∏
i:yi=0

(1− F (x′iβ))
∏
i:yi=1

F (x′iβ)

=
n∏
i=1

F yii (1− Fi)1−yi

Now we need to make some choice of F . There are several popular
choices:

(i): Logit p = F (z) = ez

1+ez ⇒ log(p/1 − p) = z so Eyi = pi =

F (xiβ)⇒ logit(pi) = x′iβ
(ii): Probit F (z) = Φ(z) =

∫ z
−∞ φ(x)dx Φ−1(p) = x′iβ

(iii): Cauchy F (z) = 1
2 + π−1 tan−1(z), F−1(p) = tan(π(p −

1
2)) = x′iβ.

(iv): Complementary log log

F−1(p) = log(− log(1− p)) = x′iβ

(v): log-log

F−1(p) = − log(− log(p)) = xiβ

These so-called link functions are illustrated in Figure 1. In this figure
the scale is logistic so the logit link appears as a straight line. Probit assumes
shomewhat thinner tails than the logit, while Cauchy assumes much fatter
tails. The two log-log links asymmetric.
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Figure 1. Comparison of five link functions: The horizontal
axis is on the logistic scale so the logit link appears as the 45
degree line. Symmetry around the y-axis indicates symmetry
of the distribution corresponding with the link as in the logit,
probit and Cauchy cases. The log-log forms are asymmetric
in this respect. Note that while the probit and logit are quite
similar the Cauchy link is much more long tailed.

\#plots of link functions for binary dep models

eps <- .2

u <- (1:999)/1000

plot(log(u/(1-u)),log(u/(1-u)),type="l",axes=F, xlab="",ylab="")

tics <- c(.001,.01,.1)

tics <- c(tics,1-tics)

ytics <- 0*tics
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segments(log(tics/(1-tics)),ytics,log(tics/(1-tics)),ytics+eps)

text(log(tics/(1-tics)),ytics+3*eps,paste(format(round(tics,3))))

text(log(tics[2]/(1-tics[2])),1.3,"probablility scale")

tics <- c(2,4,6)

tics <- c(tics,-tics)

ytics <- 0*tics

segments(tics,ytics,tics,ytics-eps)

text(tics,ytics-3*eps,paste(format(round(tics))))

text(tics[2],-1.3,"logit scale")

segments(-eps,ytics,eps,ytics)

text(-3*eps,tics,paste(format(round(tics))))

abline(h=0)

abline(v=0)

lines(log(u/(1-u)),qnorm(u),lty=2)

lines(log(u/(1-u)),log(-log(1-u)),lty=3)

lines(log(u/(1-u)),-log(-log(u)),lty=4)

lines(log(u/(1-u)),tan(Pi*(u-.5)),lty=5)

text(-c(6,6,5,5,2),-c(1,3,4,6,4),

c("log-log","probit","logit","c-loglog","cauchy"))

Interpretation of the coefficients

In regression we are used to the idea that

∂E(y|x)

∂xi
= βi

provided we really have a linear model in xi, but under our symmetry as-
sumption here the situation is slightly more complicated. Now,

E(yi|xi) = 1 · P (yi = 1) + 0 · P (yi = 0) = F (xiβ)

(provided of course we have symmetry) so now

∂E(y|x)

∂xj
= f(x′β)βj

for logit we have

F (z) =
ez

1 + ez
so

f(z) = F (z)(1− F (z))

while for probit we have

f(z) = φ(z) =
1√
2π
e−z

2/2
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and for Cauchy

f(z) =
1

π(1 + z)2

We can compare these, for example, at z = 0 where we get

factor from f(0)
logit 1/4

probit 1/
√

2π
Cauchy 1/π

and roughly speaking the whole β̂-vector should scale by these factors so
e.g.,

1

4
β

logit
j ≈ 1√

2π
β

probit
j

so

β
logit
j ≈ 1.60β

probit
j

Diagnostic For the Logistic Link Function

Let g(p) = logit(p) in the usual one observation per cell logit model, and
suppose we’ve fitted the model

logit(pi) = Xβ

but we’d like to know if there is some more general form for the density
which works better. Pregibon (1980) suggests, following Box-Cox,

g(p) =
pα−δ − 1

α− δ
− (1− p)α+δ − 1

α+ δ

note as α, δ → 0 we get

= log p− log(1− p)
= log(p/1− p).

δ = 0 ⇒ symmetry, α governs fatness of tails. Expanding g in α, δ we get
(with diligence)

g(p) = g0(p) + αgα0 (p) + δgδ0(p)

gα0 (p) =
1

2
[log2(p)− log2(1− p)]

gδ0(p) = −1

2
[log2(p) + log2(1− p)]

LM tests of significance of gα, gδ, in an expanded model in which we include
gα0 (p̂) and gα0 (p̂) where these variables are constructed from a preliminary
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logistic regression, can be used to evaluate the reasonableness of the logit
specification.

For a long time it was difficult to know what to suggest to do when this
diagnostic failed to vindicate the logit specification, but earlier this year
Jungmo Yoon and I took it upon ourselves to explore some new estimation
methods for binary response with these links. This work is described in the
papers available from

http://www.econ.uiuc.edu/∼roger/research/links/links.html

Digression on Computation of the MLE

I will try to explain briefly the strategy for computing the MLE in binary
response models. The general strategy is based on Newton’s method. The
fundamental idea is central to much of applied mathematics. Suppose we
want to maximize the function G over x ∈ <p, and suppose we have an initial
guess, x0, of the maximizing value. We proceed by defining a quadratic
approximation

G̃(x) = G(x0) + (x− x0)′∇G(x0) +
1

2
(x− x0)′∇2G(x0)(x− x0)

Our strategy, that is to say Newton’s strategy, will be to maximize G̃(x) at
each step and hope that a sequence of such iterations will bring us to the
maximum. To maximize G̃(x) we differentiate to obtain

∇G(x0) +∇2G(x0)(x− x0) = 0

solving, we obtain,

x = x0 − [∇2G(x0)]
−1∇G(x0).

Iterating in this manner, that is finding x replacing x0 by it and continuing
leads eventually to a local maximum (or minimum) of G. Suppose the
function G is strictly concave so it has a unique maximum, and ∇2G is
globally negative definite. Then, the Newton step is always a direction of
ascent and since we are always going up we (eventually) get to the maximum.
In more complicated situations the algorithm has many variants, but I’ll
resist the temptation to delve into these here.

In the binary response model the function G is the log likelihood function

`(β) =

n∑
i=1

yi log(F (x′iβ)) + (1− yi) log(1− F (x′iβ))
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So, setting Fi = F (x′iβ), and fi = f(x′iβ),

∇`(β) =
n∑
i=1

yi
Fi
fixi −

1− yi
1− Fi

fixi

=
n∑
i=1

(
yi − Fi

Fi(1− Fi)

)
fixi

and

∇2`(β) = −
∑ f2i

Fi(1− Fi)
xix
′
i + (yi − Fi)[mess]

where [mess] denotes several terms that are all multiplied by (yi−Fi). At this
point we invoke a clever trick that is, I believe attributable to R.A. Fisher,
called the “method of scoring.” In effect, the trick is to simply replace
∇2`(β) in Newton’s method with the expectation of ∇2`(β). The beauty
of this trick in the present circumstance is that it wipes out the annoying
[mess]. This is because Eyi = Fi, of course.

Note that the matrix,

E∇2`(β) = −
∑(

f2i
Fi(1− Fi)

)
xix
′
i

is necessarily negative definite since the weights f2i /(Fi(1−Fi)) are positive,
and the terms xix

′
i are nonnegative definite.

Now consider the method of scoring step,

β̂(i) = β̂(i−1) + (X ′WX)−1X ′Wr

where W = diag(f2i /(Fi(1− Fi))) and r is the vector with elements ((yi −
Fi)/fi, so it is a rescaled residual. We may interpret the iteration as a
modified Newton step in which each step is simply a weighted least squares
estimate. To see this it may help to recall that we may write the unweighted
least squares estimator as

β̂ = (X ′X)−1X ′y = (
∑

xix
′
i)
−1
∑

xiyi

The reader should check the linear algebra of this, if it isn’t immediately
apparent.

Semiparametric Methods for Binary Choice Models

It is worthwhile to explore what happens when we relax the assumptions
of the prior analysis, in particular the assumptions that a.) we know the
form of the df F , and b.) that the ui’s in the latent variable formulation are
iid. Recall that in ordinary linear regression we can justify OLS methods
with the minimal assumption that u is mean independent of the covariates
x, i.e., that E(u|x) = 0.
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We will see that this condition is not sufficient to identify the parameters
β in the latent variable form of the binary choice model. The following
example is taken from Horowitz (1998). Suppose we have the simple logistic
model,

y∗i = x′iβ + ui

where ui is iid logistic, i.e., has df

F (u) = 1/(1 + e−u)

It is clear that multiplying the latent variable equation through by σ leaves
observable choices unchanged, so the first observation about identification
in this model is that we can only identify β “up to scale”. This is essentially
the reason we are entitled to impose the assumption that u has a df with
known scale. Now let γ be another parameter vector such that γ 6= σβ for
any choice of the scalar σ. It is easy to construct new random variables, say
v, whose dfs will now depend upon x, and for which

(∗) Fv|x(x′γ) = 1/(1 + exp(−x′β))

and

E(v|x) = 0

Thus, γ and the v’s would generate the same observable probabilities as β
and the u’s. And both would have mean independent errors with respect to
x.

The argument is most easily seen by drawing a picture. Suppose we
have the original (β, u) model with nice logistic densities at each x, and a
line representing x′γ. We could imagine recentering the logistic densities so
that they were centered with respect to the x′γ line. Now on the left side
of the picture imagine stretching the right tail of the density until the mean
matches x′β, similarly we can stretch the left tail an the right side of the
picture – as long as the stretching doesn’t move mass across the x′γ line (*)
is satisfied. After the stretching we have conditional median of the latent
response lined up on the x′γ line, and the conditional means lined up on the
x′β line. But now we have two different models with the same observable
probabilities, but different parameters and of course different underlying
error distributions, both with the same conditional mean function.

What this shows is that mean independence is the wrong idea for think-
ing about binary choice models. What is appropriate? The example illus-
trates that the right concept is median independence. As long as

median(u|x) = 0

we do get identification under two rather mild conditions.
A simple way to see how to exploit this is to recall that under the general

quantile regression model,

Qy(τ |x) = x′β
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equivariance to monotone transformations implies that for the rather drastic
transformation I(y > 0) we have

QI(y>0)(τ |x) = I(x′β > 0)

but I(y > 0) is just the observable binary variable so this suggests the
following estimation strategy

min
||β||=1

∑
ρτ (yi − I(xiβ > 0))

where yi is the binary variable and the function ρτ (u) = u(τ − I(u < 0)) is
the usual quantile regression check function. This problem is rather tricky
computationally but it has a natural interpretation – we want to chose β so
that as often as possible I(xiβ > 0) predicts correctly.

Manski (1975) introduced this idea under the rather unfortunate name
“maximum score” estimator, writing it as

max
||β||=1

∑
(2yi − 1)(2I(x′iβ ≥ 0)− 1)

In this form we try to maximize the number of matches, rather than mini-
mizing the number of unmatches but the two problems are equivalent. The
large sample theory of this estimator is rather complicated, but an inter-
esting aspect of the quantile regression formulation is that it enables us by
estimating the model for various values of τ to explore the problem of “het-
eroscedasticity” in the binary choice model. See Kordas (2000) for further
details.

Endogoneity in Binary Response

As we suggested earlier the linear probability model is one way to pro-
ceed toward 2SLS methods for binary response. However, this has many
difficulties and only one advantage – that it is mindless. I’ll briefly sketch
an alternative approach that illustrates the advantage of the control variate
interpretation of 2SLS. Suppose that we have the model

y∗i1 = x>i β + yi2γ + ui

y∗i2 = z>i δ + vi.

For the sake of argument, suppose that the pair, (ui, vi) are jointly normal,
and as usual we get to see only yi1 = I(y∗i1 > 0). What to do? without loss
of generality we can take σ2u = 1, and we can write

ui = θvi + ei

with ei ∼ N (0, 1 − ρ2) where ρ = Cor(ui, vi). Why? Note that e ⊥ z and
e ⊥ v and therefore e ⊥ y2. Now θ = η/τ2 where η = Cov(ui, vi) and
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τ2 = V(v), and consequently,

V(e) = V(u) + θ2V(v)− 2θCov(u, v)

= 1 + η2/τ2 − 2η2/τ2

= 1− ρ2

so we can replace ui in the first equation by θvi + ei to get,

y∗i1 = x>i β + yi2γ + θvi + ei,

of course we don’t know vi, but we have a plan for that. Note that ei ∼
N (0, 1−ρ2) so if we did have a vi in our hand, we would be able to estimate
the rescaled coefficients: β/(1− ρ2, etc. The plan is the following two step
procedure suggested by Vuong:

(1) estimate v̂i from the second equation by OLS,
(2) estimate our new version of the probit model with v̂i for vi.

This is a natural variant of the control variate version of 2SLS. Note however
that the naive version of 2SLS in which y2 is replaced by ŷ2 does not work
for this binary response setting. In the last few years, Chesher and others
have developed semiparametric approaches to these problems, albeit with
complications that lead us out of the simple world of point identification
and into the world of set identified models and inference.

Ratings and Rankings

A standard model for ranking competitive sports teams is the Bradley-
Terry or paired comparison logit model. Under this model the probability,
πij , of team i defeating team j is

logit (πij) = αi − αj
Given data on n games occurring among m teams we can construct an n×m
“design” matrix with kth row having ith element 1, jth element −1 and all

other elements zero, assuming the kth contest was between teams i and
j. Given the estimated ratings we can easily compute an estimate of the
probability πij :

πij =
eαi−αj

1 + eαi−αj

An elaboration of this model using quantile regression methods is described
in Koenker and Bassett(2010) where the application is to forecasting the
outcome of the NCAA basketball tournament. The novelty here is that the
QR results allow the investigator to make density forecasts for the score of
the various games.

Another interesting generalization of this model involves dynamic updat-
ing of ratings. A leading example is the Elo system of chess ratings. In the
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Elo system decent beginners have a rating around 1000 and Grandmasters
have ratings in the range 2500-2900.

Simplifying somewhat, if A plays B with initial ratings RA and RB so
A’s probability of a win is πAB then his new rating after a win is

R′A = RA +K(1− πAB)

where K is a factor that is set at 16 for masters and 32 for weaker players.
If he loses the 1 in the above formula is replaced by 0. In cases of a draw it
is replaced by .5.

This provides a nice simple example of a dynamic logit model. Time
series models for discrete random variables is a very interesting and chal-
lenging topic. A nice reference is MacDonald and Zucchini.

An amusing subliterature on chess ratings has looked at the evolution
of chess ratings over the life cycle as a way to explore the inevitable deteri-
oration of mental faculties.

Panel Data with Discrete Response

Panel data with discrete response is an important class of models. I’ll
only very briefly mention some basic ideas, for a more detailed discussion
see Wooldridge’s text. Suppose we have a latent variable y∗it arising from
the usual panel data model

y∗it = xitβ + αi + uit

and we observe, as usual, yit = I(y∗it ≥ 0). Ignoring the possibility of dy-
namics, possible dependence in uit’s, over time, etc. we can consider both
random and fixed effect estimators based on maximum likelihood and penal-
ized maximum likelihood. Computation is somewhat challenging and may
require sparse algebra methods when n is large.

As in the classical panel data setting there may be questions about
whether random effects treatment induces bias in β due to correlation of
α’s with x’s. An ingenious strategy for dealing with this, introduced by
Chamberlain (1980) is to assume that

αi|xi ∼ N (α0 + x̄′iγ, σ
2
α)

then the latent variable model becomes

y∗it = α0 + x̄′iγ + xitβ + ξi + uit

where ξ ⊥ xi. This is attractive since it dramatically reduces the num-
ber of estimated parameters. Chamberlain proposes a GMM strategy for
estimation:

(i) Estimate θt = (α0, β
′, γ′)′t using t = 1, . . . , T cross-sectional probits,

(ii) Using GMM combine these estimates using a suitable weighting ma-
trix based on the results of stage (i).

Although it is frequently desirable to estimate dynamic models of this
type in which the probability of the event yit = 1 depends on past values
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of yit, such models are considerably more difficult, and therefore will be
neglected here. Again, there is some discussion in Wooldridge.

Multinomial Choice: An Introduction

Obviously binary response is just a special case of a much large class
of situations in which we have several discrete categories and would like
to model the probabilities of falling into each category. There are many
possible variants on these models. I will briefly describe two of these in the
remainder of this lecture. Both are addressed to situations in which we have
no cardinal scale for the response. (Frequently, we may want to model data
like the number of hospital visits or or the number of patents, but this is
usually done via count models like poisson regression.)

In some circumstances we have a naturally ordered set of discrete re-
sponses such as: strongly disagree, disagree, agree, or strongly agree, which
have no cardinal interpretation, but nevertheless have ordinal meaning. In
such cases we can specify a latent variable model

y∗i = x>i β + ui

and in the simplest case we can assume that there are thresholds that y∗i
must cross to put the observed yi’s into each category. Thus, we may assume:

yi = j if cj−1 ≤ y∗i ≤ cj
where the cutoffs cj : j = 0, 1, ...,m and we take c0 = −∞ and cm + 1 =∞.
Given the model, and an iid error assumption

P (yi = j|xi) = F (cj − x′iβ)− F (cj−1 − x′iβ)

and this immediately yields a likelihood function that we can maximize over
the vector β and the vector of cutoffs c. Note that this setup is very simple
and it restricts drastically the way in which the covariates can influence the
choices. It would be nice to have some semiparametric alternatives to this
model, but there is no well established candidate for this at the moment.

We will now turn to the case in which we have non-ordered alternatives.

Random Utility Discrete Choice Models – Some Economic
Theory

The theory of discrete choice has a long history in both psychology and eco-
nomics. McFadden’s version of the early psychometric version of Thurstone
model may be very concisely expressed as follows:

m choices

y∗i = utility of ith choice

yi =

{
1 if y∗i = max{y∗1, . . . , y∗m}
0 otherwise
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Suppose we can express the “utility of the ith choice” as,
y∗i = v(xi) + ui

where xi is a vector of attributes of the ith choice, and {ui} are iid draws
from some df F . Note that in contrast to classical economic models of choice,
here utility has a random component. This randomness has an important
role to play, because it allows us to develop simple models with “common
tastes” in which not everyone make exactly the same choices.

Thm. If the ui are iid with F (u) = F (ui < u) = e−e
−u

, then P (yi = 1|xi) =
evi∑
evi where vi ≡ v(xi).

Remark. F (·) is often called the Type 1 extreme value distribution.
Proof. y∗i = max{∼} ⇒ ui + vi > vj + vj for all j 6= i or uj < ui + vi − vj .
So, conditioning on ui and then integrating with respect to the marginal
density of ui,

P (y∗i = 1|xi) =

∫ ∏
F (ui + vi − vj)f(ui)dui

Note if F (u) takes the hypothesized form, then f(u) = e−e
−u ·e−u = e−u−e

−u

so∏
i

F (ui + vi − vj)f(ui) =
∏
j

exp(− exp(−ui − vi + vj)) exp(−ui − exp(−ui))

= exp(−ui − e−ui(1 +
∑
j 6=i

evj

evi
))

let

λi = log(1 +
∑
j 6=i

evj/evi) = log(
m∑
j=1

evj/evi)

so

P (y∗i = 1|xi) =

∫
exp(−ui − e−(ui−λi))dui

= e−λi
∫

exp(−ũi − e−ũi)dũi ũi = ui − λi

= e−λi

=
evi∑n
j=1 e

vj

Extensions:

Suppose

y∗ij = utility of ith person for jth choice

y∗ij = xijβ + ziα+ uij
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Then assuming uij iid F yields

pij = P (yij = 1|xij , zi) =
exijβ+ziαj∑
exijβ+ziαj

E.g., here xij is a vector of choice specific individual characteristics like

travel time to work by the jth mode of transport, and zi is a vector of
individual characteristics, like income, age, etc. Note that the individual
characteristics are assumed to have choice specific coefficient vectors – how
age, for example, influences utility for various choices depends on the choice.

Critique of IIA – Independence of Irrelevant Alternatives

Luce derived a version of the above model from the assumption that the odds
of choosing alternatives i and j shouldn’t depend on the characteristics of a

3rd alternative k. Clearly here

Pi
Pj

=
P (yi = 1)

P (yj = 1)
=
evi

evj

which is independent of vk. One should resist the temptation to relate this
to similarly named concepts in the theory of voting. For some purchases this
is a desirable feature of choice model, but in other circumstances it might
be considered a “bug.” Debreu in a famous critique of the IIA property
suggested that it might be unreasonable to think that the choice between
car and bus transportation would be invariant to the introduction of a new
form of bus which differed from the original one only in terms of color. In
this red-bus-blue-bus example we would expect that the draws of ui’s for
the two bus modes would be highly correlated, not independent. Recently,
there has been considerable interest in multinomial probit models of this
type in which correlation can be easily incorporated.

Gibbs Sampling for Multivariate probit Model

Markov Chain Monte Carlo (MCMC) has transformed Bayesian statis-
tics from a sleepy theoretical/philosophical hamlet to a bustling modern
city. The basic ideas are simple but get complicated quickly. Here is a brief
tourist guide. Recall that if

yt = α+ ρyt−1 + ut

ut ∼ N (0, σ2)

|ρ| < 1

then starting from any initial condition y0, as t gets large

(∗) yt ∼ N
(

α

1− ρ
,

σ2

1− ρ2

)
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Suppose we didn’t know this deep fact, but somehow decided we’d try
to simulate it: so we get out our iphone, rev up the rand key and get busy –
eventually we have a large sample of y’s and if, we plot them low and behold
they make a histogram like (∗) wowy-zowy! Try it you’ll like it.

y ← filter (2 + rnorm (10, 000), .8, method = “ recursive”)hist(y)

Gibbs sampling – under some conditions – discussed in 574 – we can
simulate, by iterating back and forth between conditions.

Ex. (Probit)

y∗i = x′iβ + ui

1. Initialize β
2. Generate u vector u ∼ N (0, In)
3. Generate y∗i ’s from N(xiβ, 1) but truncated on the left
at zero if yi = 1, and truncated on the right at zero if
yi = 0.
4. Generate β ∼ N (β̂, (X ′X)−1)
5. Go to 1.

An easy way to think about step 3 is that you know, because you ob-
serve the original binary yi’s that we should get a draw from ui that would
agree with the observed value. Thus, we could just generate y∗’s for each
observation until we got one that was on the right side of zero and therefore
agreed with the observed data.

Do this for a few thousand iterations and then look at the tail of the
seqence of β’s so generated. The empirical distribution of these generated
β’s will have the approximate distribution of the mle estimator.

Ex. (Multivariate Probit)
Generalize to SUR model for m latent y∗i ’s with correlation matrix Ω.

Now, we need at each iteration to generate a vector of u’s with a particular
covariance matrix, but this is relatively easy, especially by comparison with
computing the orthant probabilities required for the conventional mle. See
Chib and Greenberg(1998).

Warning: It is all too easy to write pairs of conditions like this that are
incompatibly proper, but so that there is no joint distribution with those
conditionals.

Discrete Choices with a Profusion of Choices

The WWW has brought us choice problems with a vast number of
choices; these are challenging and have also led to significant advances in



16

numerical linear algebra and statistical methods. I will discuss two highly
visible examples.
Google Pagerank1. In the early 1990’s when the web was young there were
several search engines, but they typically produced poor results primarily
because they made poor orderings of the matched results. Then Google
appeared and mopped the floor, how?

The simple version of the answer is Google’s pagerank algorithm. Like
any search engine Google created a large hash table of words and phrases
from all the public web pages by automated “web-crawling,” so it could
match search inquiries. But how to order the resulting matching? You
would like to rank pages higher if they are more likely to be interesting, and
they are more likely to be interesting if they are linked to other interesting
pages.

The structure of the web can be viewed as a large directed graph, rep-
resented by a matrix G whose ij entry is one if page j links to page i and
zero otherwise. This is a large matrix, but very sparse, that is most of its
entries are zero. So our question becomes: Given G what is a good index of
“interestingness?” There are some obviously bad ideas that spring to mind:

• Count the number of pages that link to page i.
• Sum the ratings of pages that link to page i.

Not all pages are created equal so counting pages is clearly silly, but summing
ratings also creates opportunities for pages that have many links to unduly
influence rankings. We don’t want to create perverse incentives for irrelevant
linkages since they are very easy to create. If we modify the second idea
slightly so that, ri =

∑
j∈Li

rj/nj where Li is the set of page indices linking
to page i and nj is the number of links made by page j, we can define a new
matrix, A with entries,

Aij = Gij/nj .

If we rewrite this idea in matrix form, we have, r = Ar or 0 = (A− I)r, so
it appears that we have defined the ratings vector as an eigenvector of the
matrix A and claimed that A has an associated eigenvalue of one. How do
we know that there is such an eigenvector?

A Random Walk through the WWW

Imagine picking a random page on the web and then taking a random
walk through the web by picking randomly a link from each successive page
you visit. If A is “nice” then ri would be the fraction of time you spent
at page i, or the proportion of times you visited page i in the (very) long
run. This is the stationary distribution of the Markov chain describing the
random walk. Really? What do we mean by “nice?” What can go wrong if
A isn’t “nice?”

1This section is based largely on Candès (2009) and Bryand and Leise (2006)
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One thing that can cause problems is obviously pages that don’t have
any links; they would bring our walk to an abrupt end. We can assume that
any page is linked to itself so a page without any other links would leave us
stuck at that page, in the usual jargon this would be an absorbing state of
the chain. Another problem would be pages that led us around in a circle,
or cycle.

Definition A matrix A is Markov if Aij ≥ 0 and its columns all sum to one,
i.e.

∑
iAij = 1 for all j.

Lemma If A is Markov then it has an eigenvalue 1.

Proof A and A> have the same eigenvalues – recall that eigenvalues solve
the characteristic equation |A − λI| = 0, and determinants of transposes
are the same as determinants of the untransposed matrix. By the Markov
property A>1 = 1 so A has an eigenvalue 1.

We now need to ensure that unlinked or otherwise problematic web
structures don’t cause problems. Google’s strategy for this is to replace A
by

B = (1− δ)A+ δ11>/n δ ∈ (0, 1),

This modifies our random walk strategy so that at each page we either do
what we described before with probability (1− δ), or with probability δ we
take a flier to a completely random page. Google supposedly uses something
like δ = 0.15. This ensures that we can get anywhere from anywhere in our
random peregrinations.

Theorem [Perron-Frobenius] If B is Markov and Bij > 0 for all i, j, then
B has largest eigenvalue one and corresponding unique eigenvector with
positive components.

Rather than normalizing the eigenvector as usual so that ‖x‖ = 1 we
can choose r so that ri = xi/

∑
j xj , since the entries are positive. This

allows us to interpret r as a discrete probability distribution, the stationary
distribution of our random walk.

This is all very well, but how are we going to compute this eigenvector
when A has something like a 100 billion rows and columns? An old strategy
that seems quite slow and inefficient on smaller problems is about all that
we have to rely on for problems of this size. This is the power method:

Initialize x(0)

While(‖x(i) − x(i−1)‖ > ε)

x(i+1) = Bx(i)/‖Bx(i)‖
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The beauty of this in the present case is that multiplication by B is
reasonably quick since B is mostly zeroes, and multiplication by the matrix
of ones, 11> is also quick since we have good hardware for summing. This
is done daily using yesterday’s x as an initial value, actually it is done
essentially continuously on a vast array of distributed machines. Google
has a market capitalization of $198B, as of November 15, 2011, so don’t let
people tell you that eigenvectors aren’t worthwhile.

Matrix Completion and the Netflix Competition

The second massive discrete choice problem I want to consider involves
matrix completion. It is conveniently illustrated by the recent Netflix prize
competition. Netflix rents movies to subscribers, who (sometimes) rate the
movies on a scale of 1 to 5. We can think of the resulting ratings as a (large)
m × n matrix with movie row labels and subscriber column labels. The ij
entry would be the rating that subscriber j gives to movie i. Obviously,
most of the entries of the matrix are missing; our task is to find a good way
to fill in these missing entries, that is to find a way to predict ratings for
movies that subscribers have not seen, or have seen but not rated.

In 2006 Netflix offered a prize of $1M to any individual or group who
could improve upon their current algorithm by 10 percent. Contestants were
provided with a data matrix with m = 17, 770 movies and n = 480, 189 users
and roughly 100 million ratings, so the matrix was about 99 percent empty.
This so-called training data was supposed to be used to predict ratings in a
withheld evaluation data set with predictive performance measured by that
old standby – root mean squared error.

Using regression based ideas Netflix default methods had achieved a rmse
of 1.054. In 2009 a consolidated team composed of three early competing
groups won the prize. Competition for the prize was quite fierce and led to
some real conceptual progress in convex optimization.

One formalization of the Netflix problem is the following: let A denote
the m × n unknown full matrix, and R denote the set of indices for the
complete entries of the matrix, denoted yij . We would like to find A to
minimize,

f(A) =
∑
ij∈R

(yij −Aij)2

A first idea is to consider matrix factorizations like A = UV >, for some
(hopefully) low rank matrices, U and V . As a general matter, this problem
is ill-posed, i.e. not identified. There are lots of ways to choose U and V
to achieve f(A) = 0 so we need some sort of regularization or penalty. One
penalty that plays a similar role as the lasso regression penalty for such
problems is formulated as,

min
A
{f(A)|A � 0, T r(A) = 1}
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where A � 0 means that A is positive semi definite, PSD. This formulation
can in turn be reformulated as,

min
A
{f(A) + µ‖A‖∗}

where ‖A‖∗ is the nuclear norm of A, defined as the sum of the singular
values of A.

Recall that an m× n real matrix A can be factored as,

A = UDV >

where D is a diagonal matrix of singular values, U is a m × m unitary
matrix whose columns are the eigenvectors of A>A, and V is a unitary
n × n matrix whose columns are the eigenvectors of AA>. The diagonal
elements are square roots of the eigenvalues of A>A.

Matrix norms play an indispensible role in all of this and there are lots
of them with a somewhat perplexing assortment of names and aliases. We
will denote the (squared) Frobenius norm, ‖U‖22 = Tr(U>U) =

∑∑
U2
ij ,

and is just the usual (squared) Euclidean norm of the matrix entries viewed
as vector. Similarly, we have ‖U‖1 =

∑∑
|Uij | and ‖U‖∞ = max |Uij |.

Likewise we can make matrix norms out of `p norms of the singular values
of the matrix, so the nuclear norm is corresponding `1 norm of the singular
values, the `∞ norm analogue is called the operator norm and is simply the
largest singular value. In this literature this operator norm is sometimes
(confusingly) referred to as the 2-norm. I’ll denote it below by simply ‖ · ‖.

The linkage between the last two formulations rests on the following
result.

Lemma ‖A‖∗ = minU,V {(‖U‖22 + ‖V ‖22)/2 | UV > = A}

The proof employs some convex analysis that I won’t go into here, details
can be found in Recht, Fazel and Parrilo (2010), but essentially boils down
the duality of the nuclear and operator norms. Fortunately, there are good
ways to solve such problems even those formulated on a very large scale.
These methods can be viewed as gradient descent algorithms, uniqueness
of solutions are ensured by the convexity of the problem – PSD matrices
constituting a convex cone.

Recently Candès, Li, Ma, and Wright (2009) have used closely related
techniques to create robust form of principle component analysis. In their
setup we are given a large data matrix A and we would like to decompose
it into the sum of a low rank component and a sparse component:

A = L+ S.

In classical PCA we do something similar, except that instead of the sparse
component we assume that S is a dense matrix modeled as Gaussian noise.
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This is formulated as,

min
L
{‖A− L‖ | rank(L) ≤ k}

So we are trying to minimize the maximal singular value of the noise matrix
computed after (optimally) choosing a rank k version of L. When S is sparse
it seems better to try to encourage it to be sparse in the optimization by
some sort of lasso like penalty. The formulation in Candès et al is:

min
L
{‖L‖∗ + µ‖A− L‖1}

Again, we have a convex optimization problem that can be solved by meth-
ods like those used for matrix completion. These methods seem to offer
a wide scope for applications to many problems that have proven to be
resiliant to other approaches. Econometrics has tended to ignore develop-
ments in multivariate statistics, thus we sometimes have to rely on the Soren
Johansen’s of the world to clue us into the utility of these methods. This
seems (somehow) unfortunate.
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