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These notes are based on a “take-home” final exam question I wrote for my 574 course
in 2012. Further background is available in the my “Some Notes on Hotelling Tubes”
available at http://bit.ly/IAuBZa where I’ve tried to sketch an elementary exposition
of the 1939 Hotelling approach. The question was structured as follows: consider a simple
model with one Box-Cox transformed covariate,

yi = β
xλi − 1

λ
+ ui i = 1, · · · , n,

with {ui} iid N (0, σ2). Suppose we have reason to restrict the Box Cox parameter λ ∈
[−1, 1]. We would like to test the hypothesis that β is zero, versus the general alternative
that it is non-zero. The Hotelling formulation is based on the likelihood ratio statistic,
assuming known σ,

Tn = inf
λ∈[−1,1]

{
n∑
i=1

(yi − β̂(λ)(xλi − 1)/λ)2/
n∑
i=1

y2i

}
.

1. Explain the form of Tn, and explain how you would reduce the testing problem to this
Tn even if you had additional linear covariates in the model for the conditional mean.
(Note that β̂(λ) in the above expression is just the usual least squares estimate, which
obviously depends on λ.)

2. Following the recipe in the “Notes” implement the test in R and conduct a small
Monte Carlo experiment to validate its performance. (For the sake of comparison,
use m = 500 for the discretization of the grid for ‖γ‖.)

The basic problem here is that under the null the Box-Cox parameter, λ, isn’t identified
so we need some sort of special trick to evaluate the distribution of the likelihood ratio
statistic. Provided we know σ2, in our simple model the usual twice log likelihood ratio
statistic would be

LR = `n(β̂(λ))− `n(0)

but here we find it convenient to divide through by `n(0) and ignore the superfluous -1.
It is worth stressing at this point that any monotone transformation of the LR statistic
like the one we have just made has the same rejection region as the original one so we are
free to choose a transformation that makes computing the null distribution convenient.
Hotelling’s strategy is appealing in this way. When there are other covariates we can
simply follow the usual Gauss-Frisch-Waugh approach and project the response and the
Box-Cox’d covariate onto the space orthogonal to these covariates and proceed as before.

Following the recipe in my “Notes” I ran a small simulation experiment with λ ∈
{−0.5, 0, 0.5} and n ∈ {20, 50, 100, 500, 1000} and local alternatives βn = β0/

√
n. Results

of the experiment can be seen in the table below. (R code is provided in the appendices.)
It will be seen that the nominal 0.05 level of the test based on the Hotelling critical values
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is quite well maintained, and power is also quite respectible, somewhat better than for
λ = 0. I used standard Gaussian errors and standard lognormal xi’s, but it might be
interesting to know how results would differ with other choices.

Table 1: Rejection frequencies for the Hotelling likelihood ratio test for a simple Box-Cox exam-
ple. Tests are nominal level α = 0.05. Local alternatives are employed of the form: βn = β0/

√
n.

β0 = 0 β0 = 1 β0 = 2
λ = -0.5 λ = 0 λ = 0.5 λ = -0.5 λ = 0 λ = 0.5 λ = -0.5 λ = 0 λ = 0.5

n = 20 0.056 0.058 0.049 0.313 0.193 0.182 0.781 0.459 0.380
n = 50 0.049 0.051 0.057 0.275 0.225 0.342 0.639 0.577 0.782
n = 100 0.063 0.048 0.056 0.350 0.261 0.281 0.840 0.637 0.704
n = 500 0.048 0.052 0.055 0.298 0.243 0.288 0.747 0.612 0.735
n = 1000 0.063 0.046 0.047 0.299 0.218 0.250 0.724 0.549 0.667

A Simulation Code

# Simulat ion e x e r c i s e f o r Q2 o f 2012 574 exam

# Warning : the f o l l ow i n g func t i on shouldn ’ t be eva luated at lambda == 0
# This i s s a f e f o r the s imu la t i on below with even m.
lam ← f unc t i on ( lambda , x ) ( xˆlambda − 1) /lambda
enorm ← f unc t i on (x ) sq r t (sum(xˆ2) )
Gam ← f unc t i on ( lambda , x ) {

Gam ← outer ( lambda , x , lam )
Gam/ sq r t ( apply (Gamˆ2 ,1 , sum) )
}

gdotnorm ← f unc t i on (x , m = 500) {
lambda ← seq (−1 ,1 , l ength=m)
G ← Gam( lambda , x )
dG ← G[−1 , ] − G[−m, ]
sum( sq r t ( apply (dGˆ2 ,1 , sum) ) )
}

phot ← f unc t i on (w, x ,m = 500 , method = ”JJ ”) {
# Two equ iva l en t ways to get p r obab i l i t y f o r ” caps ”
# The de f au l t seems to be the standard ve r s i on as in my ”Notes”
# and the Johansen and Johnstone paper c i t e d the re . The
# Student t v e r s i on i s from Knowles and Siegmund ( ISR , 1989)

n ← l ength (x )
kappa ← gdotnorm (x , m = m)
i f (method == ”KS”)
re turn ( kappa ∗ ( (1 − wˆ2) ˆ( (n−2)/2) ) /(2∗ pi ) +

(1 − pt (w ∗ s q r t ( ( n−1)/(1−wˆ2) ) , n−1) ) )
e l s e
re turn ( kappa ∗ ( (1 − wˆ2) ˆ( (n−2)/2) ) /(2∗ pi ) +

0 .5 ∗ (1 − pbeta (wˆ2 , 0 . 5 , (n−1)/2) ) )
}

c r i t v a l ← f unc t i on (x , alpha = 0 .05 ) {
# Hote l l i n g tube c r i t i c a l va lue f o r s imple Box−Cox t e s t

tube ← f unc t i on (w, x , alpha ) phot (w, x ) − alpha
un i root ( tube , c ( 0 . 0 5 , 0 . 5 ) , x = x , alpha = alpha ) $root
}

Whot ← f unc t i on (x , y ,m = 500) {
y ← y/enorm(y )
lambda ← seq (−1 ,1 , l ength = m)
G ← Gam( lambda , x )
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#plo t ( lambda , G %∗%y , type = ” l ”)
max(G %∗% y)
}

BoxCox ← f unc t i on (x , lambda ) {
i f ( lambda == 0) re turn ( l og (x ) )
e l s e ( xˆlambda − 1) /lambda
}

# The next two l i n e s enable the s imu la t i on to run on mul t ip l e co r e s
r e qu i r e (doMC)
registerDoMC (8)
date ( )
s e s s i o n I n f o ( )
s e t . seed (1939)
R ← 1000
lambdas ← c ( −0 .5 ,0 ,0 .5 )
cvs ← ns ← c (20 , 50 , 100 , 500 , 1000)
betas ← c (0 , 1 , 2 )
xs ← l i s t ( )
f o r ( i in 1 : l ength ( ns ) ) xs [ [ i ] ] ← exp ( rnorm ( ns [ i ] ) ) # one x vec to r per n
f o r ( i in 1 : l ength ( ns ) ) cvs [ i ] ← c r i t v a l ( xs [ [ i ] ] )
A ← array (0 , c ( l ength ( ns ) , l ength ( betas ) ,R) )
W ← rep (0 ,R)
ptime ← system . time ({

AA ← f o r each ( i = 1 : l ength ( lambdas ) ) %dopar% {
f o r ( j in 1 : l ength ( ns ) ) {

x ← xs [ [ j ] ]
n ← ns [ j ]
f o r ( k in 1 : l ength ( betas ) ) {

f o r ( r in 1 :R) {
y ← betas [ k ] / sq r t (n) ∗ BoxCox(x , lambdas [ i ] ) + rnorm (n)
A[ j , k , r ] ← Whot(x , y )
}

}
}

A
}

})

B Analysis of Simulation Code

# Analys i s o f the q2 s imu la t i on
r e qu i r e (Hmisc )
load (” q2 .Rda”)
A ← array ( u n l i s t (AA) , c ( l ength ( ns ) , l ength ( betas ) ,R, l ength ( lambdas ) ) )
tab ← apply (A > cvs , c ( 1 , 2 , 4 ) ,mean)
tab ← aperm( tab , c ( 1 , 3 , 2 ) )
tab ← matrix ( tab , l ength ( ns ) )
cgrp ← paste (” $\\ beta 0 = $” , 0 : 2 )
rnames ← paste (”n = ” , ns )
cnames ← rep ( paste (” $\\ lambda = $” , lambdas ) ,3 )
dimnames ( tab ) ← l i s t ( rnames , cnames )
cap ← paste (” Re j ec t i on f r e qu en c i e s f o r the Ho t e l l i n g l i k e l i h o o d r a t i o t e s t
f o r a s imple Box−Cox example . Tests are nominal l e v e l $\\ alpha = 0.05 $ .
Local a l t e r n a t i v e s are employed o f the form : $\\ beta n = \\ beta 0 / \\ s q r t {n } . $ ”)
l a t e x ( tab , f i l e = ”q2 . tex ” , rowlabe l = ”” , cgroup = cgrp ,

where = ” ! htbp ” , capt ion = cap )
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