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Introduction to Non-Stationary Time Series

Consider a univariate time series {yt}∞t=−∞. We say that {yt} is (strictly) stationary if the joint
distribution of the vectors (yt1 , . . . , ytk) and (yt1+s, . . . , ytk+s) are the same for any choice of the
subscripts (t1, t2, . . . , tk, s). Thus, in particular, the marginal distributions are identical, so Eyt = µ
and V yt = σ2 are independent of t, and furthermore covariances Cov (yt, yt+s) depend only on s,
but not on t. We will say {yt} is weakly stationary, or covariance stationary if only, these mean and
covariance conditions hold. In the Gaussian case, i.e., when {yt} is a Gaussian random process weak
and strict stationarity are equivalent, but in general this is clearly not true.

In many economic contexts the stationarity assumptions are rather implausible. There are two
common models for nonstationarity in economic time series:

(i) deterministic time trends, and cycles,
(ii) unit root processes.

We will begin by contrasting these two cases, from the point of view of forecasting. Before doing so
let’s introduce a simple way to represent a class of stationary processes

yt = µ+ ψ(L)ut

where {ut} is an iid sequence and ψ(L) is a polynomial in the lag operator L satisfying the conditions:
(i)

∑∞
j=0 |ψj | <∞,

(ii) The roots of ψ(z) = 0 lie outside the unit circle.
Condition (i) is needed to assure that variances and covariances are finite. Condition (ii) is es-

sentially an identifiability condition in the Gaussian case, while in non-linear/non-Gaussian cases the
situation is rather more complicated. For a detailed discussion of the role of condition (ii) see e.g.
Granger Newbold (1986).
Now consider the simplest linear trend model,

yt = α+ δt+ ψ(L)ut

where ψ(·) satisfies the foregoing conditions. Sometimes such models are formulated in logs so in these
cases such models may be thought of as exhibiting exponential growth.∗

∗You can think of this as just a natural approximation to compound interest. If you invest y0 at r compounded n
times per period, then

y1 = y0(1 + r/n)n

so letting n → ∞, and taking the limit corresponding to continuous compounding, we have y1 = y0e
r and thus yt = y0e

rt.
or log yt = log y0 + rt (This is the usual economists’ aide memoire for the well-known identity: limn→∞(1+x/n)n = ex.)
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Now consider forecasting y at time t+ s given the information at time t, we may write

ŷt+s|t = α+ δ(t+ s) + ψsut + ψs+1ut−1 + . . .

As s → ∞ we may observe that since the ψj are absolutely summable we must have that ψs → 0 as
s→∞ and thus as s→∞

E(ŷt+s|t − α− δ(t+ s))→ 0 (T.1)

and
V (yt+s − ŷt+s|t)→ σ2(ψ2

s−1 + ψ2
s−2 + . . .+ ψ2

0). (T.2)

To see this write

yt+s − ŷt+s|t = α+ δ(t+ s) + ut+s + ψ1ut+s−1 + . . .+ ψs−1ut+1 + ψsut + ψs+1ut−1 + . . .)

−(α+ δ(t+ s) + ψsut + ψs+1ut−1 + . . .)

= ut+s + ψ1ut+s−1 + . . .+ ψs−1ut+1.

Thus,
E(yt+s − ŷt+s|t)2 = σ2(1 + ψ2

1 + ψ2
2 + . . .+ ψ2

s−1).

Note that as s → ∞ this sum converges. (If
∑
|ψi| converges, then it follows that

∑
ψ2
i converges.

Why?)
The situation in the unit root model

(1− L)yt = δ + ψ(L)ut

is quite different. Here since ∆yt = (1−L)yt is stationary we can use standard formula for forecasting,

∆ŷt+s|t = E(yt+s − yt+s−1|yt, yt−1, . . .)

= δ + ψsut + ψs+1ut−1 + . . .

which looks rather similar to what we had in the trend case, but now

ŷt+s|t = ∆yt+s + ∆yt+s−1 + . . .+ ∆yt+1 + yt

= δs+ yt + (
s∑
i=1

ψi)ut + (
s+1∑
i=2

ψi)ut−1 + . . . (U.1)

and thus

E(yt+s− ŷt+s|s)2 = σ2[1+(1+ψ1)2 +(1+ψ1 +ψ2)2 + . . . (1+ψ1 + . . .+ψs)
2]→∞. (U.2)

To summarize the foregoing discussion we can illustrate the comparison of forecasting behavior of the
two models in Figure 1.

Note that the point forecast in the trend model reverts to the trend line and the confidence band
converges to a constant width. In contrast the unit root model yields a forecast parallel to the trend
line (U.1) in which the effect of yt never disappears. And (U.2) shows that the corresponding confidence
band grows even wider as the forecast horizon grows.
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Figure 1: Comparison of forecasting behavior of trend stationary and unit root models. The left panel
illustrates the trend stationary model, the right panel the unit root model. Note that the forecasts
in the former model converge quickly to the estimated trend line, while in the unit root model they
converge to a line parallel to the estimated trend shifted by the descrepancy from the trend line
prevailing in the last period.
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Feller interlude (I.III.5)

In the Stoppard play, Rosencrantz and Guildenstern are Dead, the length of the period in which
Rosencrantz is“ahead” is very long. We might think that “luck” would “even out” and there should
be only short periods in which either Rosencrantz and Guildenstern would be “ahead.” We would be
wrong. Let

Sn =
n∑
i=1

ui

with ui equal +1 or −1 with equal probability. A change of sign occurs at n if Sn−1 and Sn+1 are of
opposite signs.

r Probability of r sign changes
in 100 trials

0 .16
1 .15
2 .14
3 .10

Theorem 1: The probability, ξr,2n+1, that up to epoch 2n + 1 there are exactly r changes of sign
satisfies

ξr,2n+1 = 2P (S2n+1 = 2r + 1)

Proof: Elementary, but sophisticated logically.

This leads to the following normal approximation.

Theorem 2: As n→∞, the probability of fewer than x
√
n sign changes before n tends to 2Φ(2x)− 1.

Proof: Let Xn denote the number of sign changes up to epoch n, for fixed x and large n,

P (Xn < x
√
n) =

bx
√
nc∑

i=1

ξi,n

≈ 2P (0 < Sn < 2x
√
n)

→ 2Φ(2x)− 1 2

The last limit follows from the fact that

P (Sn > x
√
n) = 1− Φ(x)

Sn =
∑

ui ui =

{
+1 1/2
−1 1/2

Eui = 0 V ui = E(u2
i ) = 1

so
Sn√
n
; N (0, 1)
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This can be used to do testing since for stationary series Xn grows like n but for random walk
Xn grows like

√
n. It is a worthwhile exercise to compare sample paths of various AR(1) mod-

els with this coin tossing random walk model to get a feeling for the difference in behavior. In R
this is relatively simple: plot(cumsum(sample(c(-1,1),1000,replace = TRUE)),type =’l’) vs.
plot(filter(rnorm(1000),.9, method = ’recursive’),type = ’l’)

It also follows from the foregoing distributional convergence that the median of the Xn is approx-
imately 1

2Φ−1(3/4) ≈ .337
√
n and the 10th percentile is roughly QXn(.10) ≈ 0.0628

√
n, that is, fewer

than .0628
√
n sign changes has probability .10. So in 1000 tosses there is a 10 percent chance that

there will be 2 or less sign changes.

This seems quite surprising to most people. Even those quite sophisticated about probability may
have difficulty reconciling these results with “common sense.” Why should there be a knife edge in
the simple AR(1) model

yt = ρyt−1 + ut,

when ρ = 1 the number of sign changes grows like
√
n, whereas for any ρ < 1 this number grows like

n.

Motivating Testing for unit roots
There are several motivations for the vast amount of attention lavished on the problem of testing

for unit roots in the recent literature of econometrics. One of the more compelling is the work of
Newbold and Granger (1974) on “spurious regression.” This paper revived an observation made in
Yule (1926) and focused attention on the unit root model throughout econometrics. They consider
the following situation. The investigator has a simple bivariate model

(∗) yt = β0 + β1xt + et

but in fact,

yt = yt−1 + ut

xt = xt−1 + vt.

and {ut}, {vt} are iid. Now, one would hope that the usual theory of regression would apply and that
a test of H0 : β1 = 0 would reveal (eventually, of course) that the model (*) was bogus. Surprisingly,
this isn’t the case and the usual theory doesn’t apply here and if used naively can be badly misleading.

Out 100 replications the hypothesis H0 : β1 = 0 is rejected 77 times, at the α = .05 level. If we
extend the model to include more I(1) x’s, the situation is even more disturbing as you can see from
the Table below.
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Spurious Regressions of I(1) Variables
Number of Regressors Percentage of F Rejections Mean DW-value Mean R2

1 76 .32 .26
2 78 .46 .34
3 93 .55 .46
4 95 .74 .55
5 96 .88 .59

Source: Granger and Newbold (1974)

There are several points which are important to make about this table. First, since the dependent
variable in these models is generated as a random walk, we have, in effect, omitted yt−1 which should
have appeared with coefficient one, and at the same time we have included extraneous variables
(x1t, . . . , xpt) which are independent of yt. We have seen that I(1) variables behave in some respects
like trended variables and thus it is not surprising that one or more of the extraneous x’s behaves
sufficiently similarly to the omitted yt−1 that we mistake their estimated coefficients as significant.

One indication of the specification problem is the highly significant Durbin Watson statistic in
most realizations. Indeed, Paul Newbold’s frequent comment regarding this phenomenon was, “expect
nonsense when DW ≈ R2.”

Testing for unit roots
Much of the early history of econometrics was preoccupied with testing for iid errors in time-series.

Much of recent time series-econometrics has been preoccupied by the problem of testing for unit roots.
One can place this in the context of Box-Jenkins theory by considering their class of ARIMA(p, d, q)
processes where we write as,

φ(L)(1− L)dyt = θ(L)ut

with iid ut. We say such a model is “integrated of order d” since exactly d roots of the AR component
lie on the unit circle and we presume that after applying (1− L)d to yt the model is stationary.

Why is unit root testing different?
Consider the simplest random walk model

yt = ρyt−1 + ut

where under the null we suppose
H0 : ρ = 1

with ut iid N (0, σ2). We might imagine based on naive regression analogies that we could estimate
the model and use the usual t-test. Why not? Consider the OLS estimator of |ρ| < 1,

ρ̂T =

∑
yt−1yt∑
y2
t−1

we have from general principles,
√
n(ρ̂T − ρ) ; N (0, σ2(X ′X/n)−1)
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what is (X ′X/n)−1 here?
X ′X =

∑
y2
t−1

so
n−1X ′X = n−1

∑
y2
t−1 ; σ2(1− ρ2)

Since E(yt − µ)2 = E(ut + ρut−1 + ρ2ut−2 + . . .)2 = σ2(1 + ρ2 + ρ4 + . . .) = σ2/(1− ρ2).
But already we see that we are in trouble since for ρ = 1 we get the conclusion

√
n(ρ̂T − ρ) ; N (0, 1− ρ2)

i.e., we see that ρ̂T seems to converge to 1 in the ρ = 1 case faster than the “usual” rate 1/
√
n. Note

also the cute way that the σ2 cancels.
What to do? To take a closer look at this phenomena consider,

ρ̂T − 1 =

∑
yt−1ut∑
y2
t−1

Recall that yt = y0 +
∑t
s=1 us and for convenience assume that y0 = 0, then

y2
t = (yt−1 + ut)

2 = y2
t−1 + 2yt−1ut + u2

t

so,

yt−1ut =
1

2
(y2
t − y2

t−1 − u2
t )

Summing over t = 1, 2, . . . T we have,

∑
yt−1ut =

1

2
(y2

T − y0)− 1

2

T∑
t=1

u2
t .

Now recall that, using y0 = 0,
yT ∼ N (0, σ2T )

so
y2
T

(σ2T )
∼ χ2

1.

and
σ−2T−1

∑
u2
t → 1

so
1

σ2T

∑
yt−1ut ;

1

2
(X − 1)

where X ∼ χ2
1. Next consider

∑
y2
t−1 but yt−1 ∼ N (0, σ2(t− 1)), so Ey2

t−1 = σ2(t− 1), so

E
∑

y2
t−1 = σ2

T∑
t=1

(t− 1) = σ2(T − 1)T/2
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thus
∑
y2
t−1 = O(T 2). This means that in order to get a stable limiting form for ρ̂T −1 we must rescale

by T rather than
√
T . We can write

T (ρ̂T − ρ) ∼ T−1 ∑ yt−1ut
T−2

∑
y2
t−1

∼ rescaled and recenteredχ2
1

Further, one can look carefully at the usual t-statistic for this case

tρ =
ρ̂T − 1

(σ̂2
T/

∑
y2
t−1)1/2

Two things are reasonably clear about this test statistic: (i) it is not asymptotically Normal and (ii) It
does converge in Law. This is the leading example of what is usually referred to as the Dickey Fuller
distribution.

Some generalization to the case where our original model has a.) an intercept b.) a time trend,
are needed and result in alterations of the critical values as indicated in the distributed tables. Note
that even for the relatively simple case of the pure random walk the critical values are considerably
larger than the ones we are used to from the t-table.

What to do if we have more complicated error process? For example, suppose ut ∼ ARMA(1, 1)
so

(1− φ1L)ut = (1− θ1L)εt

with ε ∼ iid. Then

εt =
∞∑
j=0

θj1(ut−j − φ1ut−j−1)

so

∆yt = (ρ− 1)yt−1 + ut

= (ρ− 1)yt−1 + φ1ut−1 + εt − θ1εt−1

= (ρ− 1)yt−1 + φ1ut−1 + εt − θ1

∞∑
j=1

θj−1
1 (ut−j − φ1ut−j−1)

= (ρ− 1)yt−1 + (φ1 − θ1)
∑

ut−iθ
i−1
1 + εt

= (ρ− 1)yt−1 +
q∑
i=1

δi∆yt−i + εt

This is called the augmented Dickey-Fuller(ADF) version of the test and rather remarkably the t-test
statistic in this regression has the same asymptotic distribution as in the simple case.

Granger Causation
Lets begin by recalling some definitions from 507.

Def The random variables X,Y are stochastically independent, X ⊥⊥ Y, if FY |X(y|x) = FY (y).

Def. The random variables X,Y are mean independent, X ⊥ Y, if E(Y |X) = EY.
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The former definition is obviously much stronger than the latter, i.e.,

X ⊥⊥ Y ⇒ X ⊥ Y,

and can with some effort be shown to imply

X ⊥⊥ Y ⇒ h(X) ⊥ g(Y )

for any nice functions h, g. Note mean independent is also often termed uncorrelatedness.
We can obviously regard X as a vector of r.v’s in the foregoing definitions and it may be convenient

to consider groups of conditioning variables which include the entire historical past. For example, let

Ωt = {Xt−1, Xt−2, . . . , Yt−1, Yt−2, . . .}

Granger (1969) suggested the following definition of causal ordering among time series.

Def. We will say that Yt does not Granger cause Xt iff

E(Xt|Ωt) = E(Xt|Xt−1, Xt−2, . . .)

In other words, Yt does not help to predict the mean of Xt. For some purposes, although this
is rarely done, one might want to strengthen this mean independence notion of Granger causality to
require

FXt|Ωt
= FXt|Xt−1,Xt−2,...

Note that since Granger causation is purely a definition based on first moments of the series; we may
return to this idea briefly when we encounter quantile regression.

An interesting application of Granger causation is the note by Thurman and Fisher (1988), who
show that – at least in the U.S. – eggs Granger cause chickens, but chickens do not Granger cause
eggs, thus, resolving a long standing open problem in domestic agriculture. See Harvey for a more
serious elaboration of the issues here.
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