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Lecture 2
Transformations and the Specification of Econometric Models

A fundamental aspect of interpreting any parametric statistical model is choice of functional
form. Let’s begin a consideration of this topic with the following simple example. Suppose

log yi = α+ β log xi + ui

but unaware of this convenient formulation we instead estimate

yi = a+ bxi + vi.

What relationship does (â, b̂) bear to (α, β) in the original model and can we hope to say anything
reasonable having made this initial specification error?

In Figure 1, we can examine a specific version of this situation in which (α, β) = (1, .5) and
the variance of ui is quite small. Clearly we don’t do a very good job of estimating the curve
represented by the observed points by the line indicating the least squares fit, but it is useful
to look at this more carefully.∗ On a more optimistic note it might appear that the slope of the
linear fit might provide a decent approximation to the tangent of the curve at a point roughly
corresponding to x̄. Figure 2 illustrates this phenomenon on the elasticity scale. Were we to
estimate the log-linear model we would have an easily interpreted constant elasticity estimate.
However, since we have estimated the model in the linear form, the implied elasticity of y with
respect to x varies as we move along the fitted line. More explicitly, the elasticity is defined as

η =
dy

dx

x

y

and according to the linear specification the derivative, dy/dx = b is constant, so the natural
estimate of the elasticity of y with respect to x, at any point x, is given by

η̂(x) = b̂ · x

ŷ(x)

where ŷ(x) = â + b̂x. If we were going to offer only one such elasticity estimate for expository
purposes, we would typically choose x = x̄, but sometimes it is useful to choose several such
points of evaluation for purposes of comparison. Recall ŷ(x̄) = ȳ as long as the estimated model
has an intercept. This is done for each of the observed values of x in Figure 2. The horizontal
line at β = .5 is the “true” elasticity according to which the data was generated, while the dots
represent η̂(x) at the various deserved x’s. Obviously these estimates are rather poor in the
extremes, but reasonably good in the center of the x’s. The two vertical lines represent the
arithmetic and geometric means of x and we note that one yields a small overestimate while the
other yields a small underestimate of β. This is the first of many lessons which can be roughly
formulated by the

Maxim: It is dangerous to draw inferences too far away from the center of your data.

∗One way to do this is to ask: suppose the xi’s are generated randomly from some distribution, F , and that

E(y|x) = g(x), then (â, b̂) solves minEx(g(x) − a − bx)2, i.e., â + b̂x is the best linear approximation to g(x) in
quadratic mean.

1



2

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

0 5 10 15

2
4

6
8

10
12

x

y

Figure 1. A linear fit to a log-linear model: The figure illustrates 50 observa-
tions from a log-linear model and a superimposed least-squares linear fit of the
observations. Note that the fit provides a rough estimate of the tangent of the
curve near the “center” of the x’s, but cannot be considered very reliable unless
the range of the x’s is quite restricted.

A corollary, which is often offered as advice to young novelists is “Write what you know,”
another pithy corollary is “Extrapolate at your peril.” A nice introduction to a more general
formulation of these issues is White (1980).

A common error in applied work when estimating log-linear models involves the transition
back to predictions about expectations of the response variable in the original scale. If we have
the log-linear specification in our first equation and if as would be commonly assumed ui’s were

assumed to be homoscedastic and normal, then in the original scale we would have yi = eαxβi e
ui

with eui a lognormal random variable. If we were interested in estimating E(y|x) then we would
need to consider the mean of this lognormal random variable. If u is normal, then v = eu is
lognormal, so

Evj =

∫
vjdΛ(v) =

∫
ejudΦ(u) = Eeju = exp{ju+ σ2j2/2}

where the last equality follows by the (familiar!) computation for the moment generating func-
tion of the normal distribution. Here Λ and Φ denote generic lognormal and normal distribution
functions, respectively. In our case we are typically only interested in the case µ = 0 and j = 1
but even in this simple case we see that our expectation needs to account for the contribution of
the variability of u as well as the mean contribution from the systematic portion of the model.

Another common difficulty with the log-linear specification involves treatment of zero ob-
servations, for which it is difficult to compute logs. A common “fix” is to replace zeros by some
arbitrary ε and then compute logs, but this can be dangerous since results can be very sensitive
to the choice of ε, for which there is rarely an obvious a priori choice.
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Figure 2. A linear fit to a log-linear model: This figure illustrates the bias
introduced in estimating the elasticity parameter of the log-linear model by using
the estimated linear model. The points in the figure represent elasticities implied
by the fitted linear model at each of the observed x’s. The horizontal line at
β = .5 represents the true, constant elasticity for the model, and the two vertical
lines indicate the mean (solid) and geometric mean (dotted) of the x’s. Thus, at
the mean of the x’s the linear model slightly overestimates the elasticity, and at
the geometric mean it slightly underestimates it.

Having seen this example it is natural to ask whether there is a systematic strategy for
deciding on appropriate functional forms. This is obviously a big topic and I will try only to
briefly survey the basic idea in the simplest bivariate regression setting.

The classical approach to dealing with this ‘̀transformation problem” involves the family of
power transformations

h(x, λ) =

{
xλ−1
λ λ 6= 0

log x λ = 0

Applying this transformation to the response variable y and/or the independent variable(s) x
yields a rich class of potential models. It is useful to consider a few special cases. We will
consider λ = 0 which is somewhat peculiar in detail, but λ = −1 is also of interest.
Exercise: Verify using L’Hôpital’s rule that

lim
λ→0

xλ − 1

λ
= log x
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Answer:

lim
λ→0

xλ − 1

λ
=

d
dλ(eλ log x − 1)

1
|λ=0

= eλ log x · log x|λ=0

= log x

The family of Box-Cox transformations is illustrated in Figure 3 for 6 different values of λ. The
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Figure 3. The Box-Cox Power Transformations: The Figure illustrates 6 ver-
sions of the Box-Cox Power family of transformations. Note that the log trans-
formation fits nicely into the family with λ = 0.

family is quite flexible and useful, but it is somewhat limited because it is only fully applicable
for x ≥ 0. It has been suggested that one might extend the definition using

λ(x) = (|x|λ sgn (x)− 1)/λ

but this behaves rather strangely and is rarely used in applications.
As an exercise in reviewing some basic ideas about maximum likelihood estimation, let’s

consider, following Box and Cox (1964), the problem of estimating the model

h(yi, λ) = xiβ + ui
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Figure 4. The Box-Cox Power Transformation: The Figure illustrates the pro-
file log likelihood for a simple bivariate linear model, the confidence interval
indicated for λ is based on the asymptotic theory of the likelihood ratio statistic.

assuming that {ui} is iid N (0, σ2). The log likelihood is

`(β, λ, σ) = −n
2

log(2πσ2)− 1

2σ2

∑
(h(Yi, λ)− xiβ)2 + log |J |

where J =
∏n
i=1 |∂h(yi)/∂yi| is the determinant of the transformation from u to h(y, λ). Note

that
∂h(yi, λ)

∂yi
= yλ−1i

so

log |J | = (λ− 1)
n∑
i=1

log(yi).

Concentrating the likelihood we have

`(λ, σ) = −n
2

log σ̂2 + log |J |+K
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where K doesn’t depend on the parameters. Now note that if we had been very lucky and
the response observations yi : i = 1, ..., n happened to have geometric mean of zero, then the
Jacobian term would have been zero. Alternatively, suppose we, with malice aforethought,
transform the observed yi’s: yi → ỹi ≡ yi/ỹ where ỹ = (

∏
yi)

1/n denotes the geometric mean of
yi’s. Then,

log |J | = (λ− 1)
∑

log(ỹi) = (λ− 1)
∑

log(yi/ỹ) = (λ− 1)
∑

(log(yi)− log(ỹ)) = 0.

How convenient! Having made this transformation the Jacobian term vanishes and we can focus
on the simple classical idea of minimizing the sum of squared errors, or equivalently, minimizing
log(σ̂2) since it becomes the only relevant term in the likelihood. One might still worry about
whether there are any serious side effects resulting from the transformation of the response
observations? A useful exercise would be to convince yourself that a.) in the case that λ = 0 so
we had the log transformation then dividing by the geometric mean would have only the effect of
shifting the intercept of the model, or b.) in the case that λ = 1, dividing the yi’s by a constant

rescales all the coordinates of the β̂ vector by the same factor. These so-called “equivariance”
properties of the least-squares estimator will arise periodically throughout the course.

The function `(λ) which we used to call the concentrated log likelihood we now call the
profile (log) likelihood, terminology I believe introduced by Cox. The profile likelihood provides
an extremely convenient and powerful means of doing inference in many problems. In the simple
Box-Cox problem under consideration we would often like to test the hypothesis H0 : λ = λ0.
This is effectively done using the fact (whose proof is deferred to 574) that under H0,

(∗) τ(λ0) = 2(`(λ̂)− `(λ0)) ; χ2
1

where λ̂ denotes the maximum likelihood estimate of λ. The limiting behavior of this likelihood
ratio statistic can also be used to construct confidence intervals for λ: we simply find the set of
λ0 such that τ(λ0) fails to reject at a specified level of confidence. This is illustrate in Figure 4.

Sometimes we would rather not go to the bother of estimating the Box-Cox model, but
instead we would like to estimate some “preferred” form and then test whether this choice of
λ is reasonable. A simple test suggested by David Andrews (1971) handles this situation, and
since it nicely illustrates an important principle of diagnostic test design we will develop it in
some detail. Consider

h(y, λ) = x>i β + ui

with λ = 1 as our “preferred” value. Expanding in Taylor series we have

h(y, λ) ' y − 1 + (λ− 1)
dh(y, λ)

dλ
|λ=1

= (y − 1) + (λ− 1)[y log y − (y − 1)]

Thus, for λ close to one, we have for some mysterious constant, κ,

κ(y − 1) ' x>β + ((1− λ)/λ)y log y

this seems rather strange since it suggests that we should regress y on y log y – this is clearly
unsound. But if we instead proceed in two steps:

(1) Estimate the linear model and compute ŷi = xiβ̂ for i = 1, . . . , n and then
(2) Reestimate the augmented model

yi = x>i β + γŷi log ŷi

and test H0 : γ = 0.
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This procedure, in effect provides one-step approximation to the mle for λ i.e., λ̂ = γ̂ + 1.

Question: What about the κ and the 1? Are they really needed, if so how would it affect
the result if you ignored it? More generally suppose in the usual linear regression setting you
transform the response variable y → ay+ b how does this change the estimated coefficients and
their estimated standard errors? Consider this question first when X “contains an intercept”
and then when it does not.

Exercises (Review) For the OLSE β̂ show (1.) β̂(σy + Xγ,X) = σβ̂(y,X) + γ, and (2.)

β̂(y,XA) = A−1β̂(y,X).
On the other hand if H0 : λ = 0 is the preferred version, then at λ = 0, we have,

dh(y, λ)

dλ
|λ=0 =

1

2
(log y)2

so now we would fit

log(y) = x>β + δ · ( ̂log y)2

so here δ estimates (1/2)λ under the alternative hypothesis.
Another useful and important aspect of diagnostic evaluation of transformation models is

the partial residual plot. We illustrate this for the gasoline data of PS 2 in the next two figures.
In the first group of 4 figures I plot in the upper two figures the scatterplots of percapita US
gasoline demand vs percapita income and price respectively. Note that neither of these plots
look like something a reasonable person would want to fit with a straight line. Nevertheless, we
need to become accustomed to the idea that the multivariate relationship may be approximately
linear even if the bivariate relationships are not. In this case this is (encouragingly!) roughly
true.

The partial residual plot is a device for representing the final step of a multivariate regression
result as a bivariate scatterplot. To accomplish this slightly mysterious feat, we need somehow
to “remove” the effect of the “other” variables before doing the scatterplot. The natural way
of doing this is to regress the two variables of primary interest on the “other” variables of the
model, and then plotting the resulting residuals against one another. This can be formalized in
the following way.

Consider the model

y = Xβ + zγ + u

and the least squares fitted values,

ŷ = Xβ̂ + zγ̂

where MX = I − PX , and PX = X(X>X)−1X>

Theorem (Gauss-Frisch-Waugh) γ̂ = (z>MXz)
−1z>MXy where MX = I − PX , and PX =

X(X>X)−1X>.
Proof Write

z>MX ŷ = z>MXXβ̂ + z>MXzγ̂

but MXX = 0, so it only remains to show that

z>MXPZy = z>MXy

where Z = [X
...z]. Note that

MXPZ = (I − PX)PZ = PZ − PXPZ = PZ − PX .
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In the last step note that X>PZ = (PZX)> = X> (Why?) so PXPZ = PX . Finally, we can
compute,

z>MXPZy = z>(PZ − PX)y = z>y − z>PXy = z>(I − PX)y = z>MXy

which concludes the argument.
An additional feature of this approach is that the standard errors that would be computed

by the last step are exactly the same as those that come out the of full regression. So not
only does the scatter plot give an accurate assessment of the position of the least squares fit of
the bivariate relationship, it also provides an accurate visual assessment of the precision of this
estimate.

This last point inevitably recalls an amusing “fiasco of econometrics” perpetrated here by
Robert Barro in his 1997 David Kinley lecture. Barro presented some “growth regressions” of
the type described in his monograph with Sala i Martin. But to illustrate the results for a
“general audience” he chose to spend a considerable portion of the talk showing slides of the
bivariate relationship between various explanatory variables and his “national growth” variable,
after controlling for the effect of other variables. Barro’s approach was, however, somewhat
idiosyncratic. For each of the possible z variables of interest, he computed ỹ = û + ziβi, that
is the residuals from the full regression plus the estimated effect of the ith variable, and then
this variable was centered at zero and plotted against zi. This approach is easily shown to



9

1.8 2.0 2.2 2.4 2.6

−
1.

4
−

1.
2

−
1.

0
−

0.
8

−
0.

6
−

0.
4

(percapita income)

(p
er

ca
pi

ta
 g

as
 c

on
su

m
pt

io
n)

Income vs Gasoline Demand

Log Data

−1.5 −1.0 −0.5 0.0

−
1.

4
−

1.
2

−
1.

0
−

0.
8

−
0.

6
−

0.
4

(gasoline price)

(p
er

ca
pi

ta
 g

as
 c

on
su

m
pt

io
n)

Price vs Gasoline Demand

Log Data

−0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

(percapita income)

(p
er

ca
pi

ta
 g

as
 c

on
su

m
pt

io
n)

Income vs Gasoline Demand

Partial Residuals

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
1

0.
2

0.
3

(gasoline price)

(p
er

ca
pi

ta
 g

as
 c

on
su

m
pt

io
n)

Price vs Gasoline Demand

Partial Residuals

produce the correct point estimate of the coefficient β̂i, (it would be a useful exercise for you
to show this), however the visual impression of the scatterplot is much more optimistic than
one would expect to get from the partial residual plot method described above. In effect, the
denominator effect in the t-statistics of z>i MXzi is replaced in the Barro approach by z>i M1zi –
regression on only an intercept. Since the former can be very small, compared to the later the
result is a picture that has an implied standard error that appears considerably smaller than
would the standard error in the full regression. In the next panel of two figures, I illustrate the
effect of the Barro approach for the gasoline data. As one can see, these figures suggest a much
more precise estimate of the two effects than that conveyed by the conventional partial residual
plots appearing above. This is good, of course, if the object is to impress the audience with
the precision of the fit, but bad if one is interested in conveying an accurate assessment of that
precision.

Another apparent example of this sort of statistical shenanigans can be found in the PNAS
paper Alvergne et al (2010), see Figure 1.

Conflicting Objectives of Transformations
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We have 3 possibly conflicting objectives in choosing a transformation. We would like the
transformation to (simultaneously) yield a model

(i) which is linear in parameters
(ii) homoscedastic
(iii) has approximately “normal” conditional density

Carroll and Ruppert have proposed a more general strategy which they call “transforming both
sides”. We begin with a model like

E(yt|xt) = f(xt, β).

One might think of this as the systematic part of the model before any noise is introduced. Now
we might consider models based on the Box Cox transformation of the form,

h(yt, λ) = h(f(xt, β), λ) + ut

But this is different than the Box-Cox models we considered above. Here f(xt, β) is intended to
deal with the non-linearity, while h is hopefully going to transform to homoscedastic and normal
errors. How does h(·) work?

Suppose yi has E(yi|xi) = µi, V (yi|xi) = σ2i and σi = σg(µi), then

V (h(yi)) ' E(h(yi)− h(µi))
2

' (h′(µi))
2E(yi − µi)2

= (h′(µi))
2σ2(g(µi))

2

Note these approximations depend on σ being “small!” This is our first contact with the so-
called δ-method, but it will appear in various guises throughout the course. Now, if we were to
choose h so that

h′(µi) =
1

g(µi)

then we would have (approximate) homoscedasticity. For example, in Poisson cases

g(µ) = µ1/2
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so

h(µ) = 2µ1/2 ⇒ h′(µ) =
1

µ1/2

and

g(µ) = µ⇒ h(µ) = log(µ)⇒ h′(µ) =
1

µ

and

g(µ) = µ(1−λ) ⇒ h(µ) = y(λ) ⇒ h′(µ) = µλ−1

Here we use the common notational convention that y(λ) = (yλ − 1)/λ. Another way to look at
this is to say that if σ2 is small relative to the variability of µi’s, then

h(yi) = h(µi) + h′(µi)(yi − µ)

For this order of approximation we are back to a “simple” heteroscedastic model,

yi = µi + σh′(µi)εi

Note that the interpretation of the β’s is quite different in this setup than in the classical Box-
Cox setup. There the β’s don’t mean much independent of λ – recall ∂y/∂x expression, – but
here they do.

Transformation and weighting: Consider the model

h(yi, λ) = h(f(yi, β), λ) + σg(µi(β), ziθ)εi

Now we can think of g(·) as modeling the heteroscedasticity and h(·) being exclusively for
achieving normality, while f(·) fixes the non-linearity in the conditional mean relationship. This
model is considerably more complicated to estimate, but may arise naturally in the process of
diagnostic checking.

Interpreting Transformed Models

It is very important to be clear about what parameters “mean” in transformation models,
In the normal linear model

yi = xiβ + σεi εi ∼ N (0, 1)

P (yi < y|xi) = Φ((y − xiβ)/σ)

Qyi(p|xi) = xiβ + σΦ−1(p)

In the Box-Cox framework we have,

h(y, λ) = xiβ + σε

so the pth quantile of yi|xi is yi = h−1λ (xiβ + σε)

Qyi(p|xi) = h−1λ (xiβ + σΦ−1(p))

Thus if we wanted to estimate the effect of a change in xij on the pth quantile of yi, we would
write

∂

∂xij
Qyi(p|xi) =

∂

∂xij
[h−1λ (xiβ + σΦ−1(p))]

For example, if

hλ(yi) =
yλi − 1

λ
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then,

yλi = λhi + 1

yi = (λhi + 1)1/λ

Qyi(p|x) = (λ(xiβ + σΦ−1(p)) + 1)1/λ

∂yi
∂xij

=
1

λ
(λ(xiβ + σΦ−1(p)) + 1)

1
λ
−1 · λβj = (λ(xiβ + σΦ−1(p)) + 1)

1
λ
−1βj

This could then be used to generate a confidence interval. Note that models for expectations
are less convenient here since E(h(y)) 6= h(Ey).

Transformations for Proportions

Often we are interested in estimating models of proportions, for example, Engel Curves
for proportions of expenditure, unemployment rates, etc. Two simple alternatives are logit:
h(y) = log(y/(1 − y)) or more generally h(y, λ) = yλ − (1 − y)λ folded power transformation.
Note limλ→0 h(y, λ) = log(y/(1 − y)) We will have more to say about these cases later in the
term.
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