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Lecture 19
“Inference about tail-behavior and measures of inequality”

An important topic, which is only rarely addressed in econometrics
courses, is the measurement of inequality. This is a large topic which could
easily occupy us for several weeks. I plan more of a surgical strike rather
than an extended siege on the topic.

A standard model for size distributions in economics, and beyond, is the
Pareto distribution

F (x) = 1− (ξ/x)α x ≥ ξ

which is also sometimes called Zipf’s law. See Hill (1974) for an interesting
discussion of how such a distribution might arise. There are many examples
of applications in economics: distribution of incomes and size distributions
of firms being only the most widely studied.1

There is a famous, or perhaps infamous would be more accurate, book by
Zipf (1949) called Human Behavior and the Principle of Least Effort which
offers a vast panoply of examples of the applicability of the Pareto law,
including examples in linguistics, music and demography. Hill (1974) offers
an interpretation in terms of the so-called Bose-Einstein model in which balls
are allocated to cells in such a way that, given the current allocation, the
probabilities of allocation to the various cells are proportional to the number
of balls currently occupying each cell, i.e., growth proportional to current
size. This is a model which has received considerable attention in the IO
literature on models of firm growth. There is a review of the firm growth

1A wider class of models for the upper tail of size distributions consists of distribu-
tions with regularly varying tails, that is distributions whose tails behave like the Pareto
distribution. For example, the Cauchy distribution has df, 1 − F (x) ∼ (πx)−1 so its tail
behaves very much like the Pareto with parameter α = 1. More formally, a function F is
regularly varying with index α if for x > 0,

lim
t→∞

F (tx)

F (t)
= xα,

if α = 0 then we say that F is slowly varying. Resnick (2007) provides a thorough
introduction to this line of inquiry, including extensive applications in finance.
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literature where a variant of the Bose-Einstein model is called Gibrat’s Law,
by Sutton (1997). An interesting application which would be fun to explore
as a thesis topic is the application of these methods to a comparison of
the productivity of research in various academic fields over the last century.
Parzen(1985) has suggested that “economics is becoming more scientific” on
the basis that the tail exponent of its productivity distribution has decreased
in recent years. Unfortunately, I’ve never been able to track done a reliable
reference for this observation.

The Pareto model offers a simple means of measuring inequality by look-
ing simply at the tail exponent α. The Pareto distribution is said to have
algebraic tails, since the tails decline algebraically rather than exponentially
as for the Gaussian, or exponential distributions.

MLE estimation of α.

f(x) = α(ξ/x)α−1ξ/x2

= αξαx−(α+1)

log f(x) = logα+ α log ξ − (α+ 1) log x

`n(α) = n logα+ nα log ξ − (α+ 1)
n∑
i=1

log xi

∇`n(α) =
n

α
+ n log ξ −

∑
log xi

∇`n(α) = 0⇒ α̂ = (n−1
n∑
i=1

log(xi/ξ))
−1

QMLE estimation of α
Often we are unwilling to make a commitment to a global model of the

size distribution, but might be willing to make inferences about only the
upper tail of the distribution. Here, Hill (1975), comes to the rescue.

Suppose we think that the Pareto model is adequate for x > ξ, but don’t
necessarily believe it is appropriate below ξ. Alternatively, as is frequently
the case, we may only have data for x > ξ (the biggest firms, for exam-
ple) and don’t want to be bothered by the smaller ones. Hill proposes to
construct random variables,

Vi = log Y (i) − log Y (i+1)
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where Y (i) is the ith reverse-order statistic, i.e., Y (1) = Y(n), Y
(2) = Y(n−1),

etc. Now, choose r such that Y (r+1) ≥ ξ and compute

α̂r = (r−1
r∑
i=1

iVi)
−1

Note that setting yi = log Y (i), we have†

r∑
i=1

iVi = (y1 − y2) + 2(y2 − y3) + 3(y3 − y4) + . . .+ r(yr − yr+1)

= y1 + y2 + y3 + . . .+ yr − ryr+1

=
r∑
i=1

log(Y (i)/Y (r+1))

so α̂r is the MLE, conditional on only the first r (largest) order statistics.
The theory of this is quite elegant and is based on a nice representation of
the order statistics by Renyi. Choosing r is somewhat tricky, and is like
choosing lag lengths or bandwidths for some other problems. One strategy
is to compute α̂r for several r’s and try to find a value which “stabilizes the
estimate” – whatever that means.

†This is sometimes referred to as “summation-by-parts” for obvious reasons. Well,
perhaps not entirely obvious, is maybe it is worth elaborating. Recall that the usual
differentiation of products formula

Duv = uDv + vDu

yields the rule for integration by parts,∫
uDv = uv −

∫
vDu.

For summation we can do something similar, suppose u and v are defined on a discrete
grid then,

∆(u(x)v(x)) = u(x+ 1)v(x+ 1) − u(x)v(x)

= u(x+ 1)v(x+ 1) − u(x)v(x+ 1)

+u(x)v(x+ 1) − u(x)v(x)

= u(x)∆v(x) + v(x+ 1)∆u(x).

Note the mildly annoying shift of v(x + 1) needed to make this work out nicely. If we
write Sv(x) ≡ v(x+ 1), S for (forward) shift operator, then we can write the summation
formula as ∑

u∆v = uv −
∑

Sv∆u.

This is particularly simple when we have, as in the present case, since u(x) = x so ∆u = 1.
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Now one might imagine having several samples at different time periods,
for example, and one could compute estimates of α̂ for the various periods
and compare, thus judging whether the distribution was becoming more or
less concentrated. The tail behavior of asset returns has been a very contro-
versial topic in finance since early work by Mandelbrot suggested algebraic
tails might be an appropriate model. See, for example, the recent paper by
McCulloch (1997) for an introduction to this literature.

On the Renyi Representation Result

Thm (Renyi) (1953) Let {Zi} be iid from F, f with F (0) = 0, and
Z(1) ≥ Z(2) ≥ . . . ≥ Z(n) be the (reversed) order statistics, then

Z(i) = F−1
(

exp

(
−e1
k
− e2
k − 1

− . . .− ei
k − i+ 1

))
for i = 1, . . . , k

where ei are iid exponential variates with mean 1.

Cor Inverting (solving for ei) we have

ej = (k − j + 1)[logF (Z(j−1))− logF (Z(j))] j = 1, . . . , k

where by definition F (Z(0)) = 1.

Remark Since F (Z) ∼ U and logU ∼ e all of this makes a certain
amount of sense. It is also a fundamental result in the theory of rank
statistics. It also has useful connections to auction theory.

Relationship to Gini coefficient and the Lorenz Curve

Another well known device for comparing measures of inequality is the
Lorenz curve. It is usually described as a plot of the cumulative income
earned by the poorest proportion, τ of the population. More formally, we
may write,

λ(τ) =

∫ τ

0
F−1(t)dt/

∫ 1

0
F−1(t)dt

The function λ(t) is clearly convex since it is the integral of a monotonic
function. Several Lorenz curves for the Pareto distribution are illustrated
below in Figure 1.

To the extent that the region between the curve and the 45 degree line
is large the distribution F deviates from point mass one at some income.
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Figure 1: Several Lorenz Curves for the Pareto Distribution: The figure
illustrates the Lorenz function for several different tail exponents of the
Pareto distribution. The curves plots the cumulative proportion of income
earned (y-axis) as a function of the cumulative proportion of the population
ordered from poorest to richest.
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A measure of departure from egalitarianism is therefore the twice the area
between the curve and the diagonal. This is the Gini index (coefficient),

γ = 1− 2

∫ 1

0
λ(t)dt.

In this form, the Gini coefficient is a measure of dispersion scaled to lie
between zero and one. If this distribution, F , is degenerate at µ, then
γ = 0. At the other extreme, if F puts mass 1/µ at µ2 and mass (1− 1/µ)
at 0, then as µ→∞, γ → 1.

There are a number of other interesting ways to express γ. Another way
to express the geometric region represented by γ, i.e., double the region
between the Lorenz curve and the 45 degree line in the figure, is to write

γ =

∫ 1

0
tdλ(t)−

∫ 1

0
λ(t)dt.

This is simply the area of the region above the curve λ(t) in the figure, minus
the area of the region below. The area below the curve is clearly just

∫
λ, the

area above the curve may be found by viewing the picture from the opposite
side of the page and rotating it by 90 degrees. We are then integrating the
function t with respect to the “density” dλ(t) and we obtain the area above
the curve in the original picture. This may give some geometric insight into
integration by parts, since∫ 1

0
tdλ+

∫ 1

0
λdt = tλ(t)|10 = 1,

may be seen as simply adding the areas above and below the curve λ(t) in
the unit square.

0.1 Total Time on Test (Read at your own Risk)

And this yields, substituting for
∫
λ,

γ = 2

∫ 1

0
tdλ− 1.

= 2µ−1
∫ 1

0
tF−1(t)dt− 1

= 1− 2µ−1
∫ 1

0
(1− t)F−1(t)dt
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(Note that dλ/dt = µ−1F−1(t) provided F is continuous.) The last expres-
sion is related to the reliability literature concept of cumulative rescaled
total time on test. See Shorack and Wellner (1986, §23.5). Another intrigu-
ing expression arises from rewriting the intermediate step above as

γ = 2µ−1
∫ 1

0
tF−1(t)dt− 1 = 2µ−1

∫ ∞
−∞

x(F (x)− 1/2)dF (x)

which Olkin and Yitzhaki (1992) interpret as γ = 2Cov (X,FX(X))/µ and
relate to rank statistics.

0.2 Gini’s Mean Difference

Finally, we should note that

γ = (2µ)−1
∫ ∞
0

∫ ∞
0
|x− y|dF (x)dF (y)

so we can interpret γ as the ratio of the expected difference in two random
draws from F , to the expected sum of the two draws, i.e.,

γ =
E|X − Y |
E(X + Y )

This expression suggests that γ is a somewhat more robust alternative to
the usual standard deviation as a measure of dispersion. To connect the two
we note that,

σ = (
1

2
E(X − Y )2)1/2

where X,Y are independent with df F . Clearly σ places more weight on
large discrepancies between X and Y than does γ. Neither quantity is for-
mally robust in the sense of Hampel.

This version of the Gini coefficient yields a nice interpretation of γ in
terms of social choice theory. We can think of γ as measuring the difference
in income (wealth, etc.) of two randomly selected individuals selected from
the population. This has some appeal on utilitarian grounds.

Example

The Pareto distribution provides a convenient example in which all the
calculations are very simple. We have

F (X) = 1− (ξ/x)α

f(x) = αξα/xα+1

7



so provided α = 1,
µ = αξ/(α− 1).

The quantile function is

F−1(t) = ξ(1− t)−1/α

and
λ(t) = 1− (1− t)(α−1)/α

so

γ = 1− 2

∫ 1

0
λ(t)dt = 1/(2α− 1).

We may also consider what happens when incomes are Pareto, but we
choose to measure inequality by Gini on another scale. A simple, yet practi-
cally important, example involves the case in which, Y = logX, that is, we
measure inequality on the log income scale. If X has the Pareto distribution
so,

FX(x) = 1− (ξ/x)α x ≥ ξ

then
FY (y) = 1− ξαe−αy y ≥ log ξ

so Y has an exponential distribution, with mean

µ = (1 + α log ξ)/α

and the quantile function is

QY (t) = log ξ − α−1 log(1− t).

Thus the Lorenz curve for Y is

λY (t) = µ−1
∫ t

0
(log ξ − α−1 log(1− s))ds

and consequently the Gini for log income is,

γY = 1− 2

∫ 1

0
λY (t)dt =

1

2(1 + α log ξ)

Note that if you consider the question, “how does γ change with α after
the log transformation, the situation is actually quite similar to the levels
version. In particular, the reader is invited to compare d log γ/dα in the two
cases.
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Thus we get a nice “closed form” expression for γ and as expected as
α increases giving a thinner tail we have a smaller, γ, indicating a more
egalitarian distribution. Several examples of the Lorenz curve are illustrated
in Figure 1 for different tail exponents of the Pareto distribution.

The approach of Hill can be adapted to the Lorenz-Gini approach to
measuring equality. We can condition on only the upper tail of the distribu-
tion and reformulate the Lorenz curve and therefore the Gini based on this
“censored” portion of the full distribution. This would be appropriate if we
either (i) had data for only the upper tail, or (ii) we felt the functional form
employed for the Lorenz curve, say the Pareto was only appropriate in this
range. This is developed by Sen (1986).

There is a large literature on estimation of the Lorenz curve which es-
sentially about suggesting convenient parametric functional forms for λ(t).
See Sen (1973) for an overview of the general issues surrounding inequality
measurement. There is also a large related literature in IO having to do
with measuring concentration of firms in particular markets.
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