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Lecture 3

Introduction to Dynamic Demand Models in Econometrics

In Problem Set 2 we will investigate a number of simple dynamic models
for US gasoline demand since 1947. A typical model takes the form,

(1) yt = α0 + α1yt−1 + α2yt−2 + x>t β0 + x>t−1β1 + ut

where yt is per-capita U.S. gasoline consumption and xt is a vector of ex-
ogenous variables, e.g., xt = (1, pt, zt) where pt is price per gallon and zt is
income per capita.

An indispensable notational device for exploring models of this type is
the lag operator, L, which has the property that

yt−1 = Lyt

yt−2 = Lyt−1 = L2yt

· · · etc

So we may write model (1) as

(1− α1L− α2L
2)yt = α0 + (β0 + β1L)>xt + ut

or even more compactly as,

(2) A(L)yt = α0 +B(L)xt + ut

where A(·) and B(·) are viewed as polynomials in the lag operator L.
It is tempting to “solve” (2) by writing

(3) yt = A(L)−1α0 +A(L)−1B(L)>xt +A(L)−1ut.

This is often called a “linear transfer function model” due to its roots in
the electrical engineering literature. We would like to interpret (3), explain-
ing the rather mysterious A(L)−1 notation and relating (3) to the crucial
notion of equilibrium forms of the model (2).
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Digression on stability in linear difference equations
We begin with a very simplistic introduction to deterministic linear dif-

ference equations which illustrates some basic aspects of “equilibrium be-
havior” for models like (1).

Example 1: Consider the simplest possible case

Xt = aXt−1

Clearly, by repeated substitution we have,

Xt = aXt−1 = a2Xt−2 = · · · = atX0

where X0 denotes an initial condition. For |a| < 1, note that Xt → 0, for
|a| > 1, Xt diverges and for |a| = 1 we get either Xt ≡ X0 or Xt = ±X0.

Example 2: Next, consider the second order difference equation,

Xt = a1Xt−1 + a2Xt−2,

Suppose, and this is really wishful thinking at this point based on Example
1, that solutions take the form,

Xt = A1θ
t
1 +A2θ

t
2

where A1 and A2 denote parameters which are determined by initial condi-
tions and the θ’s are dependent in some way on the a’s. Substituting this
proposed solution into our equation yields,

A1θ
t
1 +A2θ

t
2 = a1(A1θ

t−1
1 +A2θ

t−1
2 ) + a2(A1θ

t−2
1 +A2θ

t−2
2 )

or
0 = A1θ

t
1(1− a1θ−11 − a2θ

−2
1 ) +A2θ

t
2(1− a1θ−12 − a2θ

−2
2 )

This looks quite promising. Suppose we find the roots of the quadratic
equation

1− a1z − a2z2 = 0

and call these roots θ−11 and θ−12 , then we have solved the original problem.
Why?

Note that the examples generalize immediately to higher order difference
equations. What is needed for stability in this case? Suppose for a moment
that the roots are real (recall that this needn’t be the case), then again we
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have the requirement that both θ1 and θ2 must be less than one in absolute
value, in order for the solution not to blow up as t→∞.

What about complex roots? When θ is complex we have something like

θ = λ1 + λ2i

where i2 = −1, so this is a “number” which we can plot in the complex
plane Note that we can represent θ in polar coordinates as

θ = r(cos(ϕ) + i sin(ϕ))

where r = (λ21 + λ22)
1/2, cos(ϕ) = λ1/r, and sin(ϕ) = λ2/r, and we see

that as long as θ is inside the unit circle θt stays inside the unit cir-
cle since rt < r.1 However, when r > 1 so θ is outside the unit circle
we have θt explosive. For fun and possible enlightenment try this in R:
plot( (0.5 + 0.8i)^(1:100),type = ’l’), or for a smoother version:
plot( (0.5 + 0.8i)^(1:1000/10),type = ’l’). Now, play around with
the coefficients, try for example (0.8 + 0.8i).

You might be wondering, how do I find these roots when the order of
the polynomial is greater than two? If you didn’t learn this in high-school, I
certainly didn’t, you could check wikipedia for cubics, or quartics, but after
that there is no nice algebraic solution strategy, so it is easier to simply
fire up R and let it do the heavy work. Suppose we have the characteristic
equation:

1 + 0.8z + 0.5z2 + 0.25z3 = 0

then we can do

> roots <- polyroot(c(1,.8,.5,.2))

> roots

[1] -0.342860+1.624303i -1.814281-0.000000i -0.342860-1.624303i

> Mod(roots)

[1] 1.660094 1.814281 1.660094

Note that the complex roots come in pairs, just as we were led to expect
by the simple quadratic case, and since all the roots have modulus bigger
than 1, we are safe.

Thus, by analogy with the scalar case it is necessary that the roots of
the equation

1− a1z − a2z2 = 0

1Recall (!) for example that θ2 = r2(cos(2ϕ)+ i sin(2ϕ)) using the trignometric identi-
ties, cos2(ϕ)− sin2(ϕ) = cos(2ϕ) and 2 cos(ϕ) sin(ϕ) = sin(2ϕ). Recall also that the recip-
rocal of a complex number 1/(a+ bi) = (a2 + b2)−1(a− bi) = (a2 + b2)−1a− (a2 + b2)−1bi.
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have roots outside the unit circle. Don’t forget that these roots are θ−1i

which accounts for the flip of inside/outside, this is potentially confusing so
beware!

We shall see that the existence of roots to an equation like this play a
fundamental role in determining the stability of linear time series models
of the form (2.). Roots outside the unit circle are good in the sense that
they imply stability of the model, while roots inside imply explosive behav-
ior. Roots on the unit circle are more difficult and will require a separate
discussion at a later moment.

Impulse Response Functions
The preceeding discussion has suggested a way of evaluating the stability

of linear time-series models. We now turn to the question of interpreting
the expression

D(L) = A(L)−1B(L)

Consider,
B(L) = A(L)D(L)

or

β0 + β1L+ · · ·+ βsL
s = (1− α1L− · · · − αrL

r)(δ0 + δ1L+ · · ·)

so, clearly for j ≤ s, equating coefficients we have,

β0 = δ0

β1 = −δ0α1 + δ1

β2 = −δ0α2 − δ1α1 + δ2
...

βj = −δ0αj − · · · − δj−1α1 + δj

a system which can be solved recursively, given the α, β’s for the δ’s. That is,
given that we have estimated a model in the form (1) we can then compute
the coefficients corresponding to the form (3).

More generally, see e.g., Harvey, (p. 234), we can write, denoting j∧s =
min{j, s}

δj =

{ ∑j∧r
i=1 αiδj−i + βj j ≤ s∑j∧r
i=1 αiδj−i j > s

The function, defined on the integers, of cumulative sums of the δ’s,

∆(j) =
j∑

i=1

δi
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is usually called the impulse response function. It may be interpreted as
providing a complete picture of the time path of the response of y to a
once-and-for-all unit shock in x:

So, in the simplest case, imagine a thought experiment in which there
is a single exogenous variable x, which has taken the value x0 for a long
time so y is randomly fluctuating around an equilibrium value of y0. Now,
x changes to x1 and stays there, what happens to y?

In the first period we get the “impact” effect δ0, and in subsequent
periods this effect is gradually modified until (presuming stability in the
process) we get a new value of y which corresponds to the “equilibrium”
value of y corresponding to x = x1. From (3), write

E∆yt = A(L)−1B(L)∆xt

= D(L)∆xt

→ D(1)∆x since for all t ∆x ≡ ∆xt

=
∞∑
i=1

δi∆x.

Interpretation: If there is a new equilibrium, then the change is just the
accumulation of the short run impulse responses.

Heuristic: If there is a new equilibrium we can find it by setting yt = ye and
xt = xe and solving. Obviously, this works only if there is an equilibrium,
i.e. if the model is stable.

Caveat: Note that if the roots of the A(z) = 0 polynomial lie outside the
unit circle we are ok, but otherwise we have problems with the existence of
equilibrium.

Multipliers: The coefficients of the cumulative impulse response are often re-
ferred to, in deference to the associated macro literature, as impact, interim
and long-run multipliers.

Inference: An interesting issue which has attracted considerable recent re-
search is how to do inference on the δ’s. We will not address this here, except
to invoke the principle: Every good estimate deserves a standard error. This
question will arise a little later in connection with the bootstrap.

Lag Distributions: It is often useful to have some way to characterize or
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compare lag distributions or shapes of the impulse response function. Two
simple ideas in this direction are

Mean Lag: Think of δi’s as a pdf and compute

πi = δi/
∑

δi

that is as a proportion of the total effect which is attributable
to lag i, then

µ =
∑

iπi =

∑
iδi∑
δi

Note that if the variables are in logs then this proportion is nicely
interpreted in percentage terms. A useful trick in this regard is,

D′(L) = δ1 + 2δ2L+ 3δ3L
2 + · · ·

so

µ =
D′(1)

D(1)
=
A(1)B′(1)−A′(1)B(1)

D(1)A2(1)
=
B′(1)

B(1)
− A′(1)

A(1)

Median Lag:
ν = min{i|

∑
πi ≥ .5}

Caveat: Note that if πi’s can be negative, and they frequently
are in practice, then the analogy with pdf ’s is rather silly, and
practically useless.

Error Correction Form:
Consider the simple dynamic model

yt = α1yt−1 + α0 + β0xt + β1xt−1 + ut

In equilibrium with xt ≡ xe we have

ye =
α0

1− α1
+
β0 + β1
1− α1

xe +
1

1− α1
ut

It is sometimes useful to embed this equilibrium version of the model in
the dynamic formulation itself. To do this, subtract yt−1 from both sides of
model and then add and subtract β0xt−1 to get

∆yt = (α1 − 1)yt−1 + α0 + β0∆xt + (β0 + β1)xt−1 + ut
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or

∆yt = β0∆xt + (α1 − 1)[yt−1 −
α0

1− α1
− β0 + β1

1− α1
xt−1] + ut

This is called the error-correction form of the model since changes in y are
decomposed into two natural pieces. (i) changes induced directly by changes
in x, and (ii) changes induced indirectly because the previous period’s y is
out of equilibrium. The approach used here can be easily generalized to
more complicated models and plays an important role in the discussion of
cointegrated econometric models, a topic considered somewhat later in the
course.
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