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Treatment Effects, Matching and Propensity Scores

In randomized experiments we are assured that the treatment indicator,
say D;, is assigned independently of both the potential responses, D; 1L
(Yo;, Y1;) and any observed covariates, D; L X;. This is obviously advanta-
geous since it permits us to estimate the causal effect of the treatment,

E(Y1; — Yo:) = a+ BD;.

Here, we adopt the now standard Rubin potential outcomes formulation
with Y7; denoting the response of subject ¢ under the treatment, D; = 1,
while Yy; denotes the possibly counter factual response of subject i under
the control regime, D; = 0. Inevitably, we cannot observe both Y3; and Yy,
instead we observe

Y = D;Yi; + (1 — D;) Y.

However, in the idealized framework of the randomized experiment we can
obtain consistent estimates of the causal effect of treatment, 8, by simply
regressing Y; on D;, i.e. by simply computing the difference in mean response
for those in the treatment and control groups, B =Y, — Y. Typically, the
observed responses are a change in the level of something, wages, blood
pressure, etc. in response to the treatment so B is really AY; —AYj. Thus the
treatment effect is frequently referred to as a difference in differences, “diff-
in-diff”. Recall, for example. the Lanarkshire milk experiment, Student
(1931).

1. MATCHING

We are, however, rarely in the ideal world of randomized experiments
with perfect compliance. The next best setting seems to be one in which
treatment assignment is conditioned on observables, so D; 1L (Yo;, Y1;)|X;.
This situation is illustrated in PS 5 where assignment to the treatment
depends upon the observed covariates, sex, dex, lex, and we can see that
employees who scored poorly on the preliminary dexterity exam were more
likely to be assigned to the subsequent training program. It is important
to emphasize that this need not be a deterministic assignment scheme, but
the random component of treatment assignment must be independent of the
experimental response.

When treatment is assigned conditional on observables an attractive est-
mation strategy can be formulated by simply applying the fully randomized
strategy described above for each distinct setting of the covariates, so we
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can estimate a covariate specific treatment effect,

B(z) = Yi(z) — Yo(z),

where, now, we have a mean treatment effect for each X = z. Of course, for
continuously distributed covariates we would have to make some provision to
“bin” neighboring x’s resulting in some degree of ambiguity in the resulting
estimator. More seriously, we may encounter covariate settings for which
either Y;(x) or Yp(z) cannot be computed because all the subjects with
x; = 1 are either in the treatment, or control, group. This is generally
referred to as a failure of “overlap” in the support of experimental design.
Unless we are able to estimate a treatment effect at a given z, there is no
way to know how this region of the design space X contributes to the overall
treatment effect. In the fortunate circumstance that we are able to compute
B(z) over all of X, we can then integrate,
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to obtain an average treatment effect unconditioned on covariates. Here, u
denotes some form of weighting that accounts for the relative precision of
the B () estimates. In the simplest case this is just the relative sample sizes
in the x-cells. Restricting the domain X to the region of effective overlap
is fine, and a major virtue of the “matching on observables” procedures is
that it forces us to be aware of these limitations.

A more automatic, and therefore potentially more dangerous approach, is
to simply regress our response on observed treatment and the conditioning
covariates, X. Under our treatment assignment assumption, this will yield
consistent estimates of the treatment effect. However, as usual, it depends
crucially on functional form assumptions and in particular on the assumption
that [(x) is constant over the design space X'. Matching provides clear
intermediate evidence on this.

2. PROPENSITY SCORES

The downside of matching on the full vector of covariates is often referred
to as the “curse of dimensionality.” We are essentially required to solve a
high dimensional nonparametric regression problem. The literature abounds
in claims to annul this curse. Such claims should be viewed with scepticism,
as in Verdi — once cursed, cursed forever. Nevertheless, it is worthwhile to
consider some fashionable dimension reduction devices and the assumptions
under which they offer some respite from this curse. Chief among these
devices is the propensity score.

Rosenbaum and Rubin (1983) introduced propensity score methods for bi-
nary treatment models. Suppose we have a binary treatment that is assigned
conditional on observable covariates, X, so as above, D; 1l (Yp;, Y1;)|X;.
Let p(X) = P(D = 1|X), denote the propensity score, the probability of
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being assigned to treatment given X, then we have the following result from
Rosenbaum and Rubin.

Theorem 1. D; 1L (Yy;, Y1:)|X; implies D; 1L (Yo;, Y1) |p(Xi)
Proof. 1t suffices to show that P(D; = 1|(Yo;, Y14),p(X;)) = P(D; = 1|p(X3)),
which follows by the following nested conditioning argument:
P(D; = 1|(Yoi, Y1:), p(X;)) = IE( ;= 1| (Yo, Y14), p(X5))
(Dil (Yoi, Y1), p(Xi), Xi)|(Yoi, Y1i), p(X5))
(Dil (Yos, Y1i), Xi)[(Yos, Y1i), p(Xi))
E(D;]X3)|(Yoi, Y1i), p(X5))
p(X3)|(Yos, Y14), (X))
p(Xy)
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Recall that in ordinary regression if we wanted E(Y|D,X) and D 1 X
we could ignore X and simply estimate E(Y|D). Here we need simply to
“control for” p(X;). We are interested in estimating the mean treatment
effect,

E((Yoi, Y1:), Xi|D;) = E(E(Y;|p(X;)), Di = 1)—(E((Yi|p(X:)), Di = 0)|D; = 1)

This can be reformulated somewhat by noting that,

Y;D; Yi(1 - D)
E =EY;; and E——— =EYj;
p(X;) ! 1—p(X;) °
hence
Yi(Di — p(X;
1) E (Yo — Vi) = Bioi —P(X)

p(X3)(1 = p(X;)

In this form we can now easily imagine constructing an estimation procedure
that first estimates p(X;) and then computes sample averages based on
(1). This approach is closely related to the Horvitz and Thompson (1952)
estimator intended to estimate means based on sample survey data.

2.1. Digression on the Horvitz Thompson estimator. In sample sur-
veys a common problem is estimating a mean or a total from a sample on
a finite population. Suppose we denote Y; as the response of the ith obser-
vation and D; as the indicator of whether the ith observation was sampled.
Typically, we have an explicit sampling plan so we know p; = P(D; = 1), so
the HT estimator of the total is simply

T, = Zn: D;Yi/p;.
i=1

Taking expectations conditionally shows that this gives an unbiased estimate
of the total. In fact it can be shown to be the UMVUE. To see the connection
with 8 above suppose we want to estimate averages now, and we think of
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D; as a treatment rather than a sampling decision, then the same argument
shows that ED;Y;/p; = EY1; and also that E(1 — D;)Y;/(1 — p;) = EYy,,
and combining these facts we have our expression for B .

There is a nice cautionary tale due to Basu (1971) about the HT esti-
mator: A circus impresario has to ship his 50 elephants and needs a rough
estimate of their total weight. He speaks with his trainer who suggests
weighing Sambo the elephant who is roughly middle size and then multi-
plying Sambo’s weight by 50. But the circus statistician intervenes and
says “No, we need a sampling plan.” So he proposes chosing Sambo with
probability 99/100 and assigning the rest of the probability uniformly to the
rest of the elephants. So the impresario agrees and they randomly draw a
UJ0, 1] which turns out to be less than .99 and so they weigh Sambo. The
impresario is about to multiply by 50 when the statistician says “No, stop,
the Horvitz Thompson estimator is known to be UMVUE and it tells us to
divide Sambo’s weight by p; = 99/100, so we want to multiply by 100/99
not 50. Moral: Unbiasedness isn’t always such a great property.

Commentary: Note that if, by chance, we would have chosen Jumbo the
biggest elephant whose p; was only 1/5000, we would have multiplied his
weight by 5000, which would have compensated for the drastic underestimate
obtained with Sambo. But of course we are only doing this procedure once,
so the fact that repeatedly doing it gives us something unbiased is not much
comfort. Each time we would be getting something quite stupid for an
answer.

2.2. Propensity Score Matching. The propensity score appears to be
an attractive way to reduce dependence of the treatment assignment on
covariates to a convenient scalar quantity. This is a bit misleading since we
still need to estimate p(x) and there is usually little guidance as to how to
do this. In practice, one is usually left with the familiar binary response
models. In Yoon and Koenker (2009) we argue that it is worthwhile to
consider alternatives to the usual logit and probit link functions. Given
an estimated propensity score, p(x), there are a variety of treatment effect
estimation options, a general class considered by Hirano, Imbens and Ridder
(2003) takes the form

Yi(D; — p(Xi))
e {s00) Gt 2ot
where g(X;) is a weight function designed to focus on particular groups. For
example, g(X;) = 1 gets us back to the HT estimate of the mean treatment
effect, and ¢g(X;) = p(X;)/P(D; = 1) yields the average treatment effect on
the treated. For further discussion see Angrist and Pischke (2009).

2.3. Imperfect Compliance. In many randomized experiments it is im-
possible to compel subject to undergo the treatment. Thus, subjects are
randomized into a group that is offered treatment and a group that is not.
Generally, we can verify that those not offered treatment do not find a way
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to participate in the treatment, but the worry is that the decision to undergo
treatment creates an endogeneity bias that requires attention. Fortunately,
in such cases we have a natural instrument for the observed treatment vari-
able, D;, and that is the intent-to-treat variable, say Z;. Since Z; can be
randomized, perhaps conditioning on other observable covariates as in the
foregoing discussion, it serves a plausible instrument as long as compliance
with the treatment offer isn’t negligible.

In the simplest settings without other covariates this brings us back to
the Ur-IV estimator proposed by Wald, see L11. With other covariates
we have a binary endogenous variable that requires some care. There is a
temptation to try to simply apply 2SLS ideas: estimate a probit specification
for D; as a function of Z; and other covariates, X;, construct p(Z;, X; for
each observation, and now estimate the structural model replacing D; by
P(X;). You could do this, but it would be wrong.! The difficulty with this
approach is that the nonlinearity of the p(z) function violates the underlying
orthogonal projection objective of 2SLS. Instead, what can and should be
done is simply to estimate the structural model by instrumental variables
using p as an instrument for D;. For more details see the extensive discussion
in Angrist and Pischke (2009).

3. ECOLOGICAL REGRESSION

The phrase “ecological regression” refers to the common desire to use
standard regression methods to infer individual behavior from spatial ag-
gregated data. The most typical situation would seem to be the attempt
to infer ethnic voting behavior from precinct level data in political science.
Thus, for example we might like to know what proportion of Hispanics voted
for Obama in the 2012 election.

3.1. Goodman’s Regression. Given data on the proportion of Hispanics,
x; and the proportion of the vote going to Obama, y;, in a large number of
precincts, we are tempted to estimate the ecological regression,

Yi = a + bx; + u;.

If it were reasonable to assume that the coefficients a and b were constant
over precincts and u; was well-behaved, then we could interpret a as an es-
timate of the proportion voting for Obama among non-Hispanics, and a + b
as the proportion of Hispanics voting for Obama, corresponding to the ex-
treme cases of x; = 0 and x; = 1, respectively. This is sometimes described
as Goodman’s (1953) regression. Note that a potentially embarrassing draw-
back of this approach is the possibility that we could end up with estimates
of the two parameters a and b that fall outside the interval [0, 1]. Various

1During the Watergate scandal, Nixon was quoted by H.R. Haldeman his chief of staff as
saying: “There is no problem in raising a million dollars [to keep the Watergate burglers
quiet] — we can do that — but it would be wrong.” This phrase has entered into the
econometrics folklore with some encouragement from Joel Horowitz.
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refinements are possible, most obviously a weighting by the size of the re-
gions, but there is nothing to ensure that such refinements are going to help
make the estimates more accurate.

4. METHOD OF BOUNDS

An alternative is the “method of bounds” introduced by Duncan and
Davis (1953). Freedman (1999) illustrates this approach with an example
using CPI data from Washington state. Suppose we know that 0.079 of the
population is foriegn born and 0.344 of the population have “high income.”
We are interested in the proportion, p of the foreign born who have “high
income.” We know that

0.344 = 0.079p + (1 — 0.079)q

where g denotes the proportion of the native born with high income. This
reveals the essential problem: we have only one equation to determine two
unknowns. But all is not lost, suppose we solve for ¢ in terms of p and
then observe that p must be between zero and one. This implies that ¢ €
[0.288,0.374]. Try it! Manski (2007) elaborates this idea in many other
contexts. Manski argues that many problems in econometrics have this
form, that models are inherently underidentified, but some bounds can be
placed on parameter estimates based on careful analysis of the probability
structure of the problem. Another example of this sort of analysis is the
case of regression data in which we observe intervals y; € [y;,7;] and we
would like to make inferences about the standard regression model. The
challenge in all such models is to carefully specify the probability structure
of the model, and when the identified set in non-unique to find a practical
way to make inferences about these sets.

5. RANDOM COEFFICIENTS

Now, suppose that we have many observations on (x;,y;) as above and
we would like to consider the random coefficient model,

yi = piti + ;i (1 — ;).

This is obviously a generalization of the Goodman model. King (1997) in
an influential (and controversial) book on the subject assumes that (p;, ¢;)
are drawn iid-ly from a bivariate normal distribution truncated to respect
the requirement that they should lie in [0, 1]2. This model has a reasonably
tractable likelihood and can be therefore estimated by maximum likelihood.
Freedman compares three methods of estimating (p;, ¢;): the Goodman re-
gression, the King regression, and a simple model that he calls the neigh-
borhood model that assumes that outcomes are determined by geography
not demography. In his formulation, the neighborhood model assumes that
pi = q; = 1y; in each region. This is obviously quite extreme, but in Freed-
man’s example, where we know the correct answer thanks to the crosstabs



Method p q
Truth 0.35 0.28

Nbd 0.34 0.36
Goodman 0.29 0.85
King 0.30 0.72

provided by the CPI, the neighborhood approach is better than the others
in estimating the mean of the p’s and ¢’s. I reproduce his table here.

There is an interesting connection of the King method to medical imaging
called tomography. In tomography a 3d image is reconstructed from many
2d slices. In King’s tomography plot, each point (z;,y;) appears as a line in
the parameter space of (p,q)’s. Pairs of these lines have intersections that
can be taken as meta-observations to which we try to fit the normal model.
Of course, there doesn’t seem to be any compelling reason to think that the
normal model is appropriate. So it would seem prudent to explore other less
parametric approaches. One such approach is the Kiefer-Wolfowitz (1956)
nonparametric MLE, which would replace the normal model with a discrete
mixing distribution with a relatively small number of mass points. If you
were very lucky these mass points might yield an interpretable clustering of
the regions.
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