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Incidental Parameters and Dynamic Bias in Panel Data

In 1948 Jerzy Neyman and Elizabeth Scott published an Econometrica paper called “Consistent

Estimates Based on Partially Consistent Observations.”1 It introduced some puzzling examples of

situations in which the MLE delivers inconsistent estimates of what they called a structural parameter.

As Tony Lancaster remarks in his valuable survey of the subsequent literature, their examples continue

to puzzle. In its simplest form the Neyman and Scott incidental parameter problem can be formulated

as,

yit = αi + uit t = 1, 2, · · ·T, i = 1, 2, · · ·n,

with uit iid N (0, σ2). The MLE of the structural parameter, σ2, is therefore,

σ̂2 = (nT )−1
∑∑

(yit − ȳi)2 ∼ σ2χ2
n(T−1)/Tn

but Eσ̂2 = σ2(T − 1)/T and is therefore inconsistent, unless T → ∞ with n. Elaborating on this

example, Neyman and Scott also consider the case that V(uit) = σ2i differ with i, so we have incidental

variance parameters as well as means. This model brings us into close proximity to the empirical Bayes

methods introduced by Robbins a few years later. Of course in its simplest form it is easy to fix the

inconsistency described above, however we will see that it is more of a challenge to deal with similar

problems introduced by consideration of dynamics in closely related panel data models to which we

now turn.

In the previous lecture we found that (apparently) β̂w was safe in the sense that it provided a

consistent estimate of the parameters as T →∞ and n→∞ regardless of whether there was correlation

between individual effects and the included explanatory variables. The situation is less comforting

when T is fixed and n → ∞ as we might view as typical in many econometric panel data problems.

(expanding n is relatively easy, expanding T is usually not.) Chamberlain (1980) and Nickell (1981)

consider the following model:

yit = γyit−1 + αi + uit

1The paper was the only paper in the first issue of volume 16.
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then the within estimator is

γ̂w =

∑∑
(yit − ȳi)(yit−1 − ȳi,−1)∑∑

(yi,t−1 − ȳi,−1)2
=
∑∑

wit(yit − ȳi)

= γ +
∑∑

(uit − ūi)wit

repeatedly substituting we have,

yit = uit + γuit−1 + · · ·+ γt−1uit + γty0i +
1− γt

1− γ
αi

so

T∑
t=1

yit−1 = (1 + γ + γ2 + . . .+ γT−1)y0i +

(
T − 1− Tγ + γT

(1− γ)2

)
αi

+
1− γT−1

1− γ
ui1 +

1− γT−2

1− γ
ui2 + . . .+ ui,T−1.

Similar computations for the denominator of γ̂w eventually yield

γ̂w → γ − 1− γ
T − 1

(
1− T−1 1− γT

1− γ

){
1− 2γ

(1− γ)(T − 1)

[
1− 1− γT

T (1− γ)

]−1}
︸ ︷︷ ︸

bias

Thus for example we have in the simple version of the model with γ = .5,

T = 2 ABias = −(1 + γ)/2 −3/4

T = 3 ABias = −(2 + γ)(1 + γ)/(2(3 + γ)) −.53

T = 10 −.16
These asymptotic biases are obviously very large relative to the true γ = .5.

Yet Another GMM Interlude

There is an emerging consensus that the best approach to dealing with the problems we have just

seen in dynamic panel data models is based on generalized method of moments (GMM) methods. We

are already familiar with many important examples of GMM, although we may not have explicitly

recognized this. For example, my usual simplified derivation of OLS and IV estimators proceeds by

first assuming we have an orthogonality condition between observed x’s and unobserved u’s, and then

impose this orthogonality on the sample to get OLS:

EX>u = 0⇒ X>û = 0⇒ β̂ = (X>X)−1X>y

In the instrumental variables version of this, X isn’t orthogonal to u, but we have exactly the right

number of IV’s, say Z, and we obtain

EZ>u = 0⇒ Z>û = 0⇒ β̂ = (Z>X)−1Z>y
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and finally, if we have too many IV’s we would like to impose the orthogonality condition EZ>u = 0

on the sample, but Z>û = 0 in this case is expecting us to solve q > p equations in only p unknowns,

which is not generally feasible, so we need a new idea.

One approach which suggests itself is to minimize the length of the vector Z>û. This sounds

reasonable and is also suggested by least squares ideas, so we would solve

min
b
û(b)>ZZ>û(b)

which yields

β̂ = (X>ZZ>X)−1X>ZZ>y

What is wrong with this? What is missing if we want to get 2SLS? How do we rationalize the 2SLS

choice

β̂ = (X>PZX)−1X>PZy

Well, let’s work backward. We see immediately that if we had minimized instead,

min
b
û(b)>Z(Z>Z)−1Z>û(b),

we would get 2SLS, does this make any particular sense? Maybe.

Suppose we had something like the following

M(θ) ; N (0, V )

for example M(θ) = Mθ, and we wanted to estimate θ with V known. What would we do? What

might be the argument for solving

min
θ
M(θ)>V −1M(θ)?

Suppose, first that V were diagonal, then this would weight the coordinates so that they all had χ2
1

behavior. A better, more general, idea would be to say “let’s think of this as nonlinear regression.”

The model is then,

yi = Mi(θ) + vi i = 1, . . . , P

where Evv> = V, so the GLS estimator minimizes the weighted sum of squares.

Now in the 2SLS context we need to compute V = V (Z>u). This is easy if we assume that

E(uu>|Z) = σ2I as usual, then we get

V = V (Z>u) = E(Z>uu>Z) = σ2Z>Z,

so we do indeed get back to 2SLS, by taking this route. Note that if E(uu>|Z) = Ω, then we get the

the GIVE estimate, as discussed in an earlier lecture.
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This justifies GMM as GLS for a nonlinear regression model. Note that the assumption of exact nor-

mality is rather implausible, but approximate normality is easy to justify since one would hope/expect

that

n−1/2Z>û

would satisfy conditions for a CLT. So in practice, we have approximate normality and we solve

min
θ
M(θ)1V −1n M(θ)

where Vn → V in probability.

Now, in considerably more general situations than 2SLS we may think of orthogonality conditions

generating a set of ⊥ conditions

M(θ) = 0

with V = EMM> and we can, on the same principle as we have just developed suggest using

θ̂ = arg min
θ
M(θ)>V −1M(θ)

Suppose we had some consistent estimator of θ, say θ̂0, then by Taylor expansion

M(θ) = M(θ0) + (θ − θ̂0)>∇M(θ̃0)

and a one-step estimation of θ would minimize

min
θ

(M(θ̂0)−∇M(θ̃0)
>(θ − θ̂0))>V −1(M(θ̂0)−∇M(θ̃0)(θ − θ̂0))

⇒ θ̂1 = θ̂0 + (∇M>V −1∇M)−1∇M>V −1M(θ̂0).

one could continue to iterate this solution, which would yield (eventually) a solution to the original

problem.

Returning to Dynamic Panel Models

Now, we are ready to consider the use of GMM methods in panel data. To fix some ideas, consider

our very simple dynamic panel model

yit = αyit−1 + ηi + νit

where Eνitνis = 0 for t 6= s. We are interested in estimating the vector α and to do so we would like

to find an exhaustive list of available, valid moment conditions.

The first problem is that the ηi’s generate dependence over time, the second problem is that if

we pursue the HT strategy of applying the Q transformation to get rid of ηi, we lose the time-series

structure of the data. What to do? Consider first differencing the data. We get

∆yit = α∆yit−1 + ∆νit
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But if the νit are iid, then yt−2 is independent of ∆νit, and so is yt−3, etc. So we may collect these

conditions to write

E[(∆yit − α∆yit−1)yi(t−j)] = 0

t = 3, . . . , T ; j = 2, . . . , t− 1

From these conditions we may design an estimator à la GMM. Anderson and Hsiao (1981) suggest

estimating (∗) by IV using either yit−2 or ∆yit−2 as an IV. Since we obviously have more serviceable

instruments it (may) make sense to use more instruments. AB(1991) suggests using all the⊥ conditions

and GMM.

They write

Zi =


yi1

(yi1, yi2)
. . .

. . . (yi1, yi2, . . . , yi(T−2)


(T − 2)× (m = (T − 2)(T − 1)/2)

Note that 1 + 2 + . . .+ (T − 2) = m. And ṽi = (∆vi3 ∆vi4 ... ∆viT )′ The ⊥ conditions say that

EZ ′iṽi = 0

so GMM suggests that we minimize

(
n∑
i=1

ṽi(α)>Zi)An(
n∑
i=1

Z>i ṽi(α))

for some appropriate choice of An. Which one? This would yield the estimator (4) in AB (1991)

α̂ =
∆y−1ZAZ

>∆y

∆ȳ−1ZAZ>∆y−1

Consider V (n−1
∑
Z ′iṽi) = n−1

∑
Zi(Eṽiṽ

′
i)Zi where

Eṽiṽ
>
i = σ2u



2 −1

−1 2 −1

0 −1 2 −1
. . .

. . . . . . −1 2
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T 3 6 10 20

q 1 10 36 171

N 20 20,000 933,000 100,000,000

n 7 3,333 93,000 5,000,000

Since

Eṽitṽit = E(vit − vit−1)(vit − vit−1)

= Ev2i − 2vitvit−1 + v2it−1

= 2σ2v

Eṽitṽit−1 = E(vit − vit−1)(vit−1 − vit−2)

= −σ2v

If there is heteroscedasticity, then things are more complicated. Of course

Eṽitṽit−s = 0 for s ≥ 2.

This gives a one-step estimator. A two step estimator may be constructed using the White type

estimator,

V̂n = n−1
∑

Z>i ˆ̃vi ˆ̃v
>
i Zi

In effect these estimators are like the Anderson-Hsiao estimator, but (i) They use more IV’s (ii) They

use a better V̂n. It is interesting to consider how the number of IV’s grows with T in the AB model.

A simple computation yields the following table which describes the situation. Here we let N denote

a rule of thumb for choosing the full sample necessary to justify the use of q moment conditions. The

rule, which is developed in Koenker and Machado (1999) requires that N = 20q3, where 20 is viewed

as a reasonable initial sample size for estimating a scalar parameter. The last row of the table is

simply, n = [N/T ].

It is reasonably straightforward to consider adding exogenous variables. Consider

yit = αyit−1 + x>itβ + ηi + uit

if we don’t wish to assume xit ⊥ ηi, then we get Z like previous case except that in addition to

yit, . . . , yis we have xi1, . . . , xis+1. for predetermined x’s and xi1 . . . xiT for strictly exogenous x’s.

More generally, as in HT, we could partition x’s into x1, x2 with x1 ⊥ η, then we get even more ⊥
conditions which could be exploited. These methods are available in R, in the package plm by Yves

Croissant. See the function pgmm in particular.

Postscript
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All of the foregoing discussion is closely related to recent developments in semiparametric econo-

metrics and especially to the empirical Bayes approach to models with many incidental parameters.

From this viewpoint it is reasonable to think of the αi parameters as drawn from a distribution, and

if we focus on MLE’s that attempt to estimate this distribution as well as the structural parameters

of interest, there is an opportunity to restore some sanity to the ML method. This is close to the

viewpoint espoused in two influential papers by Lancaster(2000, 2002), who adopts the view that inte-

grating out the αi’s via some reasonable prior can provide a similar resolution. In effect the empirical

Bayes approach simply offers a way to “estimate this prior from the data.”
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