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Binary Treatment Models, Randomization and Errors in

Variables

1. Binary Treatment and Randomization

The simplest experimental treatment model is the following

yi = α+ βDi + ui

where Di is 1 if the subject is “treated”, and 0 if the subject is a control.
In this model the least squares estimator of β is,

β̂ = ȳ1 − ȳ0

and
α̂ = ȳ0

Why? If, as is common, the response yi is really a change in something after
a treatment is completed, then we have instead

∆yi = α+ βDi + ui

and
β̂ = ∆y1 −∆y0

This is the beloved diff-in-diff model.

A Case Study A classical example is the Lanarkshire milk experiment de-
scribed by Student (1931). In an effort to improve nutrition for elementary
school children in a relatively poor region of Scotland an experiment was
undertaken to provide milk in schools. The intention was to randomly select

between 200-400 kids in each of 67 schools, of which half would get milk
each day; the other half would not. Evaluation of the effectiveness of the
“treatment” was exactly the diff-in-diff strategy which would be done as a
t-test. The response, y, was change in weight.

What went wrong? Teachers decided who got the milk and presumably
gave the milk to the poorer, smaller “more deserving” kids. We can check
this by noting with randomization the treated and control kids would have
the same initial weight but they didn’t; treated kids were lighter by approx-
imately 3 months growth, and shorter by 4 months growth in height. Since
the initial weighing occurred in February and the final weighing in June,
and children were weighed with their clothes on, the real weight response
is confounded with the change in the weight of the clothes. Again, if the
randomization were done properly this would not be a problem, a source of
additional variability of course, but not of bias. As it was, it is a serious bias
consideration. Could this be corrected? Not really after the fact. Student
suggests using a smaller trial with only twins, in a future experiment.
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The Wald Estimator

In many instances of the treatment-control experiment, there is random-
ization in what has been called “intention to treat,” but often there cannot
be any way to force people to accept the treatment. So we have to distin-
guish compliance from intent to treat. In the simplest setting this gives rise
to a simple form of the IV estimator. Suppose xi is actual treatment/control
as before and zi is the intent to treat variable, then in our simple original
setup we can use the Wald Estimator. The simplest way to obtain the Wald
estimator is to consider the model

yi = α+ βxi + ui

Suppose Eziui = 0 so we have the moment equations, recalling that zi is
binary,

E(yi|zi = 1) = α+ βE(xi|zi = 1)

E(yi|zi = 0) = α+ βE(xi|zi = 0)

now subtract one from the other to obtain.

β =
E(y|zi = 1)− E(yi|zi = 0)

E(xi|zi = 1)− E(xi|zi = 0)

so a natural estimator would replace these population quantities by their
sample analogues. This is the Ur-iv estimator. Angrist calls it the mother of
all IV estimators. In some heuristic sense we “see” the relationship between
y and x “through the looking glass” as reflected by the IV zi. When xi
is binary, say Di to use our prior notation, then E(Di|zi = j) = Pr(Di =
1|zi = j) ≡ πj for j = 0, 1, so the denominator is the difference in these
probabilities. Note that, focusing on the denominator, we might expect that
in many situations that the term E(xi|zi = 0) would be zero, since subject
who aren’t “intended to be treated” may find it difficult to be treated. On
the other hand, E(xi|zi = 1) is generally likely to be somewhat less than
one, since some of those randomized into the treatment may decide that
they don’t want to be treated. In the extreme case that the proposed IV zi
doesn’t impact the mean of mean of the xi’s, then we have a classical failure
of the IV strategy and division by zero.

Returning to the pure randomization model for a moment, there is of-
ten, even in well randomized experiments, a temptation to include other
covariates in the model, e.g.

yi = α+ x′iβ + δDi + ui

so Di is an randomized treatment indicator and xi denotes a vector of other
variables. Now, the randomization implies that

xi ⊥ Di

and this assumption can be checked. (This is usually done by computing
conditional means of the x’s with respect to D.) What is the advantage of
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including the additional covariates? We know that given their orthogonality
with D that they shouldn’t change our δ̂, so why bother?

The usual answer to this question, exemplified by Gertler (2004) is that
including xi’s “improves the power of the estimates”. Gertler is analyzing
the effect of PROGRESSA the conditional cash transfer program in Mexico.
In many respects this program is like the Lanarkshire milk experiment except
that cash is distributed directly to households according to a randomized
scheme. But children’s heights and weights are still the principle measures
of program effect. What does “improves the power of the estimates” mean?
Presumably, it means “reduces their standard errors”. Since D ⊥ x this has
nothing to do with X ′X, but only with σ̂2. Clearly if x’s are effective in
“explaining” y, then their inclusion will reduce σ̂2 and thereby reduce the

standard error of δ̂. What’s not to like about this?
The case against including covariates is laid out nicely in Freedman (2009).

He argues that the presumption that the linear specification is a good ap-
proximation can be dangerous. Freedman adopts what he calls the Neymann
(1923) model. It seems to be a precursor of what is now usually called the
Rubin “potential outcomes” model. We have a response variable y and
several treatment levels, individual subjects are assigned, in the simplest
case, to one and only one of the treatment options. Each individual has
a potential outcome associated with each of the treatments, but we only
observe one of these, for the treatment that is actually assigned. We would
like to estimate the “average” treatment effect for each of the treatments,
or alternatively the differential treatment effects, treatment level i’s average
response minus, say the average response under the control treatment. This
is essentially a random coefficient model in which each subject has an indi-
vidualized response to each of the treatments. The structure is quite distinct
from the usual regression model where we tend to automatically assume that
treatment effects are constant across subjects and additive. In Freedman’s
context inclusion of other covariates is potentially dangerous. Depending
upon whether we have additivity and balanced design there are possible
biases introduced by inclusion of covariates. Generally, with treatment ran-
domization these biases can be show to be asymptotically negligible, but
nevertheless they may be significant in particular finite sample settings, and
Freedman recommends that the simpler model-free approach to estimating
treatment effects be considered as a “more robust” alternative.

Visual Instrumental Variables

As a final installment in this rather loosely organized lecture, I’d like to
try to describe a technique for visualizing the IV estimator in a scatter plot.
What follows is my attempt to formalize somewhat the discussion in Section
4.1.3 of Angrist and Pischke (2009).

Consider the following simple model

y = α+ zβ + u.



4

Suppose that z should be considered endogenous and for simplicity assume
it is scalar. Supppose too that we have another variable, say f , that we would
like to act like an instrumental variable. In R terminology f is a “factor,”
i.e., it takes discrete values f ∈ {1, . . . , J}. From f we can create a matrix
F of indicator (dummy) variables Fij = 1 if fi = j, and Fij = 0 otherwise.
For example, f might be an occupational indicator, or in Angrist’s context
it might some grouped version of individual i’s draft lottery number.

We have the following “reduced form” estimated equations

ŷ = F γ̂

ẑ = F δ̂

so we have two J-vectors γ̂ and δ̂. Note that these estimates are simply the
group means for y and z respectively determined by the F groups. That is,
γ̂j is just the mean of the nj observations yi that have fi = j for j = 1, · · · J.

We now plot the J points ȳ = γ̂ vs z̄ = δ̂ and overplot some sort of least
squares line obtained from the regression,

(∗) γ̂i = a+ bδ̂i + vi

The question is what sort of least squares line would deliver an slope estimate
equivalent to the 2SLS estimator? Suppose we consider OLS as a naive first
thought:

‖ȳ − a− z̄b‖2 = ‖(F⊤F )−1F⊤y − a− (F⊤F )−1F⊤zb‖2

This is rather a mess, but if we modify it slightly, to do the GLS version,

‖ȳ−a−z̄b‖2(F⊤F ) = ‖(F⊤F )−1F⊤y−a−(F⊤F )−1F⊤zb‖2(F⊤F ) = ‖y−a−zb‖2PF

which is indeed the 2SLS estimator. This argument can be generalized
somewhat to replace the intercept in our simple model with a vector of
coefficients associated with some exogonous covariates and then apply the
always useful Frisch-Waugh result to reduce the situation back to our simple
case.

Obviously, the case that the IVs are just a set of discrete covariates is
somewhat special, but it is a useful case to illustrate somewhat more geo-
metrically how IV estimation works. By binning continuous covariates one
can construct approximations to more general cases as well.

2. Introduction to Errors in Variables

A simple, yet revealing, estimation problem involves the following mea-
surement error model. Assume we have two measurements of differing reli-
ability from normal distributions having the same mean, i.e.

yi = N (µ, σ2
i ) i = 1, 2.
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When the σi’s are known the problem can be viewed as a very simple re-
gression in which we have,

y = µ1 + u

where 1 denotes the 2-vector (1, 1)′ and u ∼ N (0,Ω) where

Ω =

[

σ2
1 0
0 σ2

2

]

The mle of µ is the GLS estimator

µ̂ = (σ−2
1 + σ−2

2 )−1(σ−2
1 y1 + σ−2

2 y2).

Substituting this into the likelihood yields the profile likelihood

L(σ1, σ2|y) =
K

σ1σ2
exp

{

−(y1 − y2)
2

2(σ2
1 + σ2

2)

}

.

Transforming parameters so that r = σ1/σ2 and d2 = σ2
1 + σ2

2 yields

L(r, d|y) =
K

d2
r2 + 1

r
exp

{

−
1

2d2
(y2 − y1)

2

}

.

If we look carefully at this function, we find that L has a saddlepoint as
illustrated in Figure 1. For fixed r corresponding to a ray in (σ1, σ2)-space,
max L occurs at d2 = (y2 − y1)

2. But for fixed d, min L occurs at r2 = 1
with L → ∞ as r2 → 0, or as r2 → ∞.
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Figure 1. Likelihood surface of the measurement error model

What does this say about maximum likelihood estimation in this problem?
In effect it says that there is no mle, or even more puzzling that the mle
occurs when either σ1 or σ2 tends to 0. A better interpretation would be
that we require further information about the relative reliability of y1 and
y2 before we should be willing to use the mle. Note that for any fixed r the
problem is entirely conventional and well specified.
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What does this have to do with regression? As a next step in this direction
consider the following model:

yi = βzi + ui
xi = zi + εi

}

i = 1, . . . , n

Here we have our first encounter with the important class of latent variable
models. Our interpretation of the model goes as follows: yi depends on zi,
but we don’t observe zi directly, we only observe xi which is zi measured
with error. The likelihood of (z, β, σu, σε) given the observed {yi, xi i =
1, . . . , n} can be written as

L(z, β, σu, σε|y, x) = Kσ−n/2
u exp{−

1

2σ2
u

‖ y − βz ‖2}

·σ−n/2
ε exp{−

1

2σ2
ε

‖ x− z ‖2}

where ‖ a ‖2=
∑

a2i . Note that as in the simple measurement error model,
L → ∞ if either,

(i) x → z so σ2
ε → 0

or

(ii) y → βz so σ2
u → 0

Corresponding to each of these cases we have an obviously optimal estimator
of β:

(i) β̂ = (x′x)−1x′y

(ii) β̃ = ((y′y)−1y′x)−1

The latter estimator is often called the “reverse regression estimator”. The
reader should verify that it is natural for case (ii).

If we look carefully at the likelihood, we see that solving for the maximum
likelihood estimator of β, for fixed σu, σε, amounts to minimizing a weighted
average of horizontal and vertical distances squared to the line

y = β0 + β1z

from the points(xi, yi). This is illustrated in Figure 2.
The unweighted sum assuming σu = σε is just the squared orthogonal

distance. As in the simple measurement error problem the case σu = σε
corresponds to a saddle point of the likelihood. This estimator has a long
history and is often called orthogonal least squares since it minimizes the
sum of distances orthogonal to the fitted line. If we have some reliable way to
estimate the relative variance σ2

u/σ
2
ε , then we can easily adapt the estimate

to this – there is certainly no compelling reason to assume σu = σε in most
applications.

Suppose we ignore the measurement error in zi and just use xi in lieu of
zi. One often reads in empirical work that an ideal variable zi is unavailable
so the “proxy” variable xi is used instead. What are the consequences? This
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Figure 2. Orthogonal regression minimizes sum of the Eu-
clidean distances from the observed points to the fitted line.

is easy to analyze in our simple bivariate model. If we substitute for zi, we
obtain,

yi = βxi + ui − βεi

so that usual OLS estimator is,

β̂ = (x′x)−1x′y = (x′x)−1x′(βxi + ui − βεi)

= β + (x′x)−1x′(ui − βεi)
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Assuming that zi and εi are uncorrelated,

En−1x′x = En−1z′z + En−1
∑

ε2u

≡ σ2
z + σ2

ε

Similarly,

n−1x′u = n−1(z + ε)′u → 0

n−1x′ε = n−1(z + ε)′ε → σ2
ε

so

β̂ = β − σ2
εβ/(σ

2
z + σ2

ε)

= βσ2
z/(σ

2
z + σ2

ε)

And this establishes that β̂ is biased toward zero. At MIT this result, that
in the simple errors in variables model the least squares estimator is biased
toward zero, is called the “iron law of econometrics.” As we would expect
the result also shows that when σ2

ε is small the bias is small. Note that
while it is tempting to extrapolate this result to more general errors in
variables settings, this extrapolation has all the dangers of other exercises
in extrapolation.

On the other hand, the reverse least squares estimator,

β̃ = ((y′y)−1y′x)−1

can be analyzed in the same way. We have

En−1y′y = En−1(β2z′z + u′u)

= β2σ2
z + σ2

u

En−1y′x = En−1(βx′x+ x′(u− βε))

= β(σ2
z + σ2

ε)− βσ2
ε

so

β̃ → (βσ2
z/(β

2σ2
z + σ2

u))
−1

= β +
σ2
u

βσ2
z

which shows β̃ is biased away from zero.

A common, and very controversial, class of applications of the foregoing
ideas involves testing for discrimination in labor markets. In the simplest
case we may consider the following model for wages in a Chicago Bank
analyzed by Conway and Roberts (JBES, 1985, 75-85)

yi = α+ xiβ + siγ+ui

where
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yi = log wage of employee i
xi = scalar measure of “qualification”

si =

{

1 if male
0 if female

In this model γ may be interpreted as the percentage wage premium paid
to mean. In the bank example γ̂ = .148± .072 so we might say that women
were underpaid by 15% or by 7−28%, based on the sample of 274 employees.

However, Conway and Roberts who were hired to defend the bank in court
argued that xi was poorly measured and that si was positively correlated
with these measurement errors thereby “getting credit” for some of their
effect, thereby resulting in an over estimate of γ. Note that this argument is
at odds with the simple errors in variables argument advanced earlier. They
suggest the reverse regression

xi = yiα+ siδ + vi

so now (strangely) we purport to explain variability in qualifications by

current wage and gender. In this regression δ̂ = .01 ± .04 suggesting that
given wages there is no systematic tendency for women to be more highly
qualified than men.
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