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Consider a model of the form

yit = xitβ + ziγ + αi + uit i = 1, . . . , n t = 1, . . . T (1)

where, for example,

yit = log wage of person i at time t.
xit = time varying characteristics at time t like age, experience, health, ...
zi = time invariant characteristics at time t like education, race, sex, ...
αi = unobserved individual effect like spunk, ability
uit = everything else.

we will stack the model so that all T observations on person 1 comes first, and then person 2, and so
on.

Now consider the matrix,
P = In ⊗ T−11T1>T ≡ In ⊗ JT

where the latter matrix is T−1 times a matrix of ones. It is easy to see that P represents an orthogonal
projection, it is symmetric and idempotent. What does it do? Consider

Py =



JT

. . .
. . .

. . .

JT





y1
...
...
...
yn


=



ȳ11T

...

...

...
ȳn1T


And therefore,

Qy ≡ (I − P )y = y − ȳ

is a deviation-from-individual-means vector. Note that if we wanted to view P as representing a least
squares projection, we can think of it as arising from a model in which there are dummy variables for
just the individual effects,

yit = αi + uit

We might write this as,
y = Dα+ u.

It is a useful exercise to show that P = D(D>D)−1D> where ŷ = Py would be the least squares fit
and û = Qy would be the residual vector. Clearly applying Q to D yields,

QD = 0
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since there is no temporal variability in D by hypothesis. A common estimator of (1) for at least the
β component is

β̂W = (X>QX)−1X>Qy

which is frequently called the “within group” estimator. As long as we assume

Exituit = 0

β̂W is consistent for β. But as the name suggests, β̂W uses only some of the information available.
Note that this is all just the usual Gauss-Frisch-Waugh machinery in which we are removing the effect
of D before getting down to the business of estimating the effects of X.

A small point that was raised in class is to note that if we multiply through the original model
equation by Q, this annihilates the α’s and the Z term, but it also transforms the error u to Qu.
What is the consequence of this? If the original u is iid, say N (0, σ2InT ) then Qu is N (0, σ2Q) thus
if we do GLS we seem to need to invert Q. Of course this isn’t feasible, but if we instead use any
g-inverse the estimator uses weights QQ−Q = Q, by the requirement discussed in L13. So we have
just the usual second step of the Gauss-Frisch-Waugh procedure.

We also have the “between groups” information which is obtained by multiplying (1) by P

ȳi = x̄iβ + ziγ + αi + ūi

Note here that we can delete the n(T − 1) redundant observations. Let’s denote OLS estimators of
(β, γ) as (β̂B, γ̂B) for “between.” In this case we have only n observations so we can’t possibly estimate
the αi’s so we have to consider the composite error term, αi + uit. Can we combine βB, βW somehow?

A Simple Measurement Error Problem (Revisited)

1. Suppose that yi ∼ N (µ, σ2i ) for i = 1, 2. The GLS estimator of µ is:

µ̂ = (X>Ω−1X)−1X>Ω−1y

where

Ω =

[
σ21 0
0 σ22

]
X =

[
1
1

]
so

µ̂ = (1/σ21 + 1/σ22)−1[y1/σ
2
1 + y2/σ

2
2]

2. Matrix Case – interpret as two independent estimates

yi ∼ Np(µ,Ωi) i = 1, 2

µ̂ = (Ω−11 + Ω−12 )−1[Ω−11 y1 + Ω−12 y2]

here

Ω =

[
Ω1 0
0 Ω2

]
X =

[
Ip
Ip

]
Note that if we put in values for σ2 or Ω2, and let them tend to infinity, then we get just first
component.
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To apply this to get the expression at the top of page 1381 of HT, note that if

β̂i ∼ N (β, Vi) i = W,B

our simple weighted least squares approach gives,

β̂ = (V −1B + V −1W )−1[V −1B β̂B + V −1W β̂W ]

HT rewrite this incorrectly so be careful! Note that

V −1B + V −1W = V −1B (VB + VW )V −1W

so
(V −1B + V −1W )−1 = VW (VB + VW )−1VB

so we may write,
β̂ = ∆β̂B + (I −∆)βW

where
∆ = VW (VB + VW )−1

Note HT write ∆ = (VB + VW )−1VW ! Exercise: Verify that β̂B and β̂W have covariance zero in
order to justify the application of the above result.

Generalized Least Squares Now let’s consider GLS estimation of the the somewhat simplified
model, that ommits the time invariant covariates,

y = Xβ +Dα+ u

By treating the αi’s as random and ui and αi as independent. we can compute the covariance matrix
of ε = u+Dα as,

Ω = Eεε> = E(Dα+ u)(Dα+ u)>

= σ2αDD
> + σ2uInT

= σ2uITn + σ2α(In ⊗ TJT )

= σ2uInT + Tσ2αP

Thus we may write the GLS estimator with X̃ = [X
...Z],

δ̂ =

(
β̂
γ̂

)
= (X̃>Ω−1X̃)−1X̃>Ω−1y

This is sometimes called the Balestra-Nerlove estimator. Using the following Lemma it can be refor-
mulated as yielding a simple least squares estimator after a preliminary transformation of the data.

Lemma (Nerlove) Let σ2ε = σ2u + Tσ2α, then Ω−1/2 = σ−1ε P + σ−1u Q.

3



Proof: We will show this by computing directly that Ω−1/2ΩΩ−1/2 = InT , Noting that PQ = 0, we
have,

(σ−1ε P + σ−1u Q)[σ2uI + Tσ2αP ](σ−1ε P + σ−1u Q) = σ−2ε (σ2u + Tσ2α)P + σ−2u σ2uQ

= P +Q

= InT

Remark: Ω has only 2 distinct eigenvalues σ2u +Tσ2α and σ2u and corresponding eigenvectors P and Q.
Having computed Ω−1/2 we can transform (1) by Ω−1/2 to obtain a spherical error, HT use σuΩ−1/2

to get.
σuΩ−1/2y = (θP +Q)y = y − (1− θ)ȳ

where θ = σu/(σ
2
u + Tσ2α)1/2, and similarly for the other variables. Here we are doing a form of

“partial deviations from means” analogous to partial differencing in autocorrelation correction. Under
our assumption, such estimates are efficient. Note that in unbalanced cases the transformations are
slightly more complicated.

A third approach to deriving the classical panel data estimation methods for random effects is to
regard the individual effects, αi, as parameters that need to be estimated, but ones on which you have
some prior information and procede in a Bayesian fashion. To this end, we can consider, minimizing
a penalized log likelihood expression,

minα,β,γ
∑
i

∑
t

(yit − xitβ − ziγ − αi)2 + λ
∑
i

α2
i .

where the λ represents the strength of the prior. The effect of the (second) penalty term is to shrink
the fixed effect estimates – that would be obtained if the model were estimated with λ = 0 – toward
zero. Ideally, one would choose λ = σ2u/σ

2
α. It is not particularly obvious from the linear algebra, but

it turns out that this approach is equivalent to the two prior approaches that have been described.

Specification Tests
Intuitively, if our assumption is violated, then βW is still consistent for β, but inefficient relative

to the optimal β̂ = ∆11β̂B + (I −∆11)β̂W . This seems to be ideally suited for the H-test. We have
An efficient estimator under H0 which is inconsistent under HA : β̂ and a consistent estimator under
HA : β̂W

There are three obvious options for testing: ω1 = β̂ − β̂W , ω2 = β̂ − β̂B, and ω3 = β̂W − β̂B

HT show that the three tests are asymptotically equivalent. As in other H-tests we can use the
fact that under H0, e.g., V (β̂ − β̂W ) = V (β̂sW )− V (β̂).

Estimation of γ. Recall that we still have problems with estimation of γ in the fixed effects model
and we might want to use fixed effects if we believed that there were endogoneity problems. We can
think of distinguishing

X = [X1
...X2]

Z = [Z1
...Z2]
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where as in HT X2 and Z2 are to be treated as endogenous and [X1
...Z1] as exogenous. Then we write

ỹ = X̃β + Z̃γ + ε̃

where Ω−1/2y = ỹ and so forth, and we have the two reduced form equations

[X2
...Z2] = [X1

...Z1]Π

For slightly esoteric reasons 2SLS and 3SLS are equivalent here – basically because of the fact that
the “other equations” are exactly identified.

A General Approach to Computation
The simplest, but perhaps not most memory efficient means of estimation is to take

ỹ = X̃β + Z̃γ + ε̃

and define the instruments
W = (QX1, PX1, QX2, Z1)

An interesting aspect of this approach is that it makes clear that X1 plays two roles. (i) estimation
of β, and (ii) instrumental variable for Z2.

This formulation also clarifies the conditions under which it is possible to estimate (identify) both

β and γ. Clearly [QX1
...QX2

...Z1] all serve as successful “instruments for themselves”. So the question
reduces to: are there available IV’s for Z2, the endogenous time invariant variables? This is easily
seen to be answered by comparing the number of columns of PX1 to the number of columns of Z2.
There need to be at least as many columns of PX1 as the number of columns of Z2.

Estimating σ2α and σ2u. Finally we should address the question of estimating the variances in the
matrix Ω. I have two suggestions on this. The first approach relies heavily on the unbalanced nature
of the panel, so it is applicable in the problem set, but couldn’t be used for the balanced case discussed
in the prior discussion of this lecture.

• In the standard balanced panel setting that we have been discussing above, the usual scheme
for estimating σ2α and σ2u is as follows:

– In the within regression, we have residuals, û2i and compute:

σ̂2u = (n(T − 1))−1
∑
i

∑
t

û2i .

– In the between regression, we have residuals, ε̂i = ȳi − x̄iβ̂ − ziγ̂, and compute,

σ̂2ε = n−1
∑
i

ε̂2i .

– Since Eε2i = E(αi + ūi)
2 = σ2α + T−1σ2u, we can estimate σ2α by,

σ̂2α = σ̂2ε − T−1σ̂2u.
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An obvious potential flaw in this strategy is that there is no guarantee that σ̂2α > 0. Indeed, even
in simulations from idealized forms of the model, one regularly encounters negative estimates.
Bayesian methods that impose priors supported on R+ are one way to deal with this problem.

In balanced settings one can also expand the scope of the estimated covariance matrix to acom-
modate heteroscedasticity and various forms of dependence. This is discussed, for example, in
Wooldridge.

• In the unbalanced approach some other methods can be considered. The foregoing approach
is problematic since we would like to weight the contributions to σ2u differently for different
individuals with different Ti’s. Here is one possible option:

– Between approach. In the B-data we have

ε̄i = αi + T−1i

Ti∑
t=1

uit

so
V (ε̄i) = σ2α + T−1i σ2u

so we have a simple model for heteroscedasticity in this equation, and we can estimate by
fitting the model

ε̄2i = σ2α + σ2u(1/Ti)

to the squared residuals from the between model.

– Using the within data as a check of this, we have,

ũit = uit − ūit

so
V (ũit) ≈ σ2u

and we can then compare σ̂2u with what we get in the first approach based on the between
data.

Any of the standard procedures for estimating these variance components, and it should be noted
that procedure 1. is not standard, has the unfortunate possibility that we obtain negative estimates
of one of the variances. Again Bayesian methods that impose prior information that both variances
should be positive can avoid this at some (possibly considerable) additional computational burden.
Sometimes when negative variance components appear in these models, one can blame it on poorly
specified models, and using such circumstances as an excuse to rethink the model specification is often
a worthwhile step.
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