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Misspecification of Functional Form

One of Hal’s earliest papers:

White, Halbert, (1980) ”Using Least Squares to Approximate
Unknown Regression Functions,” International Economic Review,
21, 149-170.

deals with misspecification of the functional form of econometric models.
Let’s begin a consideration of this topic with the following simple example.
Suppose

log yi = α+ β log xi + ui

but unaware of this convenient formulation we instead estimate

yi = a+ bxi + vi.

What relationship does (â, b̂) bear to (α,β) in the original model and can
we hope to say anything reasonable having made this initial specification
error?
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To Log or Not to Log? That is the Question
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A linear fit to a log-linear model: The figure illustrates 50 observations from a

log-linear model and a superimposed least-squares linear fit of the observations.

Note that the fit provides a rough estimate of the tangent of the curve near the

“center” of the x’s, but cannot be considered very reliable unless the range of the

x’s is quite restricted.
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Elasticities Vary When They Shouldn’t
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Linear fit to a log-linear model: The points in the figure represent elasticities

implied by the fitted linear model at each of the observed x’s. The horizontal line

at β = .5 represents the true, constant elasticity for the model, and the two vertical

lines indicate the mean (solid) and geometric mean (dotted) of the x’s.
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What Does Least Squares Do?

Several answers may be offered:

1 Least squares regression of y on X projects y onto the column space
of X.

2 Least squares regression of y on X estimates the conditional
expectation function E(Y|X).

3 When the conditional expectation function is nonlinear in X, the LSE
estimates the best approximation to E(Y|X) among the linear
functions of X.

4 Suppose the xi’s are generated randomly from some distribution, F,
and that E(y|x) = g(x), then (â, b̂) solves minEx(g(x) − a− bx)2,
i.e., â+ b̂x is the best linear approximation to g(x) in quadratic mean.
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and that E(y|x) = g(x), then (â, b̂) solves minEx(g(x) − a− bx)2,
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Box and Cox

Comic Opera by F.C. Burnand and Arthur Sullivan

The classical Box-Cox (1964) approach to dealing with choice of functional
form in econometric models involves the family of power transformations

h(x, λ) =

{
xλ−1
λ λ 6= 0

log x λ = 0
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Some Box-Cox Transformations
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The Box-Cox Power Transformations: The Figure illustrates 6 versions of the Box-

Cox Power family of transformations. Note that the log transformation fits nicely

into the family with λ = 0.
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Likelihood Ratio Inference About λ
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The Box-Cox Power Transformation: The Figure illustrates the profile log likelihood

for a simple bivariate linear model, the confidence interval indicated for λ is based

on the asymptotic theory of the likelihood ratio statistic.
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Partial Residual Plots Unlogged
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Partial Residual Plots Logged
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Visualizing Multivariate Regression

When there are several explanatory variables, aka covariates, aka
regressors, it is usual to have some way to visualize their separate effects.
Consider the model

y = Xβ+ zγ+ u

and the least squares fitted values,

ŷ = Xβ̂+ zγ̂.

Theorem (Gauss-Frisch-Waugh) γ̂ = (z>MXz)
−1z>MXy, where

MX = I− PX, and PX = X(X>X)−1X>
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Visualizing Multivariate Regression

Theorem (Gauss-Frisch-Waugh) γ̂ = (z>MXz)
−1z>MXy.

Proof Write
z>MXŷ = z>MXXβ̂+ z>MXzγ̂

but MXX = 0, so it only remains to show that

z>MXPZy = z>MXy

where Z = [X
...z].

Note that

MXPZ = (I− PX)PZ = PZ − PXPZ = PZ − PX.

In the last step note that X>PZ = (PZX)
> = X>, so PXPZ = PX. Finally,

we can compute,

z>MXPZy = z>(PZ − PX)y = z>y− z>PXy = z>(I− PX)y = z>MXy.
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The Barro Plot
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Barro Price Plot
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