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Lecture 5
The δ-Method and the Bootstrap

Introduction to Nonlinear Inference

Let’s begin with a very simple inference problem which has a personal
attraction to me, because it was one of the first interesting applied problems
I faced (while writing my thesis). I had estimated a cost function of the
quadratic form,

(1) yi = α0 + α1xi + α2x
2
i + z>i β + ui

where yi was log cost of firm i, xi = log(qi) was log output and zi was a

vector of other characteristics of the ith firm. It is easy to show (try it!)
that minimum average cost occurs at output level

q̂∗ = exp{(1− α̂1)/2α̂2}.
It is easy enough to make a point estimate of this quantity, but the question
of how to compute a confidence interval for this estimate is not quite as easy.

One approach is the δ-method1 write θ = (α, β) and q∗ = h(θ), then the
asymptotic normality of θ,

(θ̂ − θ) ; N (0, V )

where V = σ2(X>X)−1 and X = [1, xi, x
2
i , z
>
i ] implies that

(q̂∗ − q∗) ; N (0,∇h>V∇h)

where ∇h is quite easily computed. In effect we have pretended that the
nonlinear function h(·) can be well approximated by the linear function

h̃(θ) = h(θ̂) +∇h(θ̂)>(θ − θ̂).

Note that the vector ∇h(θ̂) is fixed once the estimation is carried out, so
the expression ∇h>V∇h is just a scalar constant.

1There is an amusing meta-history of the δ-method connecting it to the University of
Illinois. In 2012 Jay ver Hoef wrote a short paper in The American Statistician called
“Who invented the δ-method?” In it he claimed that Robert Dorfman did so in a 1938 pa-
per in The Biometrics Bulletin. Dorfman was later a fairly prominent Harvard economist,
known mainly for collaborating with Samuelson and Solow on a book about linear pro-
gramming. Shortly after the Hoef paper appeared my Statistics colleague Steve Portnoy
wrote a devastating letter to the editor of TAS pointing out that Joseph Doob had written
a note describing very explicitly the δ-method published in the Annals of Mathematical
Statistics in 1935. Doob joined the math faculty at Illinois in 1935 so we can claim that
the δ-method was, to some degree of approximation, invented here, even though the paper
was probably written while Doob was still at Columbia. Doob remained at Illinois for his
entire career despite many opportunities to leave for more prestigious positions. He made
many profound contributions to probability theory and produced an extremely impressive
cohort of Phd students among whom David Blackwell and Paul Halmos are probably best
known to economists.
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This works asymptotically because for large n, θ̂ is concentrated very
close to θ0 and h is smooth, i.e., well-approximated by a linear function in
a neighborhood of θ0. However, we can get some idea of why the δ-method
might perform badly by asking how linear is h(·) in some appropriately
defined confidence region for θ. For example, we could draw a confidence
ellipse for (α1, α2) based on standard F-theory and then compute h(·) for
various values of (α1, α2) in this confidence region – would these values be
well approximated by the tangent plane of h(·) at α̂1, α̂2, or not?

Digression on confidence ellipses for regression coefficients

In light of these considerations, it is perhaps useful to review some basic
facts about confidence regions for parameters in the classical linear regression
setting. Suppose that we have a simple linear model with two covariates:

yi = x1iβ1 + x2iβ2 + ui

we know that for u spherically normal,

β̂ ∼ N (β, σ2(X>X)−1)

so the variance of any linear contrast α>β̂ is given by evaluating the qua-
dratic form, σ2α>(X>X)−1α. When x1 and x2 are positively correlated

then β̂1 and β̂2 will be negatively correlated. This implies that we will be
able to estimate the sum of the β’s well, but not their difference.

To illustrate this effect consider the following example from Malinvaud’s
classic textbook. We have the following model of French imports:

yt = 0.133
(0.006)

x1t + 0.550
(0.110)

x2t + 2.10
(0.200)

x4t − 5.92
(1.27)

where yt is French imports, x1t is gdp, x2t is investment, x3t is consumption,
and x4t is dummy variable for EC membership. All variables are in millions
of French Francs in 1959 prices. In this model we are able to make reasonably
precise estimates of the effect of growth of gdp and investment on imports
with 95 percent confidence intervals (respectively)

β1 ∈ (0.121, 0.145) β2 ∈ (0.33, 0.77)

However, if we introduce the aggregate consumption variable x3t, we obtain,

yt = −0.021
(0.051)

x1t + 0.559
(0.087)

x2t + 0.235
(0.077)

x3t + 2.10
(0.16)

x4t − 9.79
(1.38)

But now note that the confidence interval for β1 is (-.123,.081). What
happened? Roughly speaking, we will see that when, as in this example
the independent variables exhibit an approximately linear relationship, here
x3 ≡ γx1, then the ”regression” is incapable of precisely estimating the sep-
arate effects of the two variables. This is made more explicit if we consider
confidence elipses for pairs of coefficients. Without the consumption vari-
able we get a quite precise estimate of the gdp effect, but when we include
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Figure 1. Confidence ellipses for two pairs of coefficients in
the Malinvaud import demand equation. In the left panel
the coefficients on gdp and investment are nearly indepen-
dent, however in the right panel after adding consumption
spending, which is quite strongly correlated with gdp, the co-
efficients of these two variables are very strongly negatively
correlated.

consumption the situation changes radically – we have a very imprecise es-
timate of the gdp effect – even the sign of the coefficient is in doubt, and
the joint confidence ellipse of the gdp and consumption coefficients is very
cigar shaped. Given the orientation of the cigar it is clear that we can quite
accurately estimate the effect of circumstances in which gdp and consump-
tion move in the same direction, but we are unable to predict what would
happen when they moved in opposite directions. Why?

As a second example consider the problem of jointly estimating confidence
intervals for income and price elasticities of gasoline. In Figure 2 we illustrate
.90 and .99 confidence ellipses for two estimated gasoline models. One is
based on data from 1947-72 prior to the first oil shock, and the other is
based on the entire period 1947-88. Several things are evident from the
figure. First, the full data set yields much more precise estimates (smaller
confidence regions). This is to be expected when there is more data, and
more especially when there is more variability in the x variables, as was
kindly provided by OPEC. Second, the orientation of the ellipses for the
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Figure 2. Confidence ellipses for income and price elastici-
ties of gasoline in the U.S.

full sample is somewhat more aligned with the coordinate axes indicating
that there is less correlation between the two elasticities than in the earlier
period. This reflects more independent movement of prices in the OPEC
period, whereas price and income were more strongly positively correlated
in the earlier pre-OPEC period. Finally, and most disturbingly note that
the evidence provided by the earlier period is wildly overconfident about
precision of the elasticity estimates. While admitting that the price elasticity
might be negative, it rules out very strongly the possibility that it could be
as small as -0.50, the value obtained using the full data set. Similarly, the
confidence in the lower estimate of the income elasticity is also misplaced.

Finally, to conclude this digression, let’s consider the relationship between
the confidence ellipses that we have seen and the conventional one dimen-
sional confidence intervals. To fix ideas let’s consider the simplest possible
case: a situation in which we have a two dimensional parameter β that hap-
pens to be standard normal, i.e. β ∼ N (0, I2). This is a totally artificial

situation in which we imagine that β̂ happens to take the value (0, 0)> and
have covariance matrix, I2. Then we have that

P (β21 + β22 < 5.99) = .95

since the sum of squares of the β’s is χ2
2. Thus, we get circular confidence

regions and the radius of the .95 region is 2.45. Compare the area of this
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circle: πr2 = 18.81 with the area of the square formed by two .95 confidence
intervals for the separate parameters: which has area (2 · 1.96)2 = 15.36.
Why is this square smaller than the circle? Hint: Show that the square that
contains probability .95 has area 20.05.

You can easily generalize this example to the more realistic case that β̂
is non-zero with correlated elements. In this case we can diagonalize the
covariance matrix of β̂, say V = PDP ′ where D is the diagonal matrix of
eigenvalues and P is the matrix of eigenvectors. The eigenvectors describe
the principle directions of the ellipses, and the eigenvalues represent the
variability in these directions. As should be obvious at this point the dis-
crepancy between the rectangular regions and the elliptical regions in these
correlated cases can be much more extreme than in the independent case.
Figure 3 illustrates these differences. A much more extensive digression on
the useful role of ellipses, is available in the recent paper of Friendly, Monette
and Fox (2013).

Resampling and the Bootstrap

This suggestion at the end of the first section of this lecture contains
the essential idea for various improvements. Let’s begin by considering how
we might go about computing an exact solution to the confidence interval
problem. If we believed in the full classical linear model conditions for (1),
iid Gausian errors, etc. etc., then we have already seen that

V −1/2n (θ̂ − θ0) ∼ Studentn−p(0, Ip)

where the rhs denotes a multivariate Student-t random vector with mean 0
and dispersion matrix Ip and n− p degrees of freedom with

Vn = σ̂2(X>X)−1

Thus, in principle we could find the exact distribution of h(·) by the usual
transformation formulae of the calculus. This is tedious and probably not
worth the effort unless h(·) is something quite important that will be used
repeatedly.

A simpler approach would be to approximate the distribution of h(·) by
simulation. [Now, we are getting closer to the bootstrap!]. How to do this?

Let Z be a draw from Studentn−p(0, Ip) and U = V
1/2
n be the square root

of the positive definite covariance matrix Vn, that is we have the Cholesky
factorization, UU> = Vn, then

Z̃ = θ̂ − UZ

has the distribution represented by the confidence region referred to above,
in particular if we looked just at the two coordinates corresponding to
(α1, α2) of Z̃, they would fall into the 95% confidence ellipse alluded to
earlier with probability .95. Thus, suppose we now take a random sample
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Figure 3. In the left panel the circular 0.95 confidence re-
gion for the bivariate standard normal vector is compared
with two “confidence squares” – one based on univariate 0.95
intervals, the larger one on univariate 0.975 intervals. The
two squares have areas 15.36 and 20.05 respectively. Which
one has the same coverage probability as the circle? In the
right panel the same comparison is made except that the
ellipse corresponds to a 0.95 confidence region for a bivari-
ate normal vector with unit variances, and correlation -0.80.
Now the area of the elliptical region is 15.71, and because
of the unit variance assumption the squares are the same as
they were in the first case, so the discrepancy between the
elliptical region and the comparable square is even larger.

of size R of such Z̃’s, denote the jth one by Z̃j and compute R estimates of
q∗ from them:

q̂∗ = h(Z̃j) j = 1, . . . , R

and finally, imagine computing the standard deviation of these, or even

better, computing the α/2th and (1−α/2)th quantiles of these and defining
a CI for q∗ as

{q∗ : q∗ ∈ (q̂∗R(α/2), q̂∗R(1− α/2))}.
As R → ∞ these sample quantiles converge to the true quantiles of the
distribution that we could have computed analytically, but were too lazy to
undertake. We could think of this a highly parametric form of the bootstrap
in which we simply approximate the distribution of the random variable,
h(Z̃) by simulation and then take its sample quantiles to form a confidence
interval.
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A Slightly-less-but-still-parametric Bootstrap

But now it is natural to object that we may not be sure about all of the
assumptions which underlay the assertion that θ̂ had this exact Student-t
distribution. What then?

Under the slightly weaker condition that the errors are iid but not nec-
essarily Gaussian we might suggest the following strategy which brings us
even closer to the bootstrap. What would be our best guess about the
distribution of the errors under the conditions specified? Obviously,

F̂n(u) = n−1
∑

I(ûi ≤ u)

We can conveniently think of sampling from this distribution as simply draw-
ing from the set {û1, . . . , ûn}, assigning probability 1/n to each element, with
replacement. That is, on each draw we select an integer from 1 to n, say k,
making sure that each integer is assigned probability 1/n. Having done this
n times we have a new vector of residuals

ǔ = (ûk1 , ûk2 , . . . , ûkn)

then define a new y-vector

y̌ = ŷ + ǔ = y − û+ ǔ

and compute a new least squares estimate

θ̌ = (X>X)−1X>y̌

And now repeat this process R times each time getting a new θ̌ and then
computing a new value for

q̌∗ = h(θ̌)

Again this yields a sample of R values of the quantity of interest which can
then be used to estimate a standard error or construct a confidence interval.

Implementation: In R there are a number of functions which have built-in
capability for bootstrapping. The simplest things can be easily implemented
using the sample command. To illustrate consider the following code frag-
ment

fit <- lm (y ~ x)

uhat <- fit$resid

h <- rep(0, R)

for (i in 1:R) {

yh <- fit$fit + sample (uhat, replace=TRUE)

b <- lm(yh ~ x)$coef

h[i] <- exp((1-b[2])/2*b[3]))

}

quantile(h, c(0.025, 0.975))
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The “XY” Bootstrap

The bootstrap is a important general technique which has sparked in-
tense interest from both applied and theoretically inclined researchers since
Efron’s groundbreaking (1979) paper. There are at least a dozen recent
monographs on the subject among which I would recommend Efron and
Tibshirani (1993), Davison and Hinkley (1997). At an elementary level the
paper of Efron and Gong (1983) is still useful, I believe. It contains among
other things a nice discussion of how to use the bootstrap to evaluate the
fishing effect discussed in the last lecture. I’ll describe a standard variant
below, the ”xy” bootstrap that mimics the well known Eicker-White covari-
ance matrix estimator, and conclude with a brief discussion of the recently
introduced bag of little bootstraps. There are many other flavors of the
bootstrap, some of which I will try to mention in class.

Efron’s bootstrap provides a very general approach to resampling which
avoids some problems inherent in the systematic resampling of the jackknife.
In German the expression an den eigenen Haaren aus dem Sumpf zu ziehen
nicely captures the idea of the bootstrap – “to pull yourself out of the swamp
by your own hair.” The sample itself is used to assess the precision of the
estimate θ̂.

I will conclude with a prototypical example of the use of the bootstrap.
An enormous variety of other examples may be found in the books by Efron
and Tibshirani (1993) and Davison and Hinkley (1997).

In regression we need not use the residual bootstrap on page 2. A more
direct implementation of the bootstrap would be to “resample (x, y)-pairs”
i.e., at each replication draw a random sample {k1, k2, . . . , kn} with ki’s iid
and uniform over the integers 1, . . . , n. The sample {(xki , yki) i = 1, . . . , n}
can then be used to compute β̌ and a covariance matrix of β̂ could be
computed as

V̂ = R−1
R∑
i=1

(β̌i − β̂)(β̌i − β̂)>

This is easily implemented in R in the following way:

bhat <- lm(y ~ x)$coef

n <- length(y)

p <- length(bhat)

R <- 500

B <- matrix(0,p,R)

for (i in 1:R) {

s <- sample (1:n, replace=TRUE)

B[,i] <- lm(y[s] ~ x[s,])$coef

}

Vhat <- cov(B - bhat)
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This approach is less sensitive to assumptions than the residual based
bootstrap introduced earlier. In particular, it does not assume that the re-
gression errors are iid so it can accommodate heteroscedasticity for example.
Of course it does still assume that the observations are independent. Boot-
strapping dependent observations is an inherently more difficult task which
has generated its own rather large literature. Rather than using V̂ to com-
pute standard errors one could, of course, again use the percentile method
directly on the bootstrap sample of β̌i vectors. This approach can be used
effectively in M-estimation contexts to generate automatic versions of the
Huber Sandwich. For OLS this approach approximates the Eicker-White
formula.

The Bag of Little Bootstraps

In very large samples standard bootstrap resampling can be rather te-
dious, and in some cases there are even difficulties in exceeding storage
limits in memory for the full problem, so it has been a topic of active re-
search to find more computationally efficient, or storage efficient ways to
accomplish what the bootstrap was designed to deliver. The first important
step forward in this direction was the m out of n bootstrap, or subsampling
method of Bickel and Sakov (2002). The main idea of this approach was in-
stead of drawing a sample of size n for each bootstrap replication, we would
draw a sample of size m < n, compute our estimator as before, compute our
estimate of the variability of the bootstrap replications, and then rescale
this estimate to account for the reduced sample size. This approach was ac-
tually employed in econometrics by Buchinsky (1994), well before the work
of Bickel and Sakov appeared. This is helpful, but it is difficult to choose m
in practice, and unless m is much smaller than n, there is not much gain in
computational efficiency.

Recently, Kleiner et al (2014) have proposed an alternative scheme that
is easily parallelized and leads to significant computational speedup. They
begin by observing that in the original form of the bootstrap, roughly 63
percent of the sample appears at least once in each bootstrap replication:

P(i appears at least once) = 1− P(i never appears)

= 1−
n∏
j=1

P(i doesn’t appear in the jth draw)

= 1− (1− 1/n)n.

As n tends to infinity, this last expression tends to 1 − 1/e ≈ 0.63. Why?
So if n is very large the bootstrap samples are each also very large even
if we take advantage of weighting to reduce the effective sample size to
the number of distinct observations in the sample. Instead, Kleiner et al
suggest splitting the sample into G groups of size S, with GS ≈ n, then for
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each of the G groups we run the usual bootstrap on only S observations,
compute the resulting measure of variability for each group, and then average
these estimates to obtain a measure of variability for the entire sample.
Their simulations, and theoretical results, suggest that choosing S = nγ

for γ = 0.7 works quite well. This means that if we are starting with
n = 1, 000, 000, then each of the little bootstraps need only be run with
about 16,000 observations, and each of these can be allocated to a separate
core/processor, so the entire procedure can be speeded up considerably.
I’m currently exploring this as yet another option for inference for quantile
regression in my R package.
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