In this lecture we will consider the problem of testing the validity of certain hypotheses concerning the exogeneity of variables in simultaneous equation models. These tests are often referred to as “Hausman” tests because they were reconsidered in a systematic way by Hausman (1978).

Consider the single equation model,

$$y = Y \gamma + X_1 \beta_1 + X_2 \beta_2 + u = Z \delta + u$$

where we will refer to the variables Y as “included endogenous,” X_1 as “included exogenous,” and X_2 as “dubious exogenous.” Under the null hypothesis we maintain that X_2 is exogenous, while under the alternative hypothesis we regard X_2 as endogenous. We can express this concisely as,

$$H_0 : \ X_2 \perp u \ \ vs \ \ H_1 : \ X_2 \not\perp u$$

Under the null hypothesis we have the estimator

$$\hat{\delta} = \arg\min \hat{u}^T P_X \hat{u} = (Z^T P_X Z)^{-1} Z^T P_X y$$

where $P_X = X (X^T X)^{-1} X$ and $X = [X_1 ; X_2 ; X_3]$ denotes the full set of exogenous variables, under H_0. Under H_1, the columns of X_2 are no longer valid instrumental variables so we have the restricted set of exogenous variables $\tilde{X} = [X_1 ; X_3]$, and the corresponding estimator

$$\tilde{\delta} = \arg\min \hat{u}^T P_{\tilde{X}} \hat{u} = (Z^T P_{\tilde{X}} Z)^{-1} Z^T P_{\tilde{X}} y$$

The only difference between the two estimators is that they use different sets of instrumental variables in the first stage of two stage least squares.

How are we to test H_0 vs. H_1? The basic idea of the Hausman test is quite simple. If H_0 is true both $\hat{\delta}$ and $\tilde{\delta}$ are consistent estimators of δ, that is
they both converge almost surely to \(\delta \). However, under \(H_1 \), \(\hat{\delta} \) is biased while \(\tilde{\delta} \) is still consistent. Thus, if we could determine the distribution of

\[
\Delta = \hat{\delta} - \tilde{\delta}
\]

under \(H_0 \) we could exploit the fact that it should have mean zero (in large samples) under \(H_0 \) and nonzero mean under \(H_1 \). We now fill in some details of this argument.

Under \(H_0 \), we have

\[
(\hat{\delta} - \delta) \sim \mathcal{N}(0, \sigma^2(Z^\top P_\lambda Z)^{-1})
\]

while

\[
(\tilde{\delta} - \delta) \sim \mathcal{N}(0, \sigma^2(Z^\top P_\lambda Z)^{-1}).
\]

Now, what about the distribution of \(\Delta \)? We would expect that \(\hat{\delta}, \tilde{\delta} \) would be (asymptotically) jointly normal and we would have

\[
\text{Var} (\hat{\delta} - \tilde{\delta}) = \text{Var} (\hat{\delta}) + \text{Var} (\tilde{\delta}) - 2 \text{Cov} (\hat{\delta}, \tilde{\delta})
\]

where the first terms on the right hand side are given above. What about the Covariance term? We now make a rather surprising claim. We will provide two different proofs of this result since it is (a.) quite easy, and (b.) quite fundamental.

Lemma: Under \(H_0 \), \(\text{Var} (\hat{\delta} - \tilde{\delta}) = \text{Var} (\hat{\delta}) - \text{Var} (\tilde{\delta}). \)

Proof 1: This proof is quite general and is a “proof by contradiction.” It may be thought of as an asymptotic version of Basu’s (1955) theorem which is discussed further in 574. By the theorem on the optimality of two stage least squares in the previous lecture we know that \(\text{Var} (\hat{\delta}) \) is as small as possible among linear estimators. Consider

\[
\text{Var} (\hat{\delta}) = \text{Var}((1 - \lambda)\hat{\delta} + \lambda\tilde{\delta}) = V(\hat{\delta} + \lambda(\tilde{\delta} - \hat{\delta}))
\]

\[
= V(\hat{\delta}) + \lambda^2 V(\tilde{\delta} - \hat{\delta}) + 2\lambda \text{Cov}(\tilde{\delta} - \hat{\delta}, \hat{\delta}).
\]

Note that for \(\lambda \) sufficiently small the covariance term is larger than the \(\lambda^2 V(\tilde{\delta} - \hat{\delta}) \) term, hence for \(\lambda \) sufficiently small, the variance of \(\hat{\delta} \) could be made smaller than \(\text{Var}(\tilde{\delta}) \) if \(\text{Cov}(\tilde{\delta} - \hat{\delta}, \hat{\delta}) \) were non-zero. (Note that \(\lambda \) could be negative in the case that the covariance term were positive.) But this would contradict the efficiency of \(\hat{\delta} \), so it follows that

\[
\text{Cov}(\tilde{\delta} - \hat{\delta}, \hat{\delta}) = 0
\]
and this immediately implies
\[\text{Cov}(\hat{\delta}, \hat{\delta}) = \text{Var}(\hat{\delta}) \]
which yields the result stated in the Lemma.

Proof 2: A more direct proof goes like this:
\[\Delta = (Z^\top P_X Z)^{-1}X^\top P_X - (Z^\top P_\hat{X} Z)^{-1}Z^\top P_\hat{X} \] u \equiv (H - G)u \]
so \(E\Delta\Delta^\top = \sigma^2[H H^\top + G G^\top - H G^\top - G^\top H] \) where \(H H^\top = (Z^\top P_X Z)^{-1} \), \(G G^\top = (Z^\top P_\hat{X} Z)^{-1} \) and
\[H G^\top = (Z^\top P_X Z)^{-1}Z^\top P_X P_\hat{X} Z (Z^\top P_\hat{X} Z)^{-1}. \]
But \(P_X P_\hat{X} = P_\hat{X} \) (explain why?) so \(E\Delta\Delta^\top = G G^\top - H H^\top \) which completes the proof.

A worthwhile exercise: Explain why the matrix \(G G^\top - H H^\top \) is positive semi-definite?

Implementation of the Test

We have shown that, under \(H_0 \),
\[\hat{\Delta} \sim N(0, \text{Var}(\hat{\delta}) - \text{Var}(\hat{\delta})) \]
while under \(H_1 \), \(\hat{\Delta} \) has a nonzero mean and the same covariance matrix. Thus a natural test statistic for \(H_0 \), would seem to be
\[T = \hat{\Delta}^\top (\text{Var}(\hat{\delta}) - \text{Var}(\hat{\delta}))^{-1} \hat{\Delta}. \]
This appears to be quite easy to implement since the two covariance matrixes are typically returned as a by-product of estimating \(\hat{\delta} \) and \(\hat{\delta} \). Unfortunately, the situation is not quite so simple. The major potential problem, at least in some practical settings is that the matrix
\[\Omega = \text{Var}(\hat{\delta}) - \text{Var}(\hat{\delta}) \]
is singular and therefore the inverse required for computing \(T \) doesn’t exist. What is to be done in this case? Fortunately, this problem has a relatively simple solution: we need to replace \(\Omega^{-1} \) by its *generalized* inverse. The degree of freedom of the statistic \(T \) in this case is simply the rank of the matrix \(\Omega \). We illustrate this approach in the following example.
Consider the simple supply and demand model of part 2 of Problem Set 4,

\[Q_t = \alpha_0 + \alpha_1 p_t + \alpha_2 p_{t-1} + \alpha_3 z_t + u_t \]
\[p_t = \beta_0 + \beta_1 Q_t + \beta_2 w_t + v_t \]

and suppose we wish to test the legitimacy of treating \(p_{t-1} \) as exogenous in the first equation. We will maintain the exogeneity of \(W_1 = [z_t, w_t, z_{t-1}, w_{t-1}] \) and ask whether expanding the set of instruments to \(W_0 = [W_1, p_{t-1}] \) is fine or foolish.

We begin by estimating the first equation by 2SLS for both \(W_0 \) and \(W_1 \) and forming, \(\hat{q} = 0.024, -0.032, 0.035, -0.00151 \). We then compute \(D^\top D = (W^\top P_1 W)^{-1} - (W^\top P_0 W)^{-1} \) which we find has one non-zero eigenvalue of \(\lambda = 0.002603 \) and corresponding eigenvector \(v = (0.451, 0.594, -0.664, 0.028) \). Note that these numbers come from an earlier version of the data, so results may be expected to differ for the new data. Using the second result from the next section we may compute \(\hat{q}^\top (D^\top D)^{-1} \hat{q} = 0.112359 \), which upon dividing by the estimate of \(\sigma^2 \) from 2SLS under \(H_0 \) of 2.06325 yields a test statistic of .0544, which is a suspiciously small value for a \(\chi^2 \) on one degree freedom, but must be interpreted as supporting our hypothesis that \(p_{t-1} \) can be treated as exogenous. It is interesting to note, see Hausman and Taylor(1981), that repeating the computation, but using only the coefficients of \(p_t \) and \(p_{t-1} \) would yield identical results. It would not, however, allow us to escape the computation of the g-inverse. The required g-inverse would now be rank 2 rather than 4.

A Note on G-inverses

This is a large topic, a good introduction, and to all topics on linear algebra related to statistics, is Rao(1973).

Definition. Let \(A \) be a \(n \times p \) matrix of rank \(r \). A g-inverse of \(A \) is a \(p \times n \) matrix \(A^{-} \), such that \(x = A^{-} y \) is a solution to \(Ax = y \) for any \(y \) in the space spanned by the columns of \(A \). A fundamental property of g-inverses is the following:

\[AA^{-} A = A. \]

There are many such g-inverses and their distinctions need not concern us since all are equivalent for the purposes of this lecture. We will illustrate the computation of g-inverses in two very special cases. Case (2.) is used in the computation reported above. Case (1) should look familiar.
1. If A is a $n \times p$ real matrix with rank(A) $= p \leq n$, then $A^{-} = (A^\top A)^{-1}A^\top$ is a g-inverse of A.

2. If A is a $n \times p$ real matrix with rank(A) $= r \leq p \leq n$, with non-zero eigenvalues $\lambda_1, \ldots, \lambda_r$ and corresponding eigenvectors v_1, \ldots, v_r of $A^\top A$, then $A^{-} = \lambda_1^{-1}v_1v_1^\top + \ldots + \lambda_r^{-1}v_rv_r^\top$ is a g-inverse of $A^\top A$.

References