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Estimation of Systems of Simultaneous Equation Model

In this brief lecture we try to introduce estimation methods for simulta-
neous equation models which apply to the entire system rather than treating
the models one equation at a time as we have done thus far with two stage
least squares.

Consider the model,
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ym

 =
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which we will write simply write

y = Zδ + u

We will assume as in the SUR model that

Euu> = Ω⊗ In

so there is contemporaneous correlation across equation errors, but each
equation has a classical, spherical error structure. The model differs from
SUR in that each Zi has the structure

Zi = [Yi
...Xi]

with the possible inclusion of endogenous variables Yi in each equation.
This obviously necessitates some form of instrumental variables estimation
method in addition to the problem of dealing with the correlation introduced
with Ω.

To motivate the simultaneous treatment of both problems, let’s consider
how to deal with them separately. The SUR solution for the Ω problem
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introduced a weighting matrix Ω−1 ⊗ I so if Z were orthogonal to u we
could use

δ̂SUR = (Z>(Ω−1 ⊗ I)Z)−1Z>(Ω−1 ⊗ I)y.

On the other hand, suppose Ω = σ2I then the 2SLS estimator for the whole
system could be written as,

δ̂2SLS = (Z>(I ⊗ PX)Z)−1Z>(I ⊗ PX)y

Note that this is equivalent to doing m separate 2SLS estimations

δ̂
(i)
2SLS = (Z ′iPXZi)

−1Z ′iPXyi i = 1, . . . ,m.

Can we do both of these steps together? Yes, consider the following estima-
tor,

δ̂3SLS = argminδ{(y − Zδ)(Ω−1 ⊗ PX)(y − Zδ)}.

One way to see how this works is to consider the construction of IV”s for
the whole system of equations as

Z̃ = (Ω−1/2 ⊗ In)(Im ⊗ PX)Z

= (Ω−1/2 ⊗ In)Ẑ

where Ẑ = (Im⊗PX)Z. In effect, this transformation first creates predicted
Z’s using the instrument set X and then reweights the equations to get the
Ω effect. This can be viewed as motivating the name “three stage least
squares,” since first we run 2SLS and then we run SUR.

Having seen how this works in estimating systems of equations, it is
perhaps useful to go back and review how it is connected to the single
equation theory. Recall that in the classical single equation setting

y = Xβ + u with Euu> = Ω

the GLS estimator

β̂ = argmin {(y −Xβ)>Ω−1(y −Xβ)}
= (X>Ω−1X)−1X>Ω−1y

is optimal among linear unbiased estimator for general error distributions,
and optimal among unbiased estimators for Gaussian errors. here, the Ω−1

reweights the usual orthogonal projection of ordinary least squares to ac-
commodate the nonspherical error structure.
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In the case of two stage least squares we have the model

y = Zδ + u with Euu> = σ2I

but Z 6⊥ u. This is resolved by the estimator,

δ̂ = argmin (y − Zδ)>PX(y − Zδ) = (Z>PXZ)−1Z>PXy

where PX = X(X>X)−1X> is the projection onto the column space of
the full set of available instrumental variables, X. Thus, here PX plays
somewhat the same role as Ω−1 in the GLS problem.

This leads naturally to the question what should we do in single equation
situations in which we have need of both 2SLS and GLS? Consider the model

y = Zδ + u with Euu> = Ω

and Z 6⊥ u, but X ⊥ u as in the 2SLS case. Clearly, the 2SLS estimator is
inefficient in this case and it is easy (please verify!) to show that

V (δ̂2SLS) = (Z>PXZ)−1Z>PXΩPXZ(Z>PXZ)−1

This is a particular form of “sandwich formula” which we gradually learn
to associate with asymptotic covariance matrices which are inefficient. The
efficient estimator for this situation is,

δ̌ = (Z>P ∗XZ)−1Z>P ∗Xy

where P ∗X = X(X>ΩX)−1X>.As a final exercise prove Var(δ̌) = (Z>P ∗XZ)−1.
Note that P ∗X is not a projection matrix so we should regard δ̌ as a proper
IV estimator, but not a proper 2SLS estimator. Hendry calls it a GIVE
estimator, for generalized IV estimator.

Another way to motivate the foregoing results is via “generalized method
of moments.” Much of econometric theory can be viewed as an application
of this old idea, which originated in the minimum χ2 ideas of Karl Pear-
son. The general idea is to minimize some form of discrepancy between
observed, or empirical moments and population moments. The latter are
simply functions that express population counterparts of the observed mo-
ments as functions of the unknown parameters of the problem.

For example, in the classical linear regression model we have the moment
condition

EX>u = 0,

which in effect says that the observed moments X>y can be expected to be
close to their population counterparts X>Xβ. If we equate these quantities,
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we obtain the OLS estimator β̂. The classical IV estimator can be similarly
motivated. However, a question arises when the number of moment con-
ditions exceeds the number of parameters, since the discrepancy can’t be
eliminated, only minimized in such cases. How should we go about defining
the discrepancy in such cases? Standard theory suggests that the observed
moments will be asymptotically normal random variables, so it is natural
to consider minimum χ2 criteria, i.e. minimizing a quadratic form that rep-
resents a weighted sum of squares that would have χ2 behavior under the
hypothesis represented by the moment conditions themselves. For the case
of 2SLS we may consider a vector of q moment conditions

EZ>u = EZ>(y −Xβ) = 0

where q ≥ p, the dimension of β. To standardize we consider solving

(∗) min
β
u>ZV Z>u

where V is chosen to induce χ2 behavior of the objective function. This
entails choosing V to be the inverse of the covariance matrix of Z>u. Thus,
if Euu> = σ2I,

V = σ−2(Z>Z)−1

and (∗) becomes
min
β
u>PZu

which yields the usual 2SLS estimator. If Euu> = Ω, then V = (Z>ΩZ)−1

and (∗) takes the form
min
β
u>PZ∗u

and yields the GIVE estimator discussed earlier.
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