Quantile Regression
 A JSM Short Course

Roger Koenker \& Judy Huixia Wang
University of Illinois, Urbana-Champaign \& George Washington University
August 02, 2014

Lecture 1. The Basics: What, Why and How?

- Univariate Quantiles
- Scatterplot Smoothing
- Equivariance Properties
- Quantile Treatment Effects
- Three Empirical Examples

Overview of the Lectures

Lecture 1. The Basics: What, Why and How?Lecture 2. Inference for Quantile RegressionLecture 3. Computation and ExamplesLecture 4. Censored QR and Survival Analysis(5) Lecture 5. Nonparametric Quantile RegressionLecture 6. Bayesian Quantile RegressionLecture 7. Quantile Regression for Longitudinal Data

The Middle Sized Egg

Volume of the eggs can be measured by the amount of water they displace (Archimedes' Eureka!) and the median (middle-sized) egg found by sorting these measurements.

Note that even if we measure the logarithm of the volumes, the middle sized egg is the same. Not true for the mean egg!

Stem and Leaf Plot: Tukey's EDA I

Given a "batch" of numbers, $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ one can make a quick and dirty histogram in R this way:
$>x<-\operatorname{rchisq}(100,5)$ \# 100 Chi-squared (5)
$\begin{array}{rrrrrr}> & \text { quantile }(x) & \text { \# Tukey's } & \text { Five Number Summary } & \\ 0 \% & 25 \% & 50 \% & 75 \% & 100 \% \\ 0.9042396 & 2.7662230 & 4.2948642 & 6.2867588 & 16.5818573\end{array}$
> stem (x)
The decimal point is at the \mid
92356668
001111244445667778889990111222455666
01223334666678901125567889
023344667802888
556691
17
159
06
| 6

Motivation

What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the regression curve gives a correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)

Boxplot of CEO Pay: Tukey's EDA II

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
Q_{X}(\tau)=F_{X}^{-1}(\tau)=\inf \{x \mid F(x) \geqslant \tau\} .
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
Q_{X}(\tau)=F_{X}^{-1}(\tau)=\inf \{x \mid F(x) \geqslant \tau\}
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ :

The subgradient of a convex function $f(u)$ at a point u consists of all the possible "tangents." Sums of convex functions are convex.

Univariate Quantiles

Viewed from the perspective of densities, the τ th quantile splits the area under the density into two parts: one with area τ below the τ th quantile and the other with area $1-\tau$ above it:

Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

$$
\hat{\alpha}(\tau)=\operatorname{argmin} \mathbb{E} \rho_{\tau}(Y-\alpha)
$$

Proof: Let $\psi_{\tau}(u)=\rho_{\tau}^{\prime}(u)$, so differentiating wrt to α :

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty} \psi_{\tau}(y-\alpha) d F(y) \\
& =(\tau-1) \int_{-\infty}^{\alpha} d F(y)+\tau \int_{\alpha}^{\infty} d F(y) \\
& =(\tau-1) F(\alpha)+\tau(1-F(\alpha))
\end{aligned}
$$

implying $\tau=F(\alpha)$ and thus $\hat{\alpha}=F^{-1}(\tau)$.

Sample Quantiles as Optimizers

For sample quantiles replace F by \hat{F}, the empirical distribution function.
The objective function becomes a polyhedral convex function whose derivative is monotone decreasing, in effect the gradient simply counts observations above and below and weights the sums by τ and $\tau-1$.

Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into positive and negative parts and sum with appropriate weights:

$$
\min \left\{\tau 1^{\top} u+(1-\tau) 1^{\top} v \mid y=X b+u-v,(b, u, v) \in \mathbf{R}^{p} \times \mathbf{R}_{+}^{2 n}\right\}
$$

Dual Formulation as a Linear Program

$$
\max \left\{y^{\prime} d \mid X^{\top} d=(1-\tau) X^{\top} 1, d \in[0,1]^{n}\right\}
$$

Solutions are characterized by an exact fit to p observations.
Let $h \in \mathcal{H}$ index p-element subsets of $\{1,2, \ldots, n\}$ then primal solutions take the form:

$$
\hat{\beta}=\hat{\beta}(h)=X(h)^{-1} y(h)
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{m} \mathbb{E}(Y-m)^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Similarly, the unconditional τ th quantile solves

$$
\alpha_{\tau}=\operatorname{argmin}_{a} \mathbb{E} \rho_{\tau}(Y-a)
$$

and the conditional τ th quantile solves

$$
\alpha_{\tau}(x)=\operatorname{argmin}_{a} \mathbb{E}_{Y \mid X=x} \rho_{\tau}(Y-a(X))
$$

Least Squares from the p-subset Perspective Exact fits to p observations:

$$
\hat{\beta}=\hat{\beta}(h)=X(h)^{-1} y(h)
$$

OLS is a weighted average of these $\hat{\beta}(h)^{\prime}$'s:

$$
\begin{gathered}
\hat{\mathcal{\beta}}_{\text {OLS }}=\left(X^{\top} X\right)^{-1} X^{\top} y=\sum_{h \in \mathscr{H}} w(h) \hat{\mathcal{\beta}}(h), \\
w(h)=|X(h)|^{2} / \sum_{h \in \mathcal{H}}|X(h)|^{2}
\end{gathered}
$$

The determinants $|X(h)|$ are the (signed) volumes of the parallelipipeds formed by the columns of the the matrices $X(h)$. In the simplest bivariate case, we have,

$$
|X(h)|^{2}=\left|\begin{array}{cc}
1 & x_{i} \\
1 & x_{j}
\end{array}\right|^{2}=\left(x_{j}-x_{i}\right)^{2}
$$

so pairs of observations that are far apart are given more weight.

Conditional vs Marginal Quantiles

Interpretation of QR results must be careful to distinguish conditional and marginal covariate effects:

- QR estimates covariate effects on conditional quantiles,
- How do changes in covariates impact conditional quantiles of the response,
- Such effects may depend crucially on what the other conditioning covariates are,
- All of this is familiar from classical mean (least-squares) regression,
- But, perhaps, too easily overlooked.

Effects on marginal quantiles may be estimated by integrating with respect to the marginal distribution of the covariates, Machado and Mata (2001), Chernozhukov et al. (2013).

Quantile Regression: The Movie

- Bivariate linear model with iid Student t errors
- Conditional quantile functions are parallel in blue
- 100 observations indicated in blue
- Fitted quantile regression lines in red.
- Intervals for $\tau \in(0,1)$ for which the solution is optimal.

What is a College Degree Worth?

$$
Y_{i}=\alpha_{i}+\beta_{i}+\gamma_{i},
$$

Y_{i} Discounted Career Earnings
α_{i} Ability Component
β_{i} College Component
γ_{i} Major Component
Conditional Quantile Interpretation: Among individuals of a given α and γ, what income level, β, is such that proportion τ are below β, and ($1-\tau$) are above.
Conditional Distribution Interpretation: Given a fixed income level, y, how do changes in ability, college completion status, and choice of major influence the probability of exceeding that level.

Quantile Regression in the iid Error Model

Quantile Regression in the Heteroscedastic Error Model

Quantile Regression in the Heteroscedastic Error Model

Roger Koenker \& Judy Huixia Wang Lecture 1. The Basics: What, Why and How?

Quantile Regression in the Heteroscedastic Error Model

Quantile Regression in the Heteroscedastic Error Model

Roger Koenker \& Judy Huixia Wang Lecture 1. The Basics: What, Why and How?

Quantile Regression in the Heteroscedastic Error Model

Quantile Regression in the Heteroscedastic Error Model

Conditional Means vs. Medians

Minimizing absolute errors for median regression can yield something quite different from the least squares fit for mean regression.

Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions $Q_{Y}(\tau \mid x)$ are equivariant in the sense that

$$
Q_{h(Y) \mid X}(\tau \mid x)=h\left(Q_{Y \mid X}(\tau \mid x)\right)
$$

In contrast to conditional mean functions for which, generally,

$$
E(h(Y) \mid X) \neq h(E Y \mid X)
$$

Examples:
$h(y)=\min \{0, y\}$, censored regression estimator of Powell (1986) . $h(y)=\operatorname{sgn}\{y\}$, perceptron of Rosenblatt (1958), maximum score estimator of Manski (1975).

Lehmann QTE as a QQ-Plot

Doksum (1974) defines $\Delta(x)$ as the "horizontal distance" between F and G at x, i.e.

$$
F(x)=G(x+\Delta(x)) .
$$

Then $\Delta(x)$ is uniquely defined as

$$
\Delta(x)=G^{-1}(F(x))-x
$$

This is the essence of the conventional QQ-plot. Changing variables so $\tau=F(x)$ we have the quantile treatment effect (QTE):

$$
\delta(\tau)=\Delta\left(F^{-1}(\tau)\right)=G^{-1}(\tau)-F^{-1}(\tau) .
$$

Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment response:
"Suppose the treatment adds the amount $\Delta(x)$ when the response of the untreated subject would be x. Then the distribution G of the treatment responses is that of the random variable $X+\Delta(X)$ where X is distributed according to F."

Lehmann-Doksum QTE

Lehmann-Doksum QTE

The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal distributions, F and G, but it cannot reveal anything about the joint distribution, H. The copula function, Schweizer and Wolf (1981), Genest and McKay, (1986),

$$
\varphi(u, v)=H\left(F^{-1}(u), G^{-1}(v)\right),
$$

is not identified. Lehmann's formulation assumes that the treatment leaves the ranks of subjects invariant. If a subject was going to be the median control subject, then he will also be the median treatment subject. This is an inherent limitation of the Neymann-Rubin potential outcomes framework.

An Asymmetric Example

Treatment shifts the distribution from right skewed to left skewed making the QTE U-shaped.

QTE via Quantile Regression
The Lehmann QTE is naturally estimable by

$$
\hat{\delta}(\tau)=\hat{G}_{n}^{-1}(\tau)-\hat{F}_{m}^{-1}(\tau),
$$

where \hat{G}_{n} and \hat{F}_{m} denote the empirical distribution functions of the treatment and control observation. Consider the quantile regression model

$$
Q_{y_{i}}\left(\tau \mid D_{i}\right)=\alpha(\tau)+\delta(\tau) D_{i},
$$

where D_{i} denotes the treatment indicator, and $Y_{i}=h\left(T_{i}\right)$, e.g. $Y_{i}=\log T_{i}$, which can be estimated by solving,

$$
\min \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\alpha-\delta D_{i}\right)
$$

Galton's (1885) Anthropometric Quantiles

224	NATURE											[fan. 8, 1885			
Values surpassed, (The value that i:	Values mached by	ess unreac $\text { by } n \text { pc }$		NTI			R.	CEN	iles						
Subject of meastrement	$\mathrm{Agc}^{\text {g }}$		Sex				$\begin{aligned} & 80 \\ & 20 \end{aligned}$	$\begin{gathered} \text { Valys } \\ 10 \\ 30 \end{gathered}$		by pe 50 dy dem 50	40		80	10	5
$\left.\begin{array}{c}\text { Height, standing, } \\ \text { without hhoes... }\end{array}\right\}$	23-51	Inches $\{$	$\frac{\mathrm{M}}{\mathrm{~F} .}$	$\begin{aligned} & 811 \\ & 770 \end{aligned}$	$\begin{aligned} & 6 \cdot 3 \cdot 2 \\ & 58 \cdot 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 64.5 \\ & 599 \\ & 59 \end{aligned}$	$\begin{aligned} & 6 \cdot 8 \\ & 65^{2} \cdot 8 \end{aligned}$	$\begin{gathered} 66 \cdot 5 \\ 62_{1}^{\prime} \end{gathered}$	$\begin{array}{\|} 67.3 \\ 62.7 \end{array}$	$\begin{aligned} & 67.9 \\ & \left.\begin{array}{l} 6.3 \end{array}\right) \end{aligned}$	$\begin{aligned} & 68 \cdot 5 \\ & 63 \cdot 9 \end{aligned}$	$69 \cdot 2$ 646	${ }^{70 \%}$	${ }_{66}^{71}$	${ }^{72}$
$\left.\begin{array}{c}\text { Height, sitting from } \\ \text { seat of chair }\end{array}\right\}$	23-51	Inches $\{$	M.	$\begin{array}{r} 1013 \\ 775 \end{array}$	$\begin{aligned} & 33.6 \\ & { }_{3}^{3}+8 \end{aligned}$	$\begin{aligned} & 342 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 349 \\ & 329 \\ & 24 \end{aligned}$	$\begin{aligned} & 35.3 \\ & 33.3 \\ & 35 \end{aligned}$	$\left.\begin{array}{\|} 35.4 \\ 335 \end{array} \right\rvert\,$	$\begin{aligned} & { }_{3}^{36} \cdot 0 \end{aligned}$	$\begin{aligned} & 36 \cdot 3 \\ & 344 \end{aligned}$	$\begin{aligned} & 367 \\ & 344^{6} \end{aligned}$	$\begin{aligned} & 377 \\ & 349 \end{aligned}$	$\begin{aligned} & 37.7 \\ & 356 \\ & 35 \end{aligned}$	${ }^{38.2}$
Span of arms	${ }^{23-51}$	Inches $\{$	M.	$\begin{aligned} & 8 \mathrm{In} \\ & 770 \end{aligned}$	¢5\%\%	$\begin{aligned} & 66 \cdot 1 \\ & 59 \end{aligned}$	672. ${ }^{60}$	$\begin{aligned} & 68 \cdot 2 \\ & 617 \\ & 617 \end{aligned}$	$\begin{gathered} c_{9} \circ \\ 624 \end{gathered}$	$\begin{aligned} & 69.9 \\ & 63^{\circ} 9 \end{aligned}$	$\begin{aligned} & 766 \\ & 67_{7} \end{aligned}$	$\begin{aligned} & 714 \\ & 64 \cdot 4 \end{aligned}$	${ }^{72}$	${ }_{667} 78$	74.8
$\left.\begin{array}{l} \text { Weight in ordinary } \\ \text { indoor clothes.. } \end{array}\right\}$	23-26	Pounds $\}$	M	$\begin{aligned} & 520 \\ & 276 \end{aligned}$	$\begin{aligned} & 121 \\ & 102 \end{aligned}$	$\begin{aligned} & 125 \\ & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 131 \\ & 110 \\ & 10 \end{aligned}$	${ }_{13}^{135}$	${ }_{118}^{139}$	${ }_{122}^{143}$	${ }_{14}^{147} 1$	$\left\lvert\, \begin{gathered} 150 \\ 132 \\ 132 \end{gathered}\right.$	$1 \begin{aligned} & 156 \\ & 136\end{aligned}$	1165 142 1	172 149
Breathing capacily	${ }^{23-26}$	$\left.\begin{gathered} \text { Cubic } \\ \text { inches } \end{gathered} \right\rvert\,$	M.	$\begin{aligned} & 212 \\ & 277 \end{aligned}$	${ }_{92}^{165}$	$\begin{aligned} & 177 \\ & 102 \\ & 107 \end{aligned}$	$\begin{aligned} & 187 \\ & 115 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} 199 \\ 124 \end{array}$	$\begin{aligned} & 211 \\ & 131 \end{aligned}$	$\begin{aligned} & 219 \\ & 138 \\ & 138 \end{aligned}$	$\begin{aligned} & 226 \\ & 144 \\ & 144 \end{aligned}$	$\begin{aligned} & 236 \\ & 151 \\ & 156 \end{aligned}$	1248	${ }_{2}^{277}$	${ }_{186}^{290}$
$\left.\begin{array}{c} \text { Strength of pull as as } \\ \text { archer with bow } \end{array}\right\}$	2326	Pounds $\{$	$\stackrel{\mathrm{M}}{\mathrm{~F}}$	$\begin{aligned} & 519 \\ & 276 \end{aligned}$	$\begin{aligned} & 56 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 32 \end{aligned}$	$\begin{aligned} & 64 \\ & 34 \end{aligned}$	$\begin{aligned} & 68 \\ & 36 \end{aligned}$	${ }_{38}^{71}$	${ }_{40}^{74}$	${ }_{42}^{77}$	$\begin{aligned} & 88 \\ & 44 \end{aligned}$	82 47 47	89 51	96 54
$\left.\begin{array}{c}\text { Strength of:quezeze } \\ \text { with strongesthand }\end{array}\right\}$	23-26	Pounds $\}$	$\frac{\mathrm{M}}{\mathrm{~F} .}$	$\begin{aligned} & 519 \\ & 276 \end{aligned}$	$\begin{aligned} & 67 \\ & { }_{3}^{6} \end{aligned}$	$\begin{aligned} & 7 \mathrm{r} \\ & 39 \end{aligned}$	$\begin{aligned} & 76 \\ & 43 \end{aligned}$	${ }_{47}^{79}$	$\begin{aligned} & 82 \\ & 49 \end{aligned}$	$\begin{aligned} & 85 \\ & 52 \end{aligned}$	$\begin{aligned} & 88 \\ & 55 \end{aligned}$	${ }_{5}^{91}$	${ }_{62} 9$	$\underset{10}{10}$	${ }_{72}{ }_{7}$
Swifness of blow.	${ }^{23-26}$		$\stackrel{\mathrm{M}}{\mathrm{~F} .}$	$\begin{aligned} & 516 \\ & 271 \end{aligned}$	${ }_{\substack{13.2 \\ 9.2}}$	${ }_{101}^{14.1}$	${ }_{11}^{15}$	$\begin{aligned} & 16 \cdot 2 \cdot \\ & 12 \end{aligned}$	${ }_{12}^{17}$	$\begin{aligned} & 18.11 \\ & 134 \end{aligned}$	${ }_{14}^{19}{ }^{19}$	$\begin{gathered} 200 \\ 14.5 \end{gathered}$	20'9	${ }_{16}^{22}$	${ }^{23 \cdot 6}$
Sight, keenness of -by distance of test-type	23-26	Inches $\{$	$\stackrel{\mathrm{M}}{\mathrm{F} .}$	${ }_{433}^{398}$	138	172	20 16	22 19	${ }_{22}^{23}$	24	${ }_{26}^{26}$	28 27	29	3_{31}^{32}	${ }_{32}^{34}$

Engel's Food Expenditure Data

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in\{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau=.5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

QTE: Strength of Squeeze

"Very powerful women exist, but happily perhaps for the repose of the other sex, such gifted women are rare."

Engel's Food Expenditure Data

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in\{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau=.5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

A Model of Infant Birthweight

- Reference: Abrevaya (2001), Koenker and Hallock (2000).
- Data: June, 1997, Detailed Natality Data of the US. Live, singleton births, with mothers recorded as either black or white, between 18-45, and residing in the U.S. Sample size: 198,377.
- Response: Infant Birthweight (in grams)
- Covariates:
- Mother's Education
- Mother's Prenatal Care
- Mother's Smoking
- Mother's Age
- Mother's Weight Gain

Quantile Regression Birthweight Model II

Marginal Effect of Mother's Weight Gain

Nonparametric QAR(1) Fit

Daily Temperature in Melbourne

Conditional Densities of Daily Temperature

Review of Lecture 1

Least squares methods of estimating conditional mean functions

- were developed for, and
- promote the view that,

$$
\text { Response }=\text { Signal }+ \text { iid Measurement Error }
$$

In fact the world is rarely this simple.
More flexible models can be formulated that allow one to estimate several conditional quantile functions of the response, and thereby reveal scale and shape effects of the covariates, not simply their location shift effect.

The Precision of Sample Quantiles?

For random samples from a continuous distribution, F, the sample quantiles, $\hat{F}_{n}^{-1}(\tau)$ are consistent, by the Glivenko-Cantelli theorem. Rates of convergence and precision are governed by the density near the quantile of interest, if it exists.
Note that differentiating the identity: $F\left(F^{-1}(t)\right)=t$, yields,

$$
\frac{d}{d t} F\left(F^{-1}(t)\right)=f\left(F^{-1}(t)\right) \frac{d}{d t} F^{-1}(t)=1
$$

thus, provided of course that $f\left(F^{-1}(t)\right)>0$,

$$
\frac{d}{d t} F^{-1}(t)=\frac{1}{f\left(F^{-1}(t)\right)}
$$

So, limiting normality of \hat{F}_{n} and the δ-method imply limiting normality of the sample quantiles with \sqrt{n} rate and variance proportional to $f^{-2}\left(F^{-1}(t)\right)$.

Lecture 2. Inference for Quantile Regression

- Inference for the Sample Quantiles
- QR Inference in iid Error Models*
- QR Inference in Heteroscedastic Error Models*
- Classical Rank Tests and the Quantile Regression Dual*

Inference for the Sample Quantiles

Minimizing $\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\xi\right)$ consider

$$
g_{n}(\xi)=-n^{-1} \sum_{i=1}^{n} \psi_{\tau}\left(y_{i}-\xi\right)=n^{-1} \sum_{i=1}^{n}\left(I\left(y_{i}<\xi\right)-\tau\right) .
$$

By convexity of the objective function,

$$
\left\{\hat{\xi}_{\tau}>\xi\right\} \Leftrightarrow\left\{g_{n}(\xi)<0\right\}
$$

and the DeMoivre-Laplace CLT yields, expanding F,

$$
\sqrt{n}\left(\hat{\xi}_{\tau}-\xi\right) \rightsquigarrow \mathcal{N}\left(0, \omega^{2}(\tau, F)\right)
$$

where $\omega^{2}(\tau, F)=\tau(1-\tau) / f^{2}\left(F^{-1}(\tau)\right)$. Classical Bahadur-Kiefer representation theory provides further refinement of this result.

Some Gory Details

Instead of a fixed $\xi=F^{-1}(\tau)$ consider,

$$
\mathbb{P}\left\{\hat{\xi}_{n}>\xi+\delta / \sqrt{n}\right\}=\mathbb{P}\left\{g_{n}(\xi+\delta / \sqrt{n})<0\right\}
$$

where $g_{n} \equiv g_{n}(\xi+\delta / \sqrt{n})$ is a sum of iid terms with

$$
\begin{aligned}
\mathbb{E} g_{n} & =\mathbb{E} n^{-1} \sum_{i=1}^{n}\left(I\left(y_{i}<\xi+\delta / \sqrt{n}\right)-\tau\right) \\
& =F(\xi+\delta / \sqrt{n})-\tau \\
& =f(\xi) \delta / \sqrt{n}+o\left(n^{-1 / 2}\right) \\
& \equiv \mu_{n} \delta+o\left(n^{-1 / 2}\right) \\
\mathbb{V} g_{n} & =\tau(1-\tau) / n+o\left(n^{-1}\right) \equiv \sigma_{n}^{2}+o\left(n^{-1}\right)
\end{aligned}
$$

Thus, by (a triangular array form of) the DeMoivre-Laplace CLT,

$$
\mathbb{P}\left(\sqrt{n}\left(\hat{\xi}_{n}-\xi\right)>\delta\right)=\Phi\left(\left(0-\mu_{n} \delta\right) / \sigma_{n}\right) \equiv 1-\Phi\left(\omega^{-1} \delta\right)
$$

where $\omega=\mu_{n} / \sigma_{n}=\sqrt{\tau(1-\tau)} / f\left(F^{-1}(\tau)\right)$.

Asymptotic Theory of Quantile Regression I

In the classical linear model,

$$
y_{i}=x_{i} \beta+u_{i}
$$

with u_{i} iid from df F, with density $f(u)>0$ on its support $\{u \mid 0<F(u)<1\}$, the joint distribution of $\sqrt{n}\left(\hat{\beta}_{n}\left(\tau_{i}\right)-\beta\left(\tau_{i}\right)\right)_{i=1}^{m}$ is asymptotically normal with mean 0 and covariance matrix $\Omega \otimes D^{-1}$. Here $\beta(\tau)=\beta+F_{u}^{-1}(\tau) e_{1}, e_{1}=(1,0, \ldots, 0)^{\top}, x_{1 i} \equiv 1, n^{-1} \sum x_{i} x_{i}^{\top} \rightarrow D$, a positive definite matrix, and

$$
\Omega=\left(\left(\tau_{i} \wedge \tau_{j}-\tau_{i} \tau_{j}\right) /\left(f\left(F^{-1}\left(\tau_{i}\right)\right) f\left(F^{-1}\left(\tau_{j}\right)\right)\right)_{i, j=1}^{m} .\right.
$$

Finite Sample Density for QR

Let $h \in \mathcal{H}$ index the $\binom{n}{p} p$-element subsets of $\{1,2, \ldots, n\}$ and $X(h), y(h)$ denote corresponding submatrices and vectors of X and y.
Lemma: $\quad \hat{\beta}=b(h) \equiv X(h)^{-1} y(h)$ is the τ th regression quantile iff $\xi_{h} \in \mathcal{C}$ where $\xi_{h}=\sum_{i \notin h} \psi_{\tau}\left(y_{i}-x_{i} \hat{\beta}\right) x_{i}^{\top} X(h)^{-1}, \mathcal{C}=[\tau-1, \tau]^{p}$, and $\psi_{\tau}(u)=\tau-I(u<0)$.
Theorem: (Koenker and Bassett, 1978) In the linear model with iid errors, $\left\{u_{i}\right\} \sim F, f$, the density of $\hat{\beta}(\tau)$ is given by

$$
\begin{gathered}
g(b)=\sum_{h \in \mathcal{H}} \prod_{i \in h} f\left(x_{i}^{\top}(b-\beta(\tau))+F^{-1}(\tau)\right) \\
\cdot P\left(\xi_{h}(b) \in C\right)|\operatorname{det}(X(h))|
\end{gathered}
$$

Asymptotic behavior of $\hat{\beta}(\tau)$ follows by (painful) consideration of the limiting form of this density, see also Goh and Knight (2009).

Asymptotic Theory of Quantile Regression II

When the response is conditionally independent over i, but not identically distributed, the asymptotic covariance matrix of $\zeta(\tau)=\sqrt{n}(\hat{\beta}(\tau)-\beta(\tau))$ is somewhat more complicated. Let $\xi_{i}(\tau)=x_{i} \beta(\tau), f_{i}(\cdot)$ denote the corresponding conditional density, and define,

$$
\begin{aligned}
J_{n}\left(\tau_{1}, \tau_{2}\right) & =\left(\tau_{1} \wedge \tau_{2}-\tau_{1} \tau_{2}\right) n^{-1} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \\
H_{n}(\tau) & =n^{-1} \sum x_{i} x_{i}^{\top} f_{i}\left(\xi_{i}(\tau)\right)
\end{aligned}
$$

Under mild regularity conditions on the $\left\{f_{i}\right\}$'s and $\left\{x_{i}\right\}$'s, we have joint asymptotic normality for $\left(\zeta\left(\tau_{i}\right), \ldots, \zeta\left(\tau_{m}\right)\right)$ with covariance matrix

$$
V_{n}=\left(H_{n}\left(\tau_{i}\right)^{-1} J_{n}\left(\tau_{i}, \tau_{j}\right) H_{n}\left(\tau_{j}\right)^{-1}\right)_{i, j=1}^{m} .
$$

Making Sandwiches

The crucial ingredient of the QR Sandwich is the quantile density function $f_{i}\left(\xi_{i}(\tau)\right)$, which can be estimated by a difference quotient. Differentiating the identity: $F(Q(t))=t$ we get

$$
s(t)=\frac{d Q(t)}{d t}=\frac{1}{f(Q(t))}
$$

sometimes called the "sparsity function" so we can compute

$$
\hat{f}_{i}\left(x_{i}^{\top} \hat{\beta}(\tau)\right)=2 h_{n} /\left(x_{i}^{\top}\left(\hat{\beta}\left(\tau+h_{n}\right)-\hat{\beta}\left(\tau-h_{n}\right)\right)\right.
$$

with $h_{n}=O\left(n^{-1 / 3}\right)$. Prudence suggests a modified version:

$$
\tilde{f}_{i}\left(x_{i}^{\top} \hat{\beta}(\tau)\right)=\max \left\{0, \hat{f}_{i}\left(x_{i}^{\top} \hat{\beta}(\tau)\right)\right\} .
$$

Various other strategies can be employed including a variety of bootstrapping options. More on this in Lecture 3.

Rank Based Inference for Quantile Regression

- Ranks play a fundamental dual role in QR inference, via a generalization Hájek rankscore functions,
- Classical rank tests for the p-sample problem can thereby be extended to regression settings,
- Rank tests play the role of Rao (score) tests for quantile regression,
- Rank tests can be inverted to produce confidence intervals (regions).

Testing Equality of "Slopes"

Wald-type inference with QR sandwiches is applicable to a wide variety of hypotheses. Frequently, it is of interest to test whether covariate (treatment) effects differ across quantiles. In the R package quantreg such tests and many others can be accomplished with the command anova, e.g.
> data(engel)
> f1 <- rq(foodexp ~ income, tau = . 25, data $=$ engel)
$>\mathrm{f} 2<-\mathrm{rq}($ foodexp \sim income, tau $=.5$, data $=$ engel $)$
$>\mathrm{f} 3<-\mathrm{rq}(f$ foodexp \sim income, tau $=.75$, data $=$ engel)
> anova(f1,f2,f3)
Quantile Regression Analysis of Deviance Table
Model: foodexp ~ income
Joint Test of Equality of Slopes: tau in \{ 0.250 .50 .75 \}

$$
\text { Df Resid Df F value } \quad \operatorname{Pr}(>F)
$$

$$
\begin{array}{lllll}
\text { DI } & \text { Resid } \\
1 & 2 & 703 & 15.557 & 2.449 \mathrm{e}-07
\end{array}
$$

Duality of Ranks and Quantiles

We have seen that quantiles may be defined as

$$
\hat{\xi}(\tau)=\operatorname{argmin} \sum \rho_{\tau}\left(y_{i}-\xi\right),
$$

where $\rho_{\tau}(u)=u(\tau-I(u<0))$. This can be formulated as a linear program whose dual solution

$$
\hat{a}(\tau)=\arg \max \left\{y^{\top} a \mid 1_{n}^{\top} a=(1-\tau) n, a \in[0,1]^{n}\right\}
$$

generates the Hájek rankscore functions.
Reference: Gutenbrunner and Jurečková (1992).

Regression Quantiles and Rank Scores

$$
\begin{aligned}
& \hat{\beta}_{n}(\tau)=\operatorname{argmin}_{b \in R^{p}} \sum \rho_{\tau}\left(y_{i}-x_{i}^{\top} b\right) \\
& \hat{a}_{n}(\tau)=\arg \max _{a \in[0,1]^{n}\left\{y^{\top} a \mid X^{\top} a=(1-\tau) X^{\top} 1_{n}\right\}}
\end{aligned}
$$

$x^{\top} \hat{\boldsymbol{\beta}}_{n}(\tau)$
Estimates $Q_{Y}(\tau \mid x)$
Piecewise constant on [0, 1].
For $X=1_{n}, \hat{\beta}_{n}(\tau)=\hat{F}_{n}^{-1}(\tau)$.
$\left\{\hat{a}_{i}(\tau)\right\}_{i=1}^{n} \quad$ Regression rankscore functions
Piecewise linear on $[0,1]$.
Generalized to regression via the dual formulation.
For $X=1_{n}, \hat{a}_{i}(\tau)$ are the Hajek functions.

Regression Rankscore Tests

$$
\begin{gathered}
Y=X \beta+Z \gamma+u \\
H_{0}: \gamma=0 \text { versus } H_{n}: \gamma=\gamma_{0} / \sqrt{n}
\end{gathered}
$$

Given the regression rank score process for the restricted model,

$$
\hat{a}_{n}(\tau)=\arg \max \left\{Y^{\top} a \mid X^{\top} a=(1-\tau) X^{\top} 1_{n}\right\}
$$

A test of H_{0} is based on the linear rank statistics,

$$
\hat{b}_{n}=\int_{0}^{1} \hat{a}_{n}(t) d \varphi(t)
$$

Choice of the score function φ permits test of location, scale or (potentially) other effects.

Regression Rankscore "Residuals"

The Wilcoxon rankscores,

$$
\tilde{u}_{i}=\int_{0}^{1} \hat{a}_{i}(t) d t
$$

play the role of quantile regression residuals. For each observation y_{i} they answer the question: on which quantile does y_{i} lie? The \tilde{u}_{i} satisfy an orthogonality restriction:

$$
X^{\top} \tilde{u}=X^{\top} \int_{0}^{1} \hat{a}(t) d t=n \bar{x} \int_{0}^{1}(1-t) d t=n \bar{x} / 2 .
$$

This is something like the $X^{\top} \hat{u}=0$ condition for OLS. Note that if the X is "centered" then $\bar{x}=(1,0, \cdots, 0)$. The \tilde{u} vector is approximately uniformly "distributed;" in the one-sample setting $u_{i}=\left(R_{i}+1 / 2\right) / n$ so they are obviously "too uniform."

Regression Rankscore Tests

Theorem: (Gutenbrunner et al., 1993) Under H_{n} and regularity conditions, the test statistic $T_{n}=S_{n}^{\top} Q_{n}^{-1} S_{n}$ where $\left.S_{n}=(Z-\hat{Z})^{\top} \hat{b}_{n}, \quad \hat{Z}=X\left(X^{\top} X\right)^{-1} X^{\top} Z, Q_{n}=n^{-1}(Z-\hat{Z})^{\top} Z-\hat{Z}\right)$

$$
T_{n} \rightsquigarrow \chi_{q}^{2}(\eta)
$$

where

$$
\begin{aligned}
\eta^{2} & =\omega^{2}(\varphi, F) \gamma_{0}^{\top} Q \gamma_{0} \\
\omega(\varphi, F) & =\int_{0}^{1} f\left(F^{-1}(t)\right) d \varphi(t)
\end{aligned}
$$

Regression Rankscores for Stackloss Data

Inversion of Rank Tests: Confidence Intervals

For the scalar γ case and using the score function

$$
\begin{gathered}
\varphi_{\tau}(t)=\tau-I(t<\tau) \\
\hat{b}_{n i}=-\int_{0}^{1} \varphi_{\tau}(t) d \hat{a}_{n i}(t)=\hat{a}_{n i}(\tau)-(1-\tau)
\end{gathered}
$$

with $\bar{\varphi}=\int_{0}^{1} \varphi_{\tau}(t) d t=0$ and $A^{2}\left(\varphi_{\tau}\right)=\int_{0}^{1}\left(\varphi_{\tau}(t)-\bar{\varphi}\right)^{2} d t=\tau(1-\tau)$. Thus, a test of the hypothesis $H_{0}: \gamma=\xi$ may be based on \hat{a}_{n} from solving,

$$
\max \left\{\left(y-x_{2} \xi\right)^{\top} a \mid X_{1}^{\top} a=(1-\tau) X_{1}^{\top} 1, a \in[0,1]^{n}\right\}
$$

and the fact that

$$
S_{n}(\xi)=n^{-1 / 2} x_{2}^{\top} \hat{b}_{n}(\xi) \rightsquigarrow \mathcal{N}\left(0, A^{2}\left(\varphi_{\tau}\right) q_{n}^{2}\right) .
$$

Regression Rankscores for Stackloss Data

Inversion of Rank Tests: Confidence Intervals

That is, we may compute

$$
T_{n}(\xi)=S_{n}(\xi) /\left(A\left(\varphi_{\tau}\right) q_{n}\right),
$$

where $q_{n}^{2}=n^{-1} x_{2}^{\top}\left(I-X_{1}\left(X_{1}^{\top} X_{1}\right)^{-1} X_{1}^{\top}\right) x_{2}$, and reject H_{0} if $\left|T_{n}(\xi)\right|>\Phi^{-1}(1-\alpha / 2)$.

Inverting this test, that is finding the interval of ξ 's such that the test fails to reject yields a confidence interval for the parameter γ. Unlike the Wald type inference it delivers asymmetric intervals. This is the default approach to parametric inference in R package quant reg for problems of modest sample size.

Bootstrap Inference for QR

There are several bootstrapping methods for QR inference

- Standard pairwise XY
- Gradient resampling a la Parzen et al. (1994)
- Markov chain marginal bootstrap of Kocherginsky et al. (2005)
- Weighted bootstrap of Bose and S. (2003)
- Wild bootstrap of Feng et al. (2011)
- Wild bootstrap for clustered data Hagemann (2014)

Lecture 3. Computation and Examples

- Estimation in R and Examples
- Inference in R and Examples
- Estimation and Inference in SAS
- Nonparametric Quantile Regression in R

Four Concluding Comments about Inference

- Asymptotic inference for quantile regression poses some statistical challenges since it involves elements of nonparametric density estimation, but this shouldn't be viewed as a major obstacle.
- Classical rank statistics and Hájek 's rankscore process are closely linked via Gutenbrunner and Jurečková 's regression rankscore process, providing an attractive approach to many inference problems while avoiding density estimation.
- Inference on the quantile regression process can be conducted with the aid of Khmaladze's extension of the Doob-Meyer construction.
- Resampling offers many further lines of development for inference in the quantile regression setting.

Estimation in Linear Quantile Regression

Linear quantile regression model:

$$
y_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau)+e_{i}, \quad Q_{e_{i} \mid \mathbf{x}_{i}}(\tau)=0 .
$$

Estimator:

$$
\hat{\boldsymbol{\beta}}(\tau)=\operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) .
$$

Software

- R package quantreg
- SAS/STAT PROC QUANTREG
- STATA: www. stata. com
- SPLUS
- Mathematica:
http://mathematicaforprediction.wordpress.com
- Matlab code for quantile regression:
www.econ.uiuc.edu/~roger/research/rq/rq.m
www.stat.psu.edu/~dhunter/code/qrmatlab

Estimation in R

- The syntax of rq() function
library (quantreg)
rq(formula, tau=0.5, data, method="br", ...)
- formula: model statement, e.g.

$$
y \sim x 1+x 2
$$

- tau: quantile level(s) of interest
- If tau is a single number $\in(0,1)$, returns the estimates from regression at this specified quantile level.
- If tau is a vector, e.g. tau $=c(0.25,0.5,0.75)$, returns the estimates from regression at multiple quantiles.
- If tau $\notin(0,1)$, returns the entire quantile process.

Estimation in R

- R package quantreg.
- Install the quantreg package in R
- From CRAN directly: install.packages("quantreg")
- From local source:
install.packages("dir/filename", repos = NULL,
type="source")
e.g. Windows:
install.packages("C:/quantreg_5.05.zip",
repos = NULL, type="source")
Mac:
install.packages("/Users/Documents/ quantreg_5-1.05.tar", repos = NULL,
type="source")

Estimation in R

- rq methods
- method="br": Simplex method (default). Efficient for problems with modest size (several thousands). Slow relative to LSE for large problems.
- method="fn": the Frisch-Newton interior point method. More efficient than simplex for larger sample size.
- method="pfn": the Frisch-Newton approach with preprocessing. Recommended for very large problems (e.g. $n>10^{5}$).
- method="lasso": the Frisch-Newton approach with lasso penalty. Recommended for very large problems (e.g. $n>10^{5}$). See also rqss.

Example 1: Engel's Food Expenditure

Linear quantile regression model:

$$
Q_{\tau}(\text { foodexp } \mid \text { income })=\alpha_{\tau}+\beta_{\tau} \times \text { income }
$$

R code:

library (quantreg)
\#plot the data
plot(engel)
\#estimation at median
$\mathrm{f1}=\mathrm{rq}($ foodexp~income, $\mathrm{tau}=0.5$, data=engel)
\#superimpose median regression line
abline(f1,col="red")

Example 1: Engel's Food Expenditure

```
> f1
Call:
rq(formula = foodexp ~ income, tau = 0.5, data = engel)
Coefficients:
```



```
f f2
Call:
rq(formula = foodexp ~ income, tau = taus, data = engel)
Coefficients:
(Intercept) tau= 0.10 tau= 0.25 tau= 0.75 tau= 0.90
income 0.4017658 0.4741032 0.6440141 0.6862995
```


Example 1: Engel's Food Expenditure

Automatic plots of the estimated quantile coefficients across quantile levels can be obtained by using the R function plot.rqs:

```
taus = 1:49/50
fm = rq(foodexp~income, taus, data=engel)
plot(fm, mfrow=c(1,2))
#or plot only the second coefficient (slope)
plot(fm, parm = 2, xlab = "tau", cex = 1, pch = 19)
```

Try the R function example (rq) for illustration of quantile regression analysis on the data stackloss and engel.

Compare the Computing Time of Estimation Methods via Simulation

```
library(quantreg)
#a simulated data with one predictor
set.seed(1278991)
n = 1000
x = runif(n)
y=1 + x + (1+x)*rnorm(n)
system.time(lmfit <- lm(y~x))
system.time(f1 <- rq(y~x, tau=0.5, method="br"))
system.time(f2 <- rq(y~x, tau=0.5, method="fn"))
system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))
> system.time(lmfit <- lm(y~x))
    user system elapsed
> system.time(f1 <- rq(y~x, tau=0.5, method="br"))
    user system elapsed
> system.time(f2 <- rq(y~x, tau=0.5, method="fn"))
    user system elapsed
    0.328 0.004 0.352
> system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))
    user system elapsed
    0.008 0.002 0.014
```

```
> set.seed(1278991)
>n=200000
> x = runif(n)
>y = 1 + x + (1+x)*rnorm(n)
> system.time(lmfit <- lm(y~x))
    user system elapsed
    0.955 0.036 1.119
> system.time(f1 <- rq(y~x, tau=0.5, method="br"))
    user system elapsed
    9.438 0.074 9.516
> system.time(f2 <- rq(y~x, tau=0.5, method="fn"))
    user system elapsed
    1.031 0.066 1.099
> system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))
    user system elapsed
0.562 0.055 0.635
```


Inference in R

function:

```
rq.object = rq(y~x, tau)
summary.rq(rq.object, se="nid", ...)
```

- se="rank": default method, constructs confidence intervals by the inversion of rank score test (Gutenbrunner et al., 1993; Koenker, 1994). The default confidence level is 90%, use "alpha $=0.05$ " to obtain 95% confidence intervals.
- se="nid": based on the asymptotic normality and direct estimation of the asymptotic variance assuming non i.i.d. errors.
- se="iid": similar as "nid" but assumes i.i.d. errors.
- se="ker": based on direct estimation of the asymptotic variance and uses a kernel estimate of the sandwich.

A Simulated Data with Sparse Design Matrix

set.seed(1278991)
n = 1000; p=500
X = matrix(rbinom(n*p,1,0.5),ncol=p)
beta =c(rep (2,5), rep (0,p-5))
y = 1 + X%*%beta + (1+X[,1])*rnorm(n)
system.time(f1 <- rq(y~X, tau=0.5, method="br"))
system.time(f2 <- rqss(y~X, tau=0.5, method="sfn"))
system.time(f3 <- rq(y~X, tau=0.5, method="lasso",
lambda=10))
olot(f3\$coef)
> system.time(f1 <- rq(y~X, tau=0.5, method="br"))
user system elapsed
9.439 0.056 9.494
> system.time(f2 <- rqss(y~X, tau=0.5, method="sfn"))
user system elapsed
4.082 0.202 4.305
> system.time(f3 <- rq(y~X, tau=0.5, method="lasso",

+ lambda=10))
user system elapsed
2.046 0.042 2.110

```

\section*{Inference in R}
- se="boot": uses bootstrap to estimate standard errors.
- bsmethod="xy": xy-pair bootstrap.
- bsmethod="pwy": resampling the estimating equations (Parzen et al., 1994).
- bsmethod="mcmb": Markov chain marginal bootstrap (He and Hu, 2002), relieves the computational burden by reducing a high-dimensional problem to several one-dimensional problems.
- bmethod = "wxy": uses the generalized bootstrap with unit exponential weights (Bose and S., 2003).
- bsmethod="wild": wild bootstrap (Feng et al., 2011).

\section*{Engel's—Confidence Band (rank)}
- Manually construct \(95 \%\) pointwise confidence band of the estimated coefficients using the rank score method.
```

taus = 1:49/50
coef = lb = ub = NULL
for(i in 1:length(taus)) {
obj = rq(foodexp~income, tau=taus[i], data=engel)
f1 = summary(obj, se="rank", alpha=0'.05)
coef = rbind(coef, f1$coef[',1])
 coef = rbind(coef, f1$coef[,
lb = rbind(lb, f1\$coef[,2])
}
\#intercept
plot(coef[,1]~taus,ylim=range(c(coef[,1],lb[,1],ub[,1])),
ylab="intercept", type="b")
lines(lb[,1]~taus, col="blue", lty=5
lines(ub[,1]~taus, col="blue", lty=5
\#slope
plot(coef[,2]~taus,ylim=range(c(coef[,2],lb[,2],ub[,2])),
ylab="income",type="b")
lines(lb[,2]~taus,col="blue",lty=5)
lines(ub[,2]~taus,col="blue",'lty=5)

```

\section*{Engel's—Confidence Band (rank)}


\section*{Engel's-Confidence Band (rank)}
- Construct 95\% pointwise confidence bands automatically by using the R function plot.summary.rqs ().
```

taus = 1:49/50
fm = rq(foodexp~income, taus, data=engel)
sfm = summary(fm, se="rank", alpha=0.05)
plot(sfm, mfrow=c(1,2))
\#plot the CB for only the slope
plot(sfm, parm = 2, xlab = "tau", cex = 1, pch = 19)

```

\section*{Engel's—Confidence Band (nid)}
- Construct \(95 \%\) pointwise confidence band of the estimated coefficients using the "nid" method.
```

sfm = summary(fm, se="nid")
plot(sfm, mfrow=c(1,2))

```

\section*{Engel's—Confidence Band (nid)}


\section*{Example 2: Infant Birthweight}

Quantile regression model:
\(Q_{\tau}(\) Birthweight \()=\) Boy + Married + Black + Mother's Age
+ Mother's Age \({ }^{2}+\) High School + Some College + College
+No Prenatal + Prenatal Second + Prenatal Third
+ Smoker + Cigarette's/Day + Mother's Weight Gain
+ Mother's Weight Gain \({ }^{2}\)
Quantile levels considered:
\[
\tau=0.05,0.1,0.15, \ldots, 0.9,0.95
\]

\section*{Example 2: Birthweight}

Data: a random subset of NATALITY1997, 10,000 observations
\begin{tabular}{ll}
\hline Variable & Description \\
\hline weight & Infant's birth weight (grams) \\
black & Indicator of black mother \\
married & Indicator of married mother \\
boy & Indicator of boy \\
visit & Prenatal visit: 0 = no visit, \(1=\) visit in 1st, \\
& \(2=\) visit in 2nd, \(3=\) visit in 3rd trimester \\
ed & Mother's edu.: \(0=\) high school, \(1=\) some college, \\
& \(2=\) college, \(3=\) less than high school \\
smoke & Indicator of smoking mother \\
cigsper & Number of cigarettes smoked per day \\
momage & Mother's age \\
mwtgain & Mother's weight gain during pregnancy
\end{tabular}

\section*{Estimation-R Code}
```

bweight = read.csv(
"http://www4.stat.ncsu.edu/~wang/RQ/bweight.csv")
taus=seq(0.05,0.95,0.05)
coef = se = NULL
for(i in 1:length(taus)){
obj = rq(weight~ boy + married + black + mom.age +
mom.age2 + ed.hs + ed.smcol + ed.col + novisit +
tri2 + tri3 + smoke + cigsper + m.wtgain +
m.wtgain2, tau=taus[i], data=bweight)
f1 = summary(obj, se="nid")
coef = rbind(coef, f1$coef[,1])
se = rbind(se, f1$coef[,2])
}
lb = coef - 1.96*se
ub = coef + 1.96*se
}

```

\section*{Estimation-R Code}
```

par(mfrow=c (2,4))
for(j in 1:8){
plot(coef[,j]~taus,ylim=range(c(coef[,j],lb[,j],ub[,j`
main=names(coef(obj)) [j],type="b")
lines(lb[,j]~taus,col="blue",lty=5)
lines(ub[,j]~taus, col="blue",lty=5)
}
for(j in 9:16){
plot(coef[,j]~taus,ylim=range(c(coef[,j],lb[,j],ub[,j:
main=names(coef(obj)) [j],type="b")
lines(lb[,j]~taus,col="blue",lty=5)
lines(ub[,j]~taus,col="blue",lty=5)
}

```

Confidence Band (nid)







Estimation in SAS
- Package: SAS/STAT PROC QUANTREG
- Basic syntax

PROC QUANTREG DATA = sas-data-set <options \(>\mathbf{C l}=\)
<NONE|RANK|...> ALPHA=value;
BY variables;
CLASS variables;
MODEL response = independents </options>;
RUN;

\section*{To specify the quantile level}
- Use the option QUANTILE in the MODEL statement MODEL Y = X / QUANTILE = <number list | ALL>;
\begin{tabular}{c|c} 
Choice of quantile(s) & Example \\
\hline A single quantile & QUANTILE \(=0.25\) \\
Multiple quantiles & QUANTILE \(=0.250 .50 .75\) \\
Entire Quantile process & QUANTILE \(=\) ALL \\
\hline
\end{tabular}
- Default value is 0.5 , corresponding to the median.

\section*{Default Output}
- Model information: report the name of the data set and the response variable, the number of covariates, the number of observations, algorithm of optimization and the method for confidence intervals.
- Summary statistics: report the sample mean and standard deviation, sample median, MAD and interquartile range for each variable included in the MODEL statement.
- Quantile objective function: report the quantile level to be estimated and the optimized objective function.
- Parameter Estimates: report the estimated coefficients and their \(95 \%\) confidence intervals.

To specify the algorithm
- Use the option ALGORITHM in the PROC QUANTREG statement
\begin{tabular}{l|l} 
Method & Option \\
\hline Simplex & ALGORITHM = SIMPLEX \\
Interior point & ALGORITHM = INTERIOR \\
Interior point with \\
preprocessing & ALGORITHM = INTERIOR PP \\
Smoothing & ALGORITHM = SMOOTHING \\
\hline
\end{tabular}
- The default is Simplex algorithm.

\section*{Nonparametric Quantile Regression in R}
- Locally polynomial method
lprq( \(\mathrm{y}^{\sim} \mathrm{x}, \mathrm{h}=\), tau= \()\)
- B-spline method
rq(y~bs (x, knots= ), tau= )
- Smoothing spline (penalty) method
```

rqss(y~qss(x, constraint="N"), tau=)
\#options for constraint:
"N","I","D","V","C" "VI","VD","CI","CD"

```

\section*{Example 3: Growth Chart}
- Data: Berkeley growth data (Tuddenham and Snyder, 1954)
- Number of female subjects: 54
- Measurements: longitudinal height measurements collected at 31 time points from age 0 to age 18, specifically
- quarterly between ages 0 and 2 ;
- yearly between ages 2 and 8;
- semi-yearly between ages 8 and 21 .

\section*{Growth Chart—R code}
```

```
growth = read.csv(
```

```
growth = read.csv(
"http://www4.stat.ncsu.edu/~wang/RQ/growth.csv")
"http://www4.stat.ncsu.edu/~wang/RQ/growth.csv")
attach(growth)
attach(growth)
taus =c(0.05, 0.1, 0.25,0.5,0.75,0.9,0.95)
taus =c(0.05, 0.1, 0.25,0.5,0.75,0.9,0.95)
#locally polynomial (kernel) method
#locally polynomial (kernel) method
plot(height~age,col="grey", main="Locally polynomial")
plot(height~age,col="grey", main="Locally polynomial")
for(i in 1:length(taus)){
for(i in 1:length(taus)){
fit = lprq(age, height, h=1, taus[i])
fit = lprq(age, height, h=1, taus[i])
lines(fit$fv~fit$xx, col=i)
lines(fit$fv~fit$xx, col=i)
}
```

```
}
```

```

Growth Chart (lprq)


Growth Chart (B-spline)


Lecture 4. Censored QR and Survival Analysis
- Beyond the Transformation Model
- Quantile Regression under Censorship
- Fixed Censoring
- Random Censoring
- Some One-sample Asymptotics
- Conclusions

Growth Chart (rqss)


\section*{Transformation Model}

A wide variety of survival analysis models (e.g. Cox, proportional-odds), following Doksum and Gasko (1990), may be written as,
\[
h\left(T_{i}\right)=x_{i}^{\top} \beta+u_{i},
\]
- \(T_{i}\) : an observed survival time;
- \(h\) : a monotone transformation;
- \(x_{i}\) : a vector of covariates;
- \(\beta\) : an unknown parameter vector;
- \(\left\{u_{i}\right\}: i . i . d . \sim F\).

\section*{Accelerated failure time model:}
\[
\log \left(T_{i}\right)=x_{i}^{\top} \beta+u_{i}
\]

\section*{Beyond the Transformation Model}

The common feature of all these models is that after transformation of the observed survival times we have:
- a pure location-shift, iid-error regression model;
- covariate effects shift the center of the distribution of \(h(T)\);
- but covariates cannot affect scale, or shape of this distribution.

\section*{Quantile Regression Model}

Quantile regression model:
\[
Q_{h\left(T_{i}\right)}\left(\tau \mid \mathbf{x}_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau),
\]
where \(h(\cdot)\) is a monotone transformation. By the equivariance property of quantile regression to monotone transformation (suppose \(h\) is increasing),
\[
Q_{T_{i}}\left(\tau \mid \mathbf{x}_{i}\right)=h^{-1}\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau)\right\} .
\]

Claim I:
- quantile regression allows the covariate to affect not only location but also scale and shape of the conditional distribution;
- interpretation is simpler.

\section*{Quantile Regression under Censorship}

WLLG assume \(T_{i}\) is the transformed survival/duration.
Data: \(\left(\mathbf{x}_{i}, Y_{i}, \delta_{i}\right), i=1, \cdots, n\), where
\[
Y_{i}=\min \left(T_{i}, C_{i}\right), \quad \delta_{i}=I\left(T_{i} \leqslant C_{i}\right)
\]

\section*{Censored quantile regression:}
\[
Q_{T_{i}}\left(\tau \mid \mathbf{x}_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)
\]

\section*{Why Censored Quantile Regression?}

Example: Average Weekly Earnings v.s. Study Hours


\section*{Identifiability under Censoring}
- Conditional mean \(E(T \mid X)\) is not identifiable.
- But the conditional quantiles \(Q_{T}(\tau \mid \mathbf{x})\) are identifiable for some \(\tau\).


Claim II: quantile regression has better identifiability under censorship.

\section*{Powell's Approach for Fixed Censoring}
- Rationale: quantiles are equivariant to monotone transformations so
\[
\begin{aligned}
& Q_{T}\left(\tau \mid \mathbf{x}_{i}\right)=\mathbf{x}_{i}^{T} \beta_{0}(\tau), \quad Y_{i}=\min \left(T_{i}, C\right) \\
\Rightarrow \quad & Q_{Y}\left\{\tau \mid \mathbf{x}_{i}\right\}
\end{aligned}=\min \left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau), C\right\} .
\]
- Powell's estimator:
\[
\hat{\boldsymbol{\beta}}(\tau)=\operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho_{\tau}\left\{Y_{i}-\min \left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}, C\right)\right\} .
\]
- Powell's approach estimates truncated conditional quantile functions (nonlinear in parameters).

References: Powell (1984, 1986); Fitzenberger (1997); Koenker and Park (1996).

\section*{Censored Quantile Regression}
- Fixed censoring: the censoring times \(C_{i}\) are observed or known for all observations, even for those subjects that are not censored. WLOG assume \(C_{i}=C\). Examples:
- viral load of HIV patients;
- antibody concentration in blood;
- age or salary in survey studies.
- Random censoring: censoring points are unknown for uncensored observations, more common in biomedical studies.

\section*{Informative Subset Estimation (ISUB)}

Tang et al. (2012)
- Powell's estimator is asymptotically equivalent to
\[
\begin{equation*}
\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) I\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)<C\right\} . \tag{1}
\end{equation*}
\]
- Idea: apply standard QR on \(\left(\mathbf{x}_{i}, Y_{i}\right)\) to the informative subset: \(\left\{i: \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)<C\right\}\).
- \(Q_{\tau}(T \mid \mathbf{x})=\mathbf{x}^{T} \boldsymbol{\beta}_{0}(\tau)<C \Leftrightarrow \pi_{0}(\mathbf{x})=P(\delta=1 \mid \mathbf{x})>\tau\)


Random Censoring

Random censoring: censoring points are unobserved for uncensored observations.

\section*{Two Different Assumptions}
- Assumption A: \(C\) is independent of \(T\) and \(\mathbf{X}\).
- Assumption B: \(C\) and \(T\) are independent conditional on \(\mathbf{X}\).

ISUB
Idea: apply standard QR on \(\left(x_{i}, Y_{i}\right)\) to the informative subset:
\[
\left\{i: \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)<C\right\}=\left\{i: \pi_{0}\left(\mathbf{x}_{i}\right)>\tau\right\}
\]

\(\pi_{0}\left(x_{i}\right)=P\left(\delta_{i}=0 \mid \mathbf{x}_{i}\right)\) can be estimated by parametric or nonparametric regression on ( \(1-\delta_{i}, \mathbf{x}_{i}\) ), e.g. local logistic regression, generalized additive model.

\section*{Common Approach under Assumption A}

Idea: re-weight the quantile estimating equation accounting for censoring.
- Ying et al. (1995)
\[
\begin{equation*}
\sum_{i=1}^{n} \mathbf{x}_{i}\left\{\frac{I\left(Y_{i}>\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)}{\hat{G}\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)}-(1-\tau)\right\} \approx 0 \tag{2}
\end{equation*}
\]
where \(G\) is the Kaplan-Meier estimate of the survival function of \(C_{i}\). Rationale:
\[
\begin{aligned}
& P\left\{Y_{i}>\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{x}_{i}\right\}=P\left\{\min \left(T_{i}, C_{i}\right)>\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{x}_{i}\right\} \\
= & P\left\{T_{i}>\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{x}_{i}\right\} P\left\{C_{i}>\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{x}_{i}\right\} \\
= & (1-\tau) G\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\},
\end{aligned}
\]
thus the estimating function in (2) is unbiased if \(G\) is known.

\section*{Common Approach under Assumption A}
- Bang and Tsiatis (2002):
\[
\begin{equation*}
\sum_{i=1}^{n} \frac{\delta_{i}}{\hat{G}\left(Y_{i}\right)} \mathbf{x}_{i}\left\{I\left(Y_{i}<\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)-\tau\right\} \approx 0 . \tag{3}
\end{equation*}
\]

\section*{Rationale:}
\[
\begin{aligned}
& E\left[\left.\frac{\delta_{i}}{G\left(Y_{i}\right)}\left\{I\left(Y_{i}<\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)-\tau\right\} \right\rvert\, \mathbf{x}_{i}\right] \\
= & E\left(E\left[\left.\frac{I\left(T_{i}<C_{i}\right)}{G\left(T_{i}\right)}\left\{I\left(T_{i}<\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)-\tau\right\} \right\rvert\, \mathbf{x}_{i}, T_{i}\right]\right) \\
= & 0
\end{aligned}
\]
when \(\boldsymbol{\beta}=\boldsymbol{\beta}_{0}(\tau)\).

\section*{Redistribution-of-Mass: How to Distribute?}

When there is no censoring, \(Y_{i}=T_{i}\) and \(\boldsymbol{\beta}_{0}(\tau)\) can be estimated by minimizing
\[
\begin{equation*}
S_{n}(\boldsymbol{\beta})=n^{-1} \sum_{i=1}^{n} \rho_{\tau}\left(T_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) \tag{4}
\end{equation*}
\]
where \(\rho_{\tau}(u)=u\{\tau-I(u<0)\}\). The minimizer of \(S_{n}(\boldsymbol{\beta})\) is a root of the estimating equation
\[
\begin{equation*}
D_{n}(\boldsymbol{\beta})=n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}\left\{\tau-I\left(T_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta} \leqslant 0\right)\right\} \approx 0 \tag{5}
\end{equation*}
\]

Here \(D_{n}(\boldsymbol{\beta})\) is the gradient function.

\section*{Common Approach under Assumption B}

Idea: distribute mass of censored observations to the right
\[
\min \sum_{i=1}^{n}\left[w_{i} \rho_{\tau}\left(Y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)+\left(1-w_{i}\right) \rho_{\tau}\left(+\infty-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right]
\]
where each right censored observation is split into two points
- at \(Y_{i}\) with mass point \(w_{i}\)
- at infinity with mass \(1-w_{i}\)

Reference: Portnoy (2003); Wang and Wang (2009).

\section*{Redistribution-of-Mass: How to Distribute?}

Note: the gradient depends only on the signs of \(T_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\).
- Uncensored: \(w_{i}=1\).
- Censored and not yet crossed (above the \(\tau\) th quantile): i.e., \(Y_{i}=C_{i}>\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\). Treat it as uncensored: \(w_{i}=1\).
- Censored and crossed: \(\delta_{i}=0\) and \(Y_{i}=C_{i}<\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\), i.e. \(\tilde{\tau}_{i} \doteq F\left(C_{i} \mid \mathbf{x}_{i}\right)<\tau\),
\[
E\left\{I\left(T_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)<0\right) \mid T_{i}>C_{i}, C_{i}, \mathbf{x}_{i}\right\}=\frac{\tau-\tilde{\tau}_{i}}{1-\tilde{\tau}_{i}} \doteq w_{i} .
\]


\section*{Portnoy's (2003) Approach}
- How to estimate \(\tilde{\tau}_{i}=P\left(T_{i} \leqslant C_{i} \mid \mathbf{x}_{i}\right)\) : the quantile level at which the conditional quantile crosses \(C_{i}\) ?
- Portnoy's approach: estimate quantiles at a fine grid starting from \(\tau=0\) and then move up step by step.

Demonstration: start at \(\tau=0.05\)


Roger Koenker \& Judy Huixia Wang Lecture 4. Censored QR and Survival Analysis

Demonstration: \(\tau=0.05,0.15,0.25\)


For the left two censored and crossed points:
\[
\tilde{\tau}_{i}=0.35, \quad w_{i}=\frac{\tau-0.35}{1-0.35} \text { for } \tau>0.35 .
\]


Demonstration: \(\tau=0.05,0.15,0.25,0.35,0.45\)
For the third censored and crossed point:
\[
\tilde{\tau}_{i}=0.45, \quad w_{i}=\frac{\tau-0.45}{1-0.45} \text { for } \tau>0.45
\]


\section*{About Portnoy's Approach}
- Efron's (1967) redistribution-of-mass idea: all observations are assigned weights depending on whether they are uncensored, censored but not yet crossed, or censored and crossed.
- Reduces to Kaplan Meier's estimator for the univariate case (if \(X\) has finitely many distinct values).
- Allows more general censoring.
- Each update is a weighted quantile regression problem
- has to estimate all the quantiles below \(\tau\);
- assumes all the quantile functions are linear in covariates.

Demonstration: \(\tau=\cdots, 0.75,0.85\)


\section*{Wang and Wang (2009)}
- Provides an alternative method to estimate \(\tilde{\tau}_{i}=F\left(C_{i} \mid \mathbf{x}_{i}\right)\) by using the local Kaplan-Meier estimator (Beran, 1981) of \(F(\cdot \mid \mathbf{x})\).
- No recursive fitting is required.
- Linearity of quantile function is needed only at the quantile level of interest.
- Challenging for high dimensional data.

\section*{Peng and Huang (2008)}

Idea II: extend the martingale representation of the Nelson-Aalen estimator of the cumulative hazard function to produce an "estimating equation" for conditional quantiles.
- \(\Lambda_{T}(t \mid \mathbf{x})=-\log \left\{1-F_{T}(t \mid \mathbf{x})\right\}\) : cumulative hazard function of \(T\) conditional on \(\mathbf{x}\);
- \(N_{i}(t)=I\left(Y_{i} \leqslant t, \delta_{i}=1\right)\);
- \(M_{i}(t)=N_{i}(t)-\Lambda_{T}\left\{t \wedge Y_{i} \mid \mathbf{x}_{i}\right)\) is a martingale process so that \(E\left\{M_{i}(t) \mid \mathbf{x}_{i}\right\}=0\) for all \(t \geqslant 0\).
So
\[
E\left[N_{i}\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\}-\Lambda_{T}\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \wedge Y_{i}\right\} \mid \mathbf{x}_{i}\right]=0
\]

\section*{Peng and Huang (2008)}

Approximating the integral on a grid, \(0=\tau_{0}<\tau_{1}<\cdots<\tau_{J}<1\) yields a simple linear programming formulation to be solved at the gridpoints,
\[
\left.\alpha_{i}\left(\tau_{j}\right)=\sum_{k=0}^{j-1} I\left\{Y_{i} \geqslant \mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}\left(\tau_{k}\right)\right\} H\left(\tau_{k+1}\right)-H\left(\tau_{k}\right)\right\},
\]
yielding Peng and Huang's final estimating equation,
\[
n^{-1 / 2} \sum \mathbf{x}_{i}\left[N_{i}\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau)\right\}-\alpha_{i}(\tau)\right]=0
\]

Setting \(r_{i}(\mathbf{b})=Y_{i}-\mathbf{x}_{i}^{T} \mathbf{b}\), this convex function for the Peng and Huang problem takes the form
\[
R\left(\mathbf{b}, \tau_{j}\right)=\sum_{i=1}^{n} r_{i}(\mathbf{b})\left[\alpha_{i}\left(\tau_{j}\right)-I\left\{r_{i}(\mathbf{b})<0\right\} \delta_{i}\right]=\min !
\]

\section*{Peng and Huang (2008)}

Connection between \(\Lambda_{T}\) and the quantile functions:
\[
\begin{aligned}
& \wedge_{T}\left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(\tau) \wedge Y_{i} \mid \mathbf{x}_{i j}\right\}=H(\tau) \wedge H\left\{F_{T}\left(Y_{i} \mid \mathbf{x}_{i}\right)\right\} \\
= & \int_{0}^{\tau} I\left\{Y_{i} \geqslant \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}(u)\right\} d H(u),
\end{aligned}
\]
where \(H(u)=-\log (1-u)\) for \(0 \leqslant u \leqslant 1\).
The estimating equation becomes
\[
n^{-1 / 2} \sum_{i=1}^{n} \mathbf{x}_{i}\left[N_{i}\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)-\int_{0}^{\tau} I\left\{Y_{i} \geqslant \mathbf{x}_{i}^{T} \boldsymbol{\beta}(u)\right\} d H(u)\right]=0 .
\]

\section*{About Portnoy and Peng-Huang Estimators}
- Simulation evidence confirms the asymptotic conclusion that the Portnoy and Peng-Huang estimators are similar (Koenker, 2008; Peng, 2012).
- Both methods require estimation of all the quantiles below \(\tau\), and they assume global linearity of quantile functions.

\section*{Implementation in R}

\section*{R syntax:}
library (quantreg)
\#fixed censoring
fit=crq(Curv(y,yc, ctype="left") ~ x, tau = tau, method = "Pow")
summary(fit)
\#Random censoring
fit=crq(Surv(log(time), delta, type="left") ~ x, method=c("Por", "PengHuang"))
summary (fit)

\section*{One-sample Asymptotics}

In contrast,
\[
\begin{gathered}
\sqrt{n}\left(\hat{\theta}_{K M}-\theta\right) \rightsquigarrow \mathcal{N}\left(0, \operatorname{Avar}\{\hat{S}(\theta)\} / f^{2}(\theta)\right), \\
\text { where } \operatorname{Avar}\{\hat{S}(t)\}=S^{2}(t) \int_{0}^{t}\{1-H(u)\}^{-2} d \tilde{F}(u),
\end{gathered}
\]
\(1-H(u)=\{1-F(u)\}\{1-G(u)\}, \tilde{F}(u)=\int_{0}^{t}\{1-G(u)\} d F(u)\) and \(S(t)=1-F(t)\).

The Powell estimator makes use of more sample information. Is it more efficient? The answer is NO!

\section*{Some One-sample Asymptotics}
- Suppose that we have a random sample of pairs, \(\left\{\left(T_{i}, C_{i}\right): i=1, \cdots, n\right\}\) with \(T_{i} \sim F, C_{i} \sim G\), and \(T_{i}\) and \(C_{i}\) independent.
- Let \(Y_{i}=\min \left\{T_{i}, C_{i}\right\}\) and \(\delta_{i}=I\left(T_{i}<C_{i}\right)\).
- In this setting the Powell estimator of \(\theta=F^{-1}(\tau)\),
\[
\hat{\theta}_{P}=\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\min \left\{\theta, C_{i}\right\}\right)
\]
is asymptotically normal
\[
\sqrt{n}\left(\hat{\theta}_{P}-\theta\right) \rightsquigarrow \mathcal{N}\left(0, \frac{\tau(1-\tau)}{f^{2}(\theta)\{1-G(\theta)\}}\right) .
\]

\section*{Kaplan Meier v.s. Powell}

\section*{Proposition}
\(\operatorname{Avar}\left(\hat{\theta}_{K M}\right) \leqslant \operatorname{Avar}\left(\hat{\theta}_{P}\right)\).
\[
\text { Proof. } \quad \begin{aligned}
f^{2}(\theta) \operatorname{Avar}\left(\hat{\theta}_{K M}\right) & =S(\theta)^{2} \int_{0}^{\theta}(1-H(s))^{-2} d \tilde{F}(s) \\
& =S(\theta)^{2} \int_{0}^{\theta}(1-G(s))^{-1}(1-F(s))^{-2} d F(s) \\
& \leqslant \frac{S(\theta)^{2}}{1-G(\theta)} \int_{0}^{\theta}(1-F(s))^{-2} d F(s) \\
& =\left.\frac{S(\theta)^{2}}{1-G(\theta)} \cdot \frac{1}{1-F(s)}\right|_{0} ^{\theta} \\
& =\frac{S(\theta)^{2}}{1-G(\theta)} \cdot \frac{F(\theta)}{1-F(\theta)} \\
& =\frac{F(\theta)(1-F(\theta))}{(1-G(\theta))} \\
& =\frac{\tau(1-\tau)}{(1-G(\theta))} .
\end{aligned}
\]

\section*{Conclusions}

Lecture 5. Nonparametric Quantile Regression
- The Powell estimator, though conceptually attractive, suffers from some serious computational difficulties, imposes strong data requirements, and has a loss in asymptotic efficiency.
- Even for fixed censoring where \(C_{i}\) are observed, it is better to use Portnoy or Peng-Huang estimators than Powell estimator.
- Quantile regression provides a flexible complement to classical survival analysis methods, and is now well equipped to handle censoring.

In the Beginning, ... were the Quantiles


Wei et al. (2006)


\section*{Three Approaches to Nonparametric QR}
- Locally Polynomial (Kernel) Methods: Iprq
\[
\begin{aligned}
& \hat{\alpha}(\tau, x)=\operatorname{argmin} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\alpha_{0}-\alpha_{1}\left(x_{i}-x\right)-\ldots-\frac{1}{p!} \alpha_{p}\left(x_{i}-x\right)^{p}\right) \\
& \hat{g}(\tau, x)=\hat{\alpha}_{0}(\tau, x)
\end{aligned}
\]
- Series Methods rq( y ~bs (x,knots = k) + z)
\[
\begin{aligned}
\hat{\alpha}(\tau) & =\operatorname{argmin}_{\alpha} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\sum_{j} \varphi_{j}\left(x_{i}\right) \alpha_{j}\right) \\
\hat{g}(\tau, x) & =\sum_{j=1}^{p} \varphi_{j}(x) \hat{\alpha}_{j}
\end{aligned}
\]
- Penalty Methods rqss
\[
\hat{g}(\tau, x)=\operatorname{argmin}_{g} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda P(g)
\]

\section*{Total Variation Regularization I}

There are many possible penalties, ways to measure the roughness of fitted function, but total variation of the first derivative of \(g\) is particularly attractive:
\[
P(g)=V\left(g^{\prime}\right)=\int\left|g^{\prime \prime}(x)\right| d x
\]

As \(\lambda \rightarrow \infty\) we constrain \(g\) to be closer to linear in \(x\). Solutions of
\[
\min _{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda V\left(g^{\prime}\right)
\]
are continuous and piecewise linear.

\section*{Some Experimental Details}

Experimental data of Denis Chabot, Institut Maurice-Lamontagne, Quebec, Canada and his colleagues.
(1) Basal (minimal) metabolic rate \(M_{\mathrm{O}_{2}}\) (aka Standard Metabolic Rate SMR) is measured in \(m g O_{2} h^{-1} \mathrm{~kg}^{-1}\) for fish "at rest" after several days without feeding,
(2) Fish are then fed and oxygen consumption monitored until \(M_{O_{2}}\) returns to its prior SMR level for several hours.
(3) Elevation of \(M_{O_{2}}\) after feeding (aka Specific Dynamic Action SDA) ideally measures the energy required for digestion,
(4) Procedure is repeated for several cycles, so each estimation of the cycle is based on a few hundred observations.

\section*{Fish in a Bottle}

Objective: to study metabolic activity of various fish species in an effort to better understand the nature of the feeding cycle. Metabolic rates based on oxygen consumption as measured by sensors mounted on the tubes.


Three primary aspects are of interest:
(1) Basal (minimal) Metabolic Rate,
(2) Duration and Shape of the Feeding Cycle, and
(3) Diurnal Cycle.

\section*{Juvenile Codfish}


\section*{Tuning Parameter Selection}

\section*{There are two tuning parameters:}
(1) \(\tau=0.15\) the (low) quantile chosen to represent the SMR,
(2) \(\lambda\) controls the smoothness of the SDA cycle.

One way to interpret the parameter \(\lambda\) is to note that it controls the number of effective parameters of the fitted model (Meyer and Woodroofe, 2000):
\[
p(\lambda)=\operatorname{div} \hat{g}_{\lambda, \tau}\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \partial \hat{y}_{i} / \partial y_{i}
\]

This is equivalent to the number of interpolated observations, the number of zero residuals. Selection of \(\lambda\) can be made by minimizing, e.g. Schwarz Criterion:
\[
\operatorname{SIC}(\lambda)=n \log \left(n^{-1} \sum \rho_{\tau}\left(y_{i}-\hat{g}_{\lambda, \tau}\left(x_{i}\right)\right)\right)+\frac{1}{2} p(\lambda) \log n .
\]

\section*{Chicago Land Values via TV Regularization}


Chicago Land Values: Based on 1194 vacant land sales and 7505 "virtual" sales introduced to increase the flexibility of the triangulation.

\section*{Total Variation Regularization II}

For bivariate functions we consider the analogous problem:
\[
\min _{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{1 i}, x_{2 i}\right)\right)+\lambda V(\nabla g)
\]
where the total variation variation penalty is now:
\[
V(\nabla g)=\int\left\|\nabla^{2} g(x)\right\| d x
\]

Solutions are again continuous, but now they are piecewise linear on a triangulation of the observed \(x\) observations. Again, as \(\lambda \rightarrow \infty\) solutions are forced toward linearity.

\section*{Additive Models: Putting the pieces together}

We can combine such models:
\[
\min _{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\sum_{j} g_{j}\left(x_{i j}\right)\right)+\sum_{j} \lambda_{j} V\left(\nabla g_{j}\right)
\]
- Components \(g_{j}\) can be univariate, or bivariate.
- Additivity is intended to muffle the curse of dimensionality.
- Linear terms are easily allowed, or enforced.
- And shape restrictions like monotonicity and convexity/concavity as well as boundry conditions on \(g\) 's can also be imposed.

\section*{Implementation in the R quantreg Package}
- Problems are typically large, very sparse linear programs.
- Optimization via interior point methods are quite efficient,
- Provided sparsity of the linear algebra is exploited, quite large problems can be estimated.
- The nonparametric qss components can be either univariate, or bivariate
- Each qss component has its own \(\lambda\) specified
- Linear covariate terms enter formula in the usual way
- The qss components can be shape constrained.
```

fit <- rqss(y ~ qss(x1,3) + qss(x2,8) + x3, tau =

``` .6)

\section*{Uniform Confidence Bands}

Uniform bands are also important, but more challenging. We would like:
\[
B_{n}(x)=\left(\hat{g}_{n}(x)-c_{\alpha} \hat{\sigma}_{n}(x), \hat{g}_{n}(x)+c_{\alpha} \hat{\sigma}_{n}(x)\right)
\]
such that the true curve, \(g_{0}\), is covered with specified probability \(1-\alpha\) over a given domain \(X\) :
\[
\mathcal{P}\left\{g_{0}(x) \in B_{n}(x) \mid x \in \mathscr{X}\right\} \geqslant 1-\alpha
\]

We can follow the "Hotelling tube" approach based on Hotelling(1939) and Weyl (1939) as developed by Naiman (1986), Johansen and Johnstone (1990), Sun and Loader (1994) and others.

\section*{Pointwise Confidence Bands}

It is obviously crucial to have reliable confidence bands for nonparametric components. Following Wahba (1983) and Nychka(1983), conditioning on the \(\lambda\) selection, we can construct bands from the covariance matrix of the full model:
\[
V=\tau(1-\tau)\left(\tilde{X}^{\top} \Psi \tilde{X}\right)^{-1}\left(\tilde{X}^{\top} \tilde{X}\right)^{-1}\left(\tilde{X}^{\top} \Psi \tilde{X}\right)^{-1}
\]
with
\[
\tilde{X}=\left[\begin{array}{cccc}
X & G_{1} & \cdots & G_{J} \\
\lambda_{0} H_{K} & 0 & \cdots & 0 \\
0 & \lambda_{1} P_{1} & \cdots & 0 \\
\vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{j} P_{J}
\end{array}\right]
\]
\[
\text { and } \quad \Psi=\operatorname{diag}\left(\phi\left(\hat{u}_{i} / h_{n}\right) / h_{n}\right)
\]

Pointwise bands can be constructed by extracting diagonal blocks of \(V\).

\section*{Uniform Confidence Bands}

Hotelling's original formulation for parametric nonlinear regression has been extended to non-parametric regression. For series estimators
\[
\hat{g}_{n}(x)=\sum_{j=1}^{p} \varphi_{j}(x) \hat{\theta}_{j}
\]
with pointwise standard error \(\sigma(x)=\sqrt{\varphi(x)^{\top} V^{-1} \varphi(x)}\) we would like to invert test statistics of the form:
\[
T_{n}=\sup _{x \in X} \frac{\hat{g}_{n}(x)-g_{0}(x)}{\sigma(x)} .
\]

This requires solving for the critical value, \(c_{\alpha}\) in
\[
\mathcal{P}\left(T_{n}>c\right) \leqslant \frac{\kappa}{2 \pi}\left(1+c^{2} / v\right)^{-v / 2}+\mathcal{P}\left(t_{v}>c\right)=\alpha
\]
where k is the length of a "tube" determined by the basis expansion, \(t_{v}\) is a Student random variable with degrees of freedom \(v=n-p\).

\section*{Confidence Bands in Simulations}


\[
Y_{i}=\sqrt{x_{i}\left(1-x_{i}\right)} \sin \left(\frac{2 \pi\left(1+2^{-7 / 5}\right)}{x_{i}+2^{-7 / 5}}\right)+U_{i}, \quad i=1, \cdots, 400, \quad U_{i} \sim \mathcal{N}(0,0.04)
\]

\section*{Simulation Performance}
\begin{tabular}{|l||c|c|r||r|r||c|c|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{3}{c|}{ Accuracy } & \multicolumn{2}{c|}{ Pointwise } & \multicolumn{2}{c|}{ Uniform } \\
\cline { 2 - 8 } & RMISE & MIAE & MEDF & Pband & Uband & Pband & Uband \\
\hline Gaussian & & & & & & \\
rqss & 0.081 & 0.063 & 10.685 & 0.951 & 0.998 & 0.265 & 0.936 \\
gam & 0.064 & 0.050 & 17.905 & 0.957 & 0.999 & 0.234 & 0.940 \\
\hline\(t_{3}\) & & & & & & & \\
rqss & 0.091 & 0.070 & 9.612 & 0.952 & 0.998 & 0.241 & 0.938 \\
gam & 0.103 & 0.078 & 14.656 & 0.949 & 0.992 & 0.232 & 0.804 \\
\hline\(t_{1}\) & & & & & & & \\
rqss & 0.122 & 0.091 & 7.896 & 0.938 & 0.997 & 0.222 & 0.893 \\
gam & 78.693 & 4.459 & 7.801 & 0.927 & 0.958 & 0.251 & 0.695 \\
\hline\(\chi_{3}^{2}\) & & & & & & & \\
rqss & 0.145 & 0.114 & 7.593 & 0.947 & 0.998 & 0.307 & 0.921 \\
gam & 0.138 & 0.108 & 12.401 & 0.941 & 0.973 & 0.221 & 0.626 \\
\hline
\end{tabular}

Performance of Penalized Estimators and Their Confidence Bands: Linear Scale Model

\section*{Simulation Performance}
\begin{tabular}{|l||c|c|c||c|c||c|c|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{3}{c|}{ Accuracy } & \multicolumn{2}{c|}{ Pointwise } & \multicolumn{2}{c|}{ Uniform } \\
\cline { 2 - 8 } & RMISE & MIAE & MEDF & Pband & Uband & Pband & Uband \\
\hline Gaussian & & 0.063 & 0.046 & 12.936 & 0.960 & 0.999 & 0.323 \\
rqss & 0.063 & 0.920 \\
gam & 0.045 & 0.035 & 20.461 & 0.956 & 0.998 & 0.205 & 0.898 \\
\hline\(t_{3}\) & & & & & & & \\
rqss & 0.071 & 0.052 & 11.379 & 0.955 & 0.998 & 0.274 & 0.929 \\
gam & 0.071 & 0.054 & 17.118 & 0.948 & 0.994 & 0.159 & 0.795 \\
\hline\(t_{1}\) & & & & & & & \\
rqss & 0.099 & 0.070 & 9.004 & 0.930 & 0.996 & 0.161 & 0.867 \\
gam & 35.551 & 2.035 & 8.391 & 0.920 & 0.926 & 0.203 & 0.546 \\
\hline\(\chi_{3}^{2}\) & & & & & & & \\
rqss & 0.110 & 0.083 & 8.898 & 0.950 & 0.997 & 0.270 & 0.883 \\
gam & 0.096 & 0.074 & 14.760 & 0.947 & 0.987 & 0.218 & 0.683 \\
\hline
\end{tabular}

Performance of Penalized Estimators and Their Confidence Bands: IID Error Model

\section*{Example 3: Childhood Malnutrition in India}

A larger scale problem illustrating the use of these methods is a model of risk factors for childhood malnutrition considered by Fenske et al. (2011).
- They motivate the use of models for low conditional quantiles of height as a way to explore influences on malnutrition,
- They employ boosting as a model selection device,
- Their model includes six univariate nonparametric components and 15 other linear covariates.
- There are 37,623 observations on the height of children from India.

\section*{Example 3: R Formulation}
fit <- rqss(cheight ~ qss(cage, lambda = lam[1]) + qss (bfed, lambda \(=\) lam[2]) + qss (mage, lambda \(=\) lam[3]) + qss (mbmi, lambda \(=\operatorname{lam}[4])+\) qss(sibs, lambda \(=\operatorname{lam}[5])+\) qss (medu, lambda \(=\operatorname{lam}[6])+\) qss(fedu, lambda \(=\operatorname{lam}[7])+\) csex + ctwin + cbirthorder + munemployed + mreligion + mresidence + deadchildren + wealth + electricity + radio + television + frig + bicycle + motorcycle + car + tau \(=0.10\), method = "lasso", lambda = lambda, data = india)
- The seven coordinates of lam control the smoothness of the nonparametric components,
- lambda controls the degree of shrinkage in the linear (lasso) coefficients.
- The estimated model has roughly 40,000 observations, including the penalty contribution, and has 2201 parameters.
- Fitting the model for a single choice of \(\lambda\) 's takes approximately 5 seconds.

\section*{Example 3: Lasso Shrinkage of Linear Components}


\section*{Example 3: Selected Smooth Components}


Lasso \(\lambda\) Selection - Another Approach
Lasso shrinkage is a special form of the TV penalty:
\[
R_{\tau}(b)=\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-x_{i}^{\top} b\right)
\]
\[
\begin{aligned}
\hat{\beta}_{\tau, \lambda} & =\operatorname{argmin}\left\{R_{\tau}(b)+\lambda\|b\|_{1}\right\} \\
& \in\left\{b: 0 \in \partial R_{\tau}(b)+\lambda \partial\|b\|_{1}\right\} .
\end{aligned}
\]

At the true parameter, \(\beta_{0}(\tau)\), we have the pivotal statistic,
\[
\begin{aligned}
\partial R_{\tau}\left(\beta_{0}(\tau)\right) & =\sum\left(\tau-I\left(F_{y_{i}}\left(y_{i}\right) \leqslant \tau\right)\right) x_{i} \\
& \sim \sum\left(\tau-I\left(U_{i} \leqslant \tau\right)\right) x_{i}
\end{aligned}
\]

Proposal: (Belloni and Chernozhukov, 2009) Choose \(\lambda\) as the \(1-\alpha\) quantile of the simulated distribution of \(\left\|\sum\left(\tau-I\left(U_{i} \leqslant \tau\right)\right) x_{i}\right\|_{\infty}\) with iid \(U_{i} \sim U[0,1]\).

\section*{Example 3: Lasso Shrinkage of Linear Components}


\section*{Lecture 6. Bayesian Quantile Regression}
- Introduction
- Bayesian QR Based on Asymmetric Laplace Likelihood
- Bayesian Empirical Likelihood
- Nonparametric/Semiparametric Likelihood
- Mixtures with Dirichlet Process Priors
- Semiparametric Bayesian for Simultaneous Linear Quantile Regression
- Approximate Likelihood

\section*{Conclusions}
- Nonparametric specifications of \(Q(\tau \mid x)\) improve flexibility.
- Additive models keep effective dimension in check.
- Total variation roughness penalties are natural.
- Schwarz model selection criteria are useful for \(\lambda\) selection.
- Hotelling tubes are useful for uniform confidence bands.
- Lasso Shrinkage is useful for parametric components.

\section*{Introduction}
- Linear quantile regression model:
\[
Q_{y_{i}}\left(\tau \mid \mathbf{x}_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau), i=1, \ldots, n
\]
- Frequentist estimator of \(\beta(\tau)\) :
\[
\hat{\boldsymbol{\beta}}(\tau)=\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right), \quad \rho_{\tau}(u)=u_{\{ }\{\tau-I(u<0)\} .
\]
- Advantages of Bayesian QR:
- point estimates and confidence intervals can be calculated simultaneously from the posterior sequences;
- the use of MCMC can help avoid the suffering from the computational curse of dimensionality, and the difficulty in the optimization of a (highly) nonconvex objective function such as for Powell's estimator for fixed censored data.

\section*{Introduction}
- Bayesian QR is challenging as quantile regression typically does not assume any parametric likelihood.
- A working likelihood is needed for Bayesian QR:
- parametric working likelihood, e.g. asymmetric Laplacian (Yu and Moyeed, 2001; Geraci and Bottai, 2007);
- nonparametric/semiparametric working likelihood, e.g. Gelfand and Kottas (2002); Kottas and Krnjajić (2009); Reich et al. (2010); Dunson and Taylor (2005); Reich et al. (2011);
- empirical likelihood (Lancaster and Jun, 2010; Otsu, 2008; Yang and He , 2012).

\section*{Asymmetric Laplacian (AL) Likelihood}

Yu and Moyeed (2001) developed a Bayesian quantile regression method assuming AL likelihood for \(\mathbf{y}=\left(y_{1}, \cdots, y_{n}\right)\) :
\[
L(\mathbf{y} \mid \boldsymbol{\beta})=\{\tau(1-\tau)\}^{n} \exp \left\{-\sum_{i=1}^{n} \rho_{\tau}\left\{y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right\},
\]
that is, assuming \(Y \mid \mathbf{x}_{i} \sim A L\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}, 1, \tau\right)\).
Posterior distribution of \(\beta=\beta(\tau)\) :
\[
\pi(\boldsymbol{\beta} \mid \mathbf{y}) \propto L(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta})
\]
where \(\pi(\boldsymbol{\beta})\) is the prior distribution of \(\boldsymbol{\beta}\).

\section*{Asymmetric Laplacian (AL) Likelihood}

A random variable \(Z\) is said to follow an asymmetric Laplace distribution \(A L(\mu, \sigma, \tau)\) if its density is given by
\[
f(z)=\frac{\tau(1-\tau)}{\sigma} \exp \left\{-\rho_{\tau}\left(\frac{z-\mu}{\sigma}\right)\right\} .
\]

Therefore, the MLE of \(\mu\) (assume \(\tau\) is known):
\[
\operatorname{argmin}_{\mu} \sum_{i=1}^{n} \rho_{\tau}\left(\frac{z_{i}-\mu}{\sigma}\right)=\operatorname{argmin}_{\mu} \sum_{i=1}^{n} \rho_{\tau}\left(z_{i}-\mu\right)
\]
is just the sample quantile of \(\left(z_{1}, \cdots, z_{n}\right)\).

\section*{Properties of the AL-based Bayesian QR:}
- If the flat prior \(\pi(\boldsymbol{\beta}) \propto 1\) is used, then
- the posterior distribution of \(\boldsymbol{\beta}, \boldsymbol{\pi}(\boldsymbol{\beta} \mid \mathbf{y})\) is proper;
- the posterior mode is the frequentist estimator \(\hat{\boldsymbol{\beta}}(\tau)\).
- However, when the AL likelihood is misspecified,
- posterior chain from the Bayesian AL quantile regression does not lead to valid posterior inference;
- correction to the covariance matrix of the posterior chain is possible to enable an asymptotically valid posterior inference (Chernozhukov and Hong, 2003; Yang et al., 2014).

\section*{Other Bayesian AL QR Developments}

Geraci and Bottai (2007), Geraci and Bottai (2013)
- Quantile regression with a random intercept effect:
\[
Q_{\tau}\left(Y_{i j} \mid \mathbf{x}_{i j}, b_{i}\right)=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+b_{i} .
\]
- Assume \(\left(Y_{i j} \mid \mathbf{x}_{i j}, \boldsymbol{\eta}, b_{i}\right) \sim A L\left(\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+b_{i}, \sigma, \tau\right)\) and \(b_{i} \sim N\left(0, \varphi^{2}\right)\), where \(\boldsymbol{\eta}=(\boldsymbol{\beta}, \sigma, \varphi)\).
- Estimate \(\eta\) with EM by integrating out \(b_{i}\) from \(f(\mathbf{y}, \mathbf{b} \mid \boldsymbol{\eta})=f(y \mid \boldsymbol{\eta}, \mathbf{b}) f(\mathbf{b} \mid \boldsymbol{\eta})\).

\section*{Other Bayesian AL QR Developments}

MCMC algorithm for Bayesian linear regression with Laplace errors (Choi and Hobert, 2013).
- Model: \(Y_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\sigma \epsilon_{i}, \epsilon_{i} \sim \operatorname{Laplace}(0,1)=A L(0,1,1 / 2)\).
- Data augmentation algorithm: based on the representation of the Laplace density as a scale mixture of normals with respect to the inverse gamma distribution, i.e.
\[
\begin{gathered}
Z \sim I G(1,1 / 8), Y \mid Z=z \sim N\left(\mathbf{x}^{T} \boldsymbol{\beta}, \sigma^{2} / z\right) \\
\Rightarrow Y \mid \mathbf{x} \sim \operatorname{Laplace}\left(\mathbf{x}^{T} \boldsymbol{\beta}, \sigma\right) .
\end{gathered}
\]
- Choi and Hobert (2013) showed that the MCMC underlying the DA algorithm is geometrically ergodic, which guarantees the existence of the central limit theorems that form the basis of all the standard methods of calculating valid asymptotic standard errors for MCMC-based estimators.

\section*{Other Bayesian AL QR Developments}

Tsionas (2003), Kozumi and Kobayashi (2011): developed Gibbs sampling procedures using the conditionally Gaussian representation for AL:
if \(\epsilon \sim A L(0, \sigma, \tau)\), then we can represent \(\epsilon\) as:
\[
\epsilon=\sqrt{\frac{2 \xi \sigma}{\tau(1-\tau)}} Z+\frac{(1-2 \tau)}{\tau(1-\tau)} \xi,
\]
where \(Z \sim N(0,1)\), and \(\xi \sim \operatorname{Gamma}(1,1 / \sigma)=\operatorname{Exp}(1 / \sigma)\).

\section*{Other Bayesian AL QR Developments}
- Li et al. (2010): Bayesian regularized quantile regression.
- Lum and Gelfand (2012): Bayesian spatial quantile regression assuming asymmetric Laplace process:
\[
\begin{aligned}
Y(s) & =\mu_{\tau}(s)+\epsilon_{\tau}(s), \quad \mu_{\tau}(s)=\mathbf{x}^{T}(s) \boldsymbol{\beta}_{\tau}, \\
\epsilon_{\tau}(s) & =\sqrt{\frac{2 \xi(s) \sigma}{\tau(1-\tau)}} Z(s)+\frac{1-2 \tau}{\tau(1-\tau)} \xi(s),
\end{aligned}
\]
where \(Z(s)\) is a Gaussian process, and \(\xi(s)\) is a process with marginal to be exponential with rate \(1 / \sigma\).

\section*{Bayesian Empirical Likelihood 1}

Suppose we observe a random sample ( \(y_{i}, \mathbf{x}_{i}\) ) from the quantile regression model
\[
\begin{equation*}
Q_{\tau}(Y \mid \mathbf{X})=\mathbf{X}^{T} \boldsymbol{\beta}(\tau), \tag{6}
\end{equation*}
\]

\section*{Conventional estimator of \(\beta\) :}
\[
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right),
\]
which is also a solution to the estimating equation
\[
n^{-1 / 2} \sum_{i=1}^{n} \mathbf{x}_{i} \psi_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right) \approx 0
\]
where \(\psi_{\tau}(u)=\tau-I(u<0)\).

\section*{Bayesian Empirical Likelihood 3}

For a given \(\boldsymbol{\beta}\), the \(\mathrm{EL} L_{n}(\boldsymbol{\beta})\) can be calculated by using the standard Lagrange multiplier method (Owen, 2001):
\[
\begin{aligned}
R(\boldsymbol{\beta}) & =\prod_{i} p_{i}(\boldsymbol{\beta}) \\
p_{i}(\boldsymbol{\beta}) & =\left[n\left\{1+\lambda(\boldsymbol{\beta}) \boldsymbol{m}_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)\right\}\right]^{-1}
\end{aligned}
\]
where \(\lambda(\boldsymbol{\beta})\) satisfies
\[
\sum_{i} \frac{\boldsymbol{m}_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)}{1+\lambda(\boldsymbol{\beta}) \boldsymbol{m}_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)}=0 .
\]

BEL posterior density:
\[
f(\boldsymbol{\beta} \mid D) \propto R(\boldsymbol{\beta}) \times \pi(\boldsymbol{\beta})
\]

\section*{Bayesian Empirical Likelihood 2}

\section*{For a proposed \(\beta\), profile empirical likelihood (EL):}
\[
\begin{array}{r}
R(\boldsymbol{\beta})=\max \left\{\prod_{i=1}^{n} p_{i} \mid \sum_{i=1}^{n} p_{i} \boldsymbol{m}_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)=0\right. \\
\\
\left.\sum_{i=1}^{n} p_{i}=1,0 \leqslant p_{i} \leqslant 1\right\}
\end{array}
\]
where \(p_{i}\) is the weight for the \(i\) th observation, and \(\boldsymbol{m}_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)=\mathbf{x}_{i} \psi_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\) is the score function.

\section*{Bayesian Empirical Likelihood 4}

\section*{Multiple quantiles}
- Consider the quantile regression model at \(\tau_{1}<\cdots<\tau_{k}, k\) quantile levels.
- Stacked estimating function
\[
\boldsymbol{m}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}\right)=\left(\boldsymbol{m}_{\tau_{1}}^{T}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}\right), \cdots, \boldsymbol{m}_{\tau_{k}}^{T}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}\right)\right)^{T}
\]
where \(\boldsymbol{\theta}=\left(\boldsymbol{\beta}\left(\tau_{1}\right)^{T}, \cdots, \boldsymbol{\beta}\left(\tau_{k}\right)^{T}\right)^{T}\).
- The similar procedure follows by replacing \(\boldsymbol{m}_{\tau}\) by \(\boldsymbol{m}, \boldsymbol{\beta}\) by \(\boldsymbol{\theta}\), and \(\lambda(\boldsymbol{\beta}) m_{\tau}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\beta}\right)\) by \(\boldsymbol{\lambda}(\boldsymbol{\theta})^{T} \boldsymbol{m}\left(\mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}\right)\).

\section*{Bayesian Empirical Likelihood 5}

\section*{Properties}
- Asymptotically the posterior variance is the same as that of the sampling variance of quantile regression estimator.
- The method allows joint modeling of multiple quantiles to borrow information across quantiles to improve efficiency.
- The empirical likelihood can be generalized to a class of nonparametric likelihoods, such as exponential tilting.

\section*{Nonparametric/Semiparametric Likelihood}

\section*{Mixtures with Dirichlet Process Priors}
- Suppose \(\epsilon \sim A L(0, \tau, \sigma)\) with density
\[
k_{\tau}^{A L}(\epsilon ; \sigma)=\frac{\tau(1-\tau)}{\sigma} \exp \left\{-\rho_{\tau}\left(\frac{\epsilon}{\sigma}\right)\right\},
\]
where \(\sigma>0\) is a scale parameter and \(\tau \in(0,1)\). Then \(\epsilon\) has the \(\tau\) th quantile zero, i.e. \(\int_{-\infty}^{0} k_{p}^{A L}(\epsilon ; \sigma) d \epsilon=\tau\).
- Thus mixture of \(k_{\tau}^{A L}\left(\epsilon ; \sigma_{i}\right), i=1, \cdots, n\) also has the \(\tau\) th quantile zero.

\section*{Bayesian Empirical Likelihood 6}

\section*{Some remarks}
- The BEL posterior is not really a posterior.
- No need to solve for the maximum EL estimator, and the calculation of \(R(\boldsymbol{\theta})\) is easy.
- Metropolis-Hastings algorithm is used for sampling from the posterior.
- An improper prior cannot guarantee a proper posterior.
- The posterior will be improper for flat priors on \(\theta\).
- Shrinking priors on \(\theta\) can be used to shrink quantile slopes towards common values or a pre-specified parametric form.

Reference: Yang and He (2012).

\section*{Model 1: scale mixture of AL densities}
\[
\begin{aligned}
& Y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \sigma_{i} \stackrel{i n d .}{\sim} k_{\tau}^{A L}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta} ; \sigma_{i}\right), i=1, \cdots, n, \\
& \sigma_{i} \mid G \stackrel{i . i . d .}{\sim} G, i=1, \cdots, n, \\
& G \mid \alpha, d \sim \text { Drichilet process } D P\left(\alpha, G_{0}\right),
\end{aligned}
\]

This mixture model
- preserves the zero \(\tau\) th quantile for the residual;
- is more flexible than the AL distribution;
- it has the same issue as the AL likelihood approach, both have lack of coherence for multiple quantiles.

\section*{Kottas and Krnjajić (2009)}

\section*{Model 2: nonparametric scale mixture of uniform densities}
\(k_{\tau}\left(\epsilon ; \sigma_{1}, \sigma_{2}\right)=\frac{\tau}{\sigma_{1}} I\left(-\sigma_{1}<\epsilon<0\right)+\frac{1-\tau}{\sigma_{2}} I\left(0 \leqslant \epsilon<\sigma_{2}\right), \sigma_{r}>0, r=1,2\).
has the \(\tau\) th quantile zero. Hierarchical model:
\[
\begin{aligned}
& Y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \sigma_{1 i}, \sigma_{2 i} \stackrel{\text { ind. }}{\sim} k_{\tau}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta} ; \sigma_{1 i}, \sigma_{2 i}\right), i=1, \cdots, n, \\
& \sigma_{r i} \mid G_{r} \stackrel{\text { i.i.d. }}{\sim} G_{r}, r=1,2, i=1, \cdots, n, \\
& G_{r} \mid \alpha_{r}, d_{r} \sim D P\left(\alpha_{r}, G_{r 0}\right), r=1,2 .
\end{aligned}
\]
- Model 2 poses separate priors for the negative and positive residuals to ensure zero \(\tau\) th quantiles.
- The resulting conditional distribution of \(Y\) is discontinuous at the mode.
- The model forces the mode to be at the quantile of interest.

\section*{Tokdar and Kadane (2011)}

\section*{Tokdar and Kadane (2011): Semiparametric Bayesian for}

\section*{Simultaneous Linear Quantile Regression}

For an univariate \(x\) :
- \(Q_{\tau}(Y \mid x)=\beta_{0}(\tau)+\beta_{1}(\tau) x, \tau \in[0,1]\) is monotonically increasing in \(\tau\) for every \(x \in[-1,1]\) if and only if
\[
Q_{\tau}(Y \mid x)=\mu+\gamma x+\frac{1-x}{2} \eta_{1}(\tau)+\frac{1+x}{2} \eta_{2}(\tau),
\]
where \(\eta_{1}(\tau)\) and \(\eta_{2}(\tau)\) are monotonically increasing in \(\tau \in[0,1]\).
(B). Reich et al. (2010)

Assume the location-scale shift model
\[
y_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\mathbf{x}_{i}^{T} \gamma \epsilon_{i}
\]
where \(\mathbf{x}_{i}^{T} \gamma>0\) for all \(\mathbf{x}_{i}\), and \(\epsilon_{i}\) are i.i.d. with \(\tau\) th quantile zero.
Assume \(\epsilon_{i}\) follows the infinite mixture distribution
\[
h\left(\epsilon \mid \mu, \sigma^{2}\right)=\sum_{k=1}^{\infty} p_{k} f\left(\epsilon \mid \mu_{k}, \sigma_{k}^{2}, q_{k}\right), \sum_{k=1}^{\infty} p_{k}=1
\]
- \(f\left(\epsilon \mid \mu_{k}, \sigma_{k}^{2}, q_{k}\right)\) is the quantile-restricted 2-component mixture
\[
f\left(\epsilon \mid \mu_{k}, \sigma_{k}^{2}, q_{k}\right)=q_{k} \phi\left(\mu_{1 k}, \sigma_{1 k}^{2}\right)+\left(1-q_{k}\right) \phi\left(\mu_{2 k}, \sigma_{2 k}^{2}\right) ;
\]
- to ensure that \(\int_{-\infty}^{0} f\left(\epsilon \mid \mu_{k}, \sigma_{k}^{2}, q_{k}\right) d \epsilon=\tau\), let
\[
q_{k}=\frac{\tau-\Phi\left(-\mu_{2 k}\right) / \sigma_{2 k}}{\Phi\left(-\mu_{1 k} / \sigma_{1 k}\right)-\Phi\left(-\mu_{2 k} / \sigma_{2 k}\right)}
\]

\section*{Tokdar and Kadane (2011)}
- Pose a prior for \(\eta_{1}(\tau)\) and \(\eta_{2}(\tau)\) by a logistic transformation of a smooth Gaussian process:
- \(\eta_{1}(\tau)=\sigma_{1} \tilde{Q}\left\{\xi_{1}(\tau)\right\} ;\)
- \(\eta_{2}(\tau)=\sigma_{2} \tilde{Q}\left\{\xi_{2}(\tau)\right\} ;\)
- \(\tilde{Q}\) is the quantile function of a target parametric distribution whose support is ( \(y_{\text {min }}, y_{\text {max }}\) );
- \(\xi_{j}(\tau), j=1,2\) are monotonically increasing random functions mapping \([0,1]\) to \([0,1]\), defined through a logistic transformation of a smooth Gaussian process.
- Log-likelihood function
\[
\sum_{i} \log f_{Y}\left(y_{i} \mid x_{i}\right)=-\sum_{i} \log \left[\left.\frac{\partial}{\partial \tau} Q_{\tau}\left(Y \mid x_{i}\right)\right|_{\tau_{i}}\right]
\]
where \(\tau_{i}=\left\{\tau: y_{i}=Q_{\tau}\left(Y \mid x_{i}\right)\right\}\).

\section*{Approximate Likelihood (Reich et al., 2011)}

Reich et al. (2011): used an approximate likelihood from the multivariate normal distribution of the joint quantile regression estimates.

\section*{Main ideas:}
- Assume a global linear quantile regression model:
\[
Q_{\tau}(Y \mid \mathbf{x})=\mathbf{x}^{T} \boldsymbol{\beta}(\tau), \tau \in(0,1) .
\]
- Using the observed data \(\left\{\left(y_{i}, \mathbf{x}_{i}\right), i=1, \cdots, n\right\}\), fit quantile regression at each quantile level from \(0<\tau_{1}<\cdots<\tau_{K}<1\) separately to obtain \(\hat{\boldsymbol{\beta}}\left(\tau_{k}\right), k=1, \cdots, K\).
- Fit the approximate model
\[
\left(\hat{\boldsymbol{\beta}}\left(\tau_{k}\right), k=1, \cdots, K\right) \sim N(\boldsymbol{\beta}(\boldsymbol{\tau}), \Sigma),
\]
where \(\boldsymbol{\beta}(\boldsymbol{\tau})=\left(\boldsymbol{\beta}\left(\tau_{k}\right), k=1, \cdots, K\right), \Sigma\) is the covariance matrix of \(\left(\hat{\boldsymbol{\beta}}\left(\tau_{k}\right), k=1, \cdots, K\right)\) and can be estimated using existing methods in R package quantreg.

\section*{Lecture 7. Quantile Regression for Longitudinal Data}
- Marginal Quantile Regression Model
- Estimator Based on Working Independence
- Jung's Estimator
- Conditional Quantile Regression Model
- Penalized Method-Koenker (2004)
- Correlated Random Effects
- Empirical Likelihood

\section*{Approximate Likelihood (Reich et al., 2011)}
- Model the quantile coefficient process \(\beta_{j}(\tau)\), the \(j\) th element of \(\boldsymbol{\beta}(\tau)\), by using Bernstein basis polynomials
\[
\beta_{j}(\tau)=\sum_{m=1}^{M} B_{m}(\tau) \alpha_{j m},
\]
where
- \(B_{m}(\tau)=\binom{M}{m} \tau^{m}(1-\tau)^{M-m}\) are the Bernstein basis polynomials.
- \(\alpha_{j m}\) are unknown coefficients with specific priors to ensure monotonicity of the conditional quantile functions.

\section*{Longitudinal/Clustered Data}
- Observed data: \(\left\{\left(y_{i j}, \mathbf{x}_{i j}\right), j=1, \cdots, m_{i}\right\}\) are associated with subject \(i, i=1, \cdots, n\). Observations from the same subject tend to be correlated.
- Main challenges for quantile regression
- quantiles are not linear operators, that is, \(Q_{X+Y}(\tau) \neq Q_{X}(\tau)+Q_{Y}(\tau)\) in general;
- usually no parametric likelihood is assumed.
- Two types of models
- Marginal model
- Conditional model

\section*{Marginal Quantile Regression Model}
- Captures the average trend among all subjects.
- Association among repeated measures within subjects: accounted for by modeling the intra-subject correlation among residuals, after removing the average trend.
- A general marginal (linear) quantile regression model
\[
Y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}(\tau)+u_{i j}(\tau), i=1, \cdots, n, j=1, \cdots, m_{i},
\]
where the \(\tau\) th conditional quantile of \(u_{i j}(\tau)\) given \(\mathbf{x}_{i j}\) is zero, \(u_{i j}(\tau)\) are correlated within the same subject, and independent between subjects.
- Under this model, the \(\tau\) th conditional quantile of \(Y_{i j}\) given \(\mathbf{x}_{i j}\) is
\[
Q_{Y_{i j}}\left(\tau \mid \mathbf{x}_{i j}\right)=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}(\tau) .
\]

\section*{Inference}

To carry out inference for estimators obtained under working independence, correlation needs to be accounted for in the statistical inference.
- Wald test: estimate \(H\) and \(J\) directly.
- Rank score test: Wang and He (2007).
- Block bootstrap: resample subjects.

\section*{Estimation under Working Independence}
- Estimate \(\boldsymbol{\beta}(\tau)\) pretending that data are independent,
\[
\hat{\boldsymbol{\beta}}(\tau)=\operatorname{argmin}_{\mathbf{b} \in R^{p}} \sum_{i j} \rho_{\tau}\left(y_{i j}-\mathbf{x}_{i j}^{T} \mathbf{b}\right) .
\]
- The working independence estimator is still consistent and asymptotically normally distributed
\[
n^{1 / 2}(\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}(\tau))=A N\left(0, H_{n}^{-1} J_{n} H_{n}^{-1}\right),
\]
- \(H_{n}=n^{-1} \sum_{i j} \mathbf{x}_{i j} \mathbf{X}_{i j}^{T} f_{i j}(0), f\) is the density of \(u_{i j}(\tau)\),
- \(J_{n}=n^{-1} \sum_{i} X_{i}^{T} \operatorname{Cov}\left\{\psi_{\tau}\left(u_{i 1}(\tau)\right), \cdots, \psi_{\tau}\left(u_{i m_{i}}(\tau)\right\} \mathbf{X}_{i}\right.\),
- \(\psi_{\tau}(u)=\tau-I(u<0)\),
- \(\mathbf{X}_{i}=\left(\mathbf{x}_{i 1}^{T}, \cdots, \mathbf{x}_{i m_{i}}^{T}\right)^{T}\).

\section*{More Efficient Estimation}
- The estimator obtained under working independence is not most efficient.
- Efficiency can be improved by incorporating the intra-subject correlation in the estimation process. But empirical studies show that the improvement is limited except when the intra-subject correlation is extremely high.

Jung's Estimator (Jung, 1996)

Extension of Jung's estimator to quantile regression with clustered data: estimate \(\boldsymbol{\beta}(\tau)\) by solving the following estimating equation
\[
\begin{equation*}
n^{-1 / 2} \sum_{i=1}^{n} \mathbf{X}_{i}^{T} W_{i} V_{i}^{-1} \psi_{\tau}\left\{\boldsymbol{Y}_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\} \approx 0 \tag{7}
\end{equation*}
\]
where
- \(\boldsymbol{Y}_{i}=\left(y_{i 1}, \ldots, y_{i m_{i}}\right)^{T}\),
- \(W_{i}=\operatorname{diag}\left\{f_{i 1}(0), \cdots, f_{i m_{i}}(0)\right\}\),
- \(f_{i j}(\cdot)\) is the density of \(u_{i j}(\tau)\),
- \(V_{i}=\operatorname{Cov}\left(\psi_{\tau}\left(y_{i 1}-x_{i 1}^{T} \boldsymbol{\beta}(\tau)\right), \cdots, \psi_{\tau}\left(y_{i m}-x_{i m_{i}}^{T} \boldsymbol{\beta}(\tau)\right)\right)\).

\section*{Conditional Quantile Regression Model}

Conditional model, or subject-specific model
- The model captures an individual trend for each subject/cluster.
- Variability between subjects is due to variation in individual trends.
- Association among repeated measures within subjects: arises because all observations on the same subject have the same underlying trend.

\section*{Jung's Estimator (Jung, 1996)}

Following the reweighted least squares algorithm, we can compute \(\hat{\boldsymbol{\beta}}\) by iterating
\[
\hat{\boldsymbol{\beta}} \leftarrow\left[\sum_{i=1}^{n} \mathbf{x}_{i}^{T} W_{i} V_{i}^{-1} A_{i} \mathbf{x}_{i}\right]^{-1}\left[\sum_{i=1}^{n} \mathbf{x}_{i}^{T} W_{i} V_{i}^{-1} A_{i} \boldsymbol{Y}_{i}\right],
\]
where \(A_{i}=\operatorname{diag}\left\{\psi_{\tau}\left(y_{i j}-\mathbf{x}_{i j}^{T} \hat{\boldsymbol{\beta}}\right) /\left(y_{i j}-\mathbf{x}_{i j}^{T} \hat{\boldsymbol{\beta}}\right)\right\}\) with the convention that \(\psi_{\tau}(u) / u=0\) when \(u=0\).

Alternatively, we can adopt the induced smoothing method in Brown and Wang (2005) to estimate a smoothed estimator, which has the same asymptotic distribution as \(\hat{\boldsymbol{\beta}}\); see e.g. Leng and Zhang (2014).

\section*{Random Intercept Model}
- Model:
\[
Y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+\mathbf{b}_{\mathbf{i}}+e_{i j}
\]
where \(b_{i}\) is the random subject effect, \(e_{i j}\) is the independent random measurement error, and \(b_{i}\) and \(e_{i j}\) are independent.
- Under this model: \(E\left(Y_{i j} \mid \mathbf{x}_{i j}\right)=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+E\left(b_{i} \mid \mathbf{x}_{i j}\right)+E\left(e_{i j} \mid \mathbf{x}_{i j}\right)\).
- However, \(Q_{b_{i}+e_{i j}}\left(\tau \mid \mathbf{x}_{i j}\right) \neq Q_{b_{i}}\left(\tau \mid \mathbf{x}_{i j}\right)+Q_{e_{i j}}\left(\tau \mid \mathbf{x}_{i j}\right)\).
- Conditional QR model with a random intercept effect:
\[
\begin{equation*}
Q_{Y_{i j}}\left(\tau \mid \mathbf{x}_{i j}, b_{i}\right)=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}(\tau)+b_{i} \tag{8}
\end{equation*}
\]
so each subject has a subject-specific location parameter.

\section*{Penalized Method-Koenker (2004)}
- Assume the QR model with random intercept effects:
\[
Q_{\tau}\left(Y_{i j} \mid \mathbf{x}_{i j}, b_{i}\right)=b_{i}+\mathbf{x}_{i j}^{T} \boldsymbol{\beta}(\tau), i=1, \ldots, n, j=1, \ldots, m_{i}
\]
- \(b_{i}\) has purely a location shift effect so it is the same across quantile levels.
- Estimate \(b_{i}\) and \(\boldsymbol{\beta}\left(\tau_{k}\right)\) for several quantiles simultaneously by solving
\[
\min _{b, \boldsymbol{\beta}} \sum_{k=1}^{p} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} w_{k} \rho_{\tau}\left\{y_{i j}-b_{i}-\mathbf{x}_{i j}^{T} \boldsymbol{\beta}\left(\tau_{k}\right)\right\}
\]
where \(w_{k}\) is the weight on the quantile level \(\tau_{k}\).

\section*{Correlated Random Effects}
- Abrevaya and Dahl (2008) adapt the Chamberlain (1982) correlated random effects model and estimate a model of birthweight, assuming that data contains exactly two births from a large number of mothers.
- Model:
\[
\begin{equation*}
y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+b_{i}+e_{i j}, i=1, \cdots, n, j=1,2, \tag{9}
\end{equation*}
\]
where
- \(b_{i}\) : unobservable mother effect;
- \(\left(\mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)\) : covariate values from both births of a given mother;
- \(b_{i}\) and \(\mathbf{x}_{i j}\) are likely to be correlated.

\section*{Penalized QR with Fixed Effects}
- Since \(n\) is often large (relative to \(m_{i}\) ), estimating a large number of \(b_{i}\) will inflate the variability of the estimates of other covariate effects.
- A fix: shrink \(b_{i}\) towards a common value through penalization.
- Minimize the following penalized objective function:
\[
\sum_{k=1}^{p} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} w_{k} \rho_{\tau}\left\{y_{i j}-b_{i}-\mathbf{x}_{i j}^{T} \boldsymbol{\beta}\left(\tau_{k}\right)\right\}+\lambda \sum_{i=1}^{n}\left|b_{i}\right|,
\]
where \(\lambda\) is the penalization parameter:
- \(\lambda=0\) : no shrinkage
- \(\lambda=\infty: \hat{b}_{i} \rightarrow 0\).

\section*{Correlated Random Effects}
- Assume the correlated-random-effect model (Chamberlain, 1982):
\[
b_{i}=\theta+\mathbf{x}_{i 1}^{T} \lambda_{1}+\mathbf{x}_{i 2}^{T} \lambda_{2}+v_{i},
\]
where \(v_{i}\) is independent of \(\mathbf{x}_{i j}\) and \(e_{i j}\).
- Inserting the above expression to model (9) we get
\[
\begin{aligned}
y_{i 1} & =\theta+\mathbf{x}_{i 1}^{T}\left(\boldsymbol{\beta}+\lambda_{1}\right)+\mathbf{x}_{i 2}^{T} \lambda_{2}+v_{i}+e_{i j}, \\
y_{i 2} & =\theta+\mathbf{x}_{i 1}^{T} \lambda_{1}+\mathbf{x}_{i 2}^{T}\left(\boldsymbol{\beta}+\lambda_{2}\right)+v_{i}+e_{i j},
\end{aligned}
\]
so
\[
\begin{aligned}
\boldsymbol{\beta} & =\frac{\partial E\left(y_{i 1} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 1}}-\frac{\partial E\left(y_{i 2} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 1}} \\
& =\frac{\partial E\left(y_{i 2} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 2}}-\frac{\partial E\left(y_{i 1} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 2}} .
\end{aligned}
\]

\section*{Correlated Random Effects}
- Analogous to the conditional mean model, assume the following models:
\[
\begin{align*}
& Q_{\tau}\left(y_{i 1} \mid \mathbf{x}_{i j}\right)=\theta_{1}(\tau)+\mathbf{x}_{i 1}^{T}\left\{\boldsymbol{\beta}(\tau)+\lambda_{1}(\tau)\right\}+\mathbf{x}_{i 2}^{T} \lambda_{2}(\tau), \\
& Q_{\tau}\left(y_{i 2} \mid \mathbf{x}_{i j}\right)=\theta_{2}(\tau)+\mathbf{x}_{i 1}^{T} \lambda_{1}(\tau)+\mathbf{x}_{i 2}^{T}\left\{\boldsymbol{\beta}(\tau)+\lambda_{2}(\tau)\right\} . \tag{10}
\end{align*}
\]
- Can interpret \(\boldsymbol{\beta}(\tau)\) as
\[
\begin{aligned}
\boldsymbol{\beta}(\tau) & =\frac{\partial Q_{\tau}\left(y_{i 1} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{11}}-\frac{\partial Q_{\tau}\left(y_{i 2} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 1}} \\
& =\frac{\partial Q_{\tau}\left(y_{i 2} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 2}}-\frac{\partial Q_{\tau}\left(y_{i 1} \mid \mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)}{\partial \mathbf{x}_{i 2}} .
\end{aligned}
\]

\section*{Empirical Likelihood-Kim and Yang (2011)}
- Model:
\[
\begin{equation*}
Y_{i j}=\mathbf{x}_{i j}^{T} \mathbf{b}_{i}(\tau)+e_{i j}, \tag{11}
\end{equation*}
\]
where \(\mathbf{b}_{i}(\tau) \sim N\left(\boldsymbol{\beta}(\tau), \Sigma_{i}\right), Q_{Q_{i j}}\left(\tau \mid \mathbf{x}_{i j}\right)=0\), and \(e_{i j}\) and \(\mathbf{b}_{i}(\tau)\) are independent.
- Equivalent model:
\[
\begin{equation*}
Y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}(\tau)+\mathbf{x}_{i j}^{T} \mathbf{b}_{i}^{*}(\tau)+e_{i j}, \quad \mathbf{b}_{i}^{*}(\tau) \sim N\left(0, \Sigma_{i}\right) . \tag{12}
\end{equation*}
\]
- \(\boldsymbol{\beta}(\tau)\) : the average over cluster-specific quantile effects \(\mathbf{b}_{i}(\tau)\).
- For notational simplicity, write \(\boldsymbol{\beta}(\tau)=\boldsymbol{\beta}, \mathbf{b}_{i}(\tau)=\mathbf{b}_{i}\) and \(\mathbf{b}_{i}^{*}(\tau)=\mathbf{b}_{i}^{*}\).

\section*{Correlated Random Effects}

Parameters in (10) can be estimated with standard linear quantile regression.
The \(R\) package rqpd implements both this method and the penalized fixed effect approach. Available from R-Forge with the command:
install.packages("rqpd", repos="http://R-Forge.R-project.org")

\section*{Cluster-specific quantile estimator of \(\mathbf{b}_{i}\) :}
\[
\widehat{\mathbf{b}}_{i}=\operatorname{argmin}_{\mathbf{b} \in \mathbb{R}^{q}} \sum_{j=1}^{m_{i}} \rho_{\tau}\left(y_{i j}-\mathbf{x}_{i j}^{T} \mathbf{b}\right),
\]
which is also a solution to the estimating equation
\[
m_{i}^{-1 / 2} \sum_{j=1}^{m_{i}} \mathbf{x}_{i j} \psi_{\tau}\left(y_{i j}-\mathbf{x}_{i j}^{T} \mathbf{b}\right) \approx 0,
\]
where \(\psi_{\tau}(u)=\tau-I(u<0)\).
Empirical likelihood (EL) for \(\mathbf{b}_{i}(\tau)\) in the \(i\) th cluster:
\[
\begin{gathered}
L_{m_{i}}\left(\mathbf{b}_{i}\right)=\max \left\{\prod_{j=1}^{m_{i}} p_{j} \mid \sum_{j=1}^{m_{i}} p_{j} \mathbf{x}_{i j} \psi_{\tau}\left(y_{i j}-\mathbf{x}_{i j}^{T} \mathbf{b}_{i}\right)=0,\right. \\
\left.\sum_{j=1}^{m_{i}} p_{j}=1,0 \leqslant p_{j} \leqslant 1\right\},
\end{gathered}
\]
where \(p_{j}\) is the weight for the \(j\) th observation in the \(i\) th cluster.

\section*{Kim and Yang (2011)}

For a given \(\mathbf{b}_{i}\), the EL \(L_{m_{i}}\left(\mathbf{b}_{i}\right)\) can be calculated by using the standard Lagrange multiplier method; see Owen (2001), and Qin and Lawless (1994).

Notations
- \(\sigma\) : collection of parameters involved in \(\Sigma_{1}, \cdots, \Sigma_{n}\).
- \(\boldsymbol{\theta}=(\boldsymbol{\beta}, \boldsymbol{\sigma})\) : collection of unknown parameters.
- \(\theta_{0}\) : true value.
- \(g_{i}(\mathbf{b} \mid \boldsymbol{\theta})\) : the density of \(\mathbf{b}_{i}\), that is, of \(N\left(\boldsymbol{\beta}, \Sigma_{i}\right)\).

\section*{Kim and Yang (2011)}

\section*{Properties}
- As \(m_{i} \rightarrow \infty\), the posterior mean estimator \(\widetilde{\mathbf{b}}_{i}\) is a weighted average of \(\widetilde{\boldsymbol{\beta}}\) and the cluster-specific quantile regression estimator \(\widehat{\mathbf{b}}_{i}\).
- As \(m_{i} \rightarrow \infty\), the posterior mean estimator \(\widetilde{\boldsymbol{\beta}}\) is a weighted average of the cluster-specific QR estimator \(\widehat{\mathbf{b}}_{i}\), and it is asymptotically normal.
- The variances of \(\widetilde{\mathbf{b}}_{i}\) and \(\tilde{\theta}\) can be estimated by the variance-covariance matrices of the corresponding MCMC sequences. In contrast to conventional inference for quantile regression, the estimation of error density function is not required.
- Confidence intervals based on the normality or the percentiles of the MCMC sequence have approximately correct coverage as \(m_{i} \rightarrow \infty\) for \(\mathbf{b}_{i}\) and as \(n \rightarrow \infty\) for \(\boldsymbol{\theta}\). The result also holds when \(\mathbf{b}_{i}\) have non-normal densities.

\section*{Kim and Yang (2011)}

Semiparametric likelihood criterion function for \(\mathbf{b}_{i}\)
\[
\widetilde{L}_{m_{i}}(\mathbf{b} \mid \boldsymbol{\theta})=L_{m_{i}}(\mathbf{b}) g_{i}(\mathbf{b} \mid \boldsymbol{\theta}) .
\]

Semiparametric likelihood criterion function for \(\theta\)
\[
\prod_{i=1}^{n} \int_{\mathbf{b}_{i}} \widetilde{L}_{m_{i}}\left(\mathbf{b}_{i} \mid \boldsymbol{\theta}\right) d \mathbf{b}_{i}
\]

Proposed estimators of \(\theta\) and \(\mathbf{b}_{i}\) :
\[
\begin{gathered}
\widetilde{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{n} \int_{\mathbf{b}_{i}} \widetilde{L}_{m_{i}}\left(\mathbf{b}_{i} \mid \boldsymbol{\theta}\right) d \mathbf{b}_{i}, \\
\widetilde{\mathbf{b}}_{i}=\arg \max _{\mathbf{b}_{i}} \widetilde{L}_{m_{i}}\left(\mathbf{b}_{i} \mid \widetilde{\boldsymbol{\theta}}\right)
\end{gathered}
\]

These estimators are computed by the quasi-posterior means using MCMC samplers.
(1) Appendix 1. Quantile Regression Computation
(2) Appendix 2. Quantile Autoregression
(3) Appendix 3. Endogoneity and All That
(9) Appendix 4. Risk, Choquet Portfolios and Quantile Regression
(6) Appendix 5. R FAQ

\section*{Appendix 1}

Quantile Regression Computation:
From the Inside and the Outside


\section*{Boscovich/Laplace Methode de Situation}

Algorithm: Order the \(n\) candidate slopes: \(b_{i}=\left(y_{i}-\bar{y}\right) /\left(x_{i}-\bar{x}\right)\)
denoting them by \(b_{(i)}\) with associated weights \(w_{(i)}\) where \(w_{i}=\left|x_{i}-\bar{x}\right|\).
Find the weighted median of these slopes.

Weighted EDF Plot


The Origin of Regression - Regression Through the Origin
Find the line with mean residual zero that minimizes the sum of absolute residuals.


Problem: \(\min _{\alpha, \beta} \sum_{i=1}^{n}\left|y_{i}-\alpha-x_{i} \beta\right|\) s.t. \(\bar{y}=\alpha+\bar{x} \beta\).

\section*{Methode de Situation via Optimization}
\[
\begin{gathered}
R(b)=\sum\left|\tilde{y}_{i}-\tilde{x}_{i} b\right|=\sum\left|\tilde{y}_{i} / \tilde{x}_{i}-b\right| \cdot\left|\tilde{x}_{i}\right| . \\
R^{\prime}(b)=-\sum \operatorname{sgn}\left(\tilde{y}_{i} / \tilde{x}_{i}-b\right) \cdot\left|\tilde{x}_{i}\right| .
\end{gathered}
\]



\section*{Quantile Regression through the Origin in \(R\)}

This can be easily generalized to compute quantile regression estimates:
```

wquantile <- function(x, y, tau = 0.5) {
o <- order(y/x)
b <- (y/x) [o]
w <- abs(x[o])
k <- sum(cumsum(w) < ((tau - 0.5) * sum(x) + 0.5 * sum(w)
list(coef = b[k + 1], k = ord[k+1])

```
\}

Warning: When \(\bar{x}=0\) then \(\tau\) is irrelevant. Why?

Edgeworth's (1888) Dual Plot: Anticipating Simplex

Points in sample space map to lines in parameter space.
\[
\left(x_{i}, y_{i}\right) \mapsto\left\{(\alpha, \beta): \alpha=y_{i}-x_{i} \beta\right\}
\]



\section*{Edgeworth's (1888) Plural Median}

What if we want to estimate both \(\alpha\) and \(\beta\) by median regression?

Problem: \(\min _{\alpha, \beta} \sum_{i=1}^{n}\left|y_{i}-\alpha-x_{i} \beta\right|\)


Edgeworth's (1888) Dual Plot: Anticipating Simplex

Lines through pairs of points in sample space map to points in parameter space.


\section*{Edgeworth's (1888) Dual Plot: Anticipating Simplex}

All pairs of observations produce \(\binom{n}{2}\) points in dual plot.


Barrodale-Roberts Implementation of Edgeworth
```

fqx<- function(x, y, tau = 0.5, max.it = 50) { \# Barrodale and Roberts -- lite
p <- ncol(x); n <- nrow(x)
<- sample(1:n, size = p) \#Phase I find a random (!) initial basi
t <- 0
it <- it + 1
Xhinv <- solve(x[h,])
Mh <- Xhinv %*% y[h]
\#find direction of steepest descent along one of the edges
g<- - t(Xhinv) %*% t(x[-h,])%*% c(tau - (rh[-h]<0))
g<-c(g+ (1- tau), - g + tau)
ming <- min(g)
if(ming >= 0 || it > max.it) break
h.out <- seq(along = g)[g== ming]
if(sigma < 0) h.out <- h.out - p
d <- sigma * Xhinv[, h.out]
\#find step length by one-dimensional wquantile minimization
xh <- x % %% d
step <- wquantile(xh, rh, tau)
.in <- step\$k
h <- c(h[- h.out], h.in)
if(it > max.it) warning("non-optimal solution: max.it exceeded")
return(bh)

```

Edgeworth's (1888) Dual Plot: Anticipating Simplex Follow path of steepest descent through points in the dual plot.


Linear Programming Duality
Primal: \(\min _{x}\left\{c^{\top} x \mid A x-b \in T, x \in S\right\}\)
Dual: \(\max _{y}\left\{b^{\top} y \mid c-A^{\top} y \in S^{*}, y \in T^{*}\right\}\)
The sets \(S\) and \(T\) are closed convex cones, with dual cones \(S^{*}\) and \(T^{*}\).
A cone \(K^{*}\) is dual to \(K\) if:
\[
K^{*}=\left\{y \in \mathbf{R}^{n} \mid x^{\top} y \geqslant 0 \text { if } x \in K\right\}
\]

Note that for any feasible point \((x, y)\)
\[
b^{\top} y \leqslant y^{\top} A x \leqslant c^{\top} x
\]
while optimality implies that
\[
b^{\top} y=c^{\top} x .
\]

\section*{Quantile Regression Primal and Dual}

Splitting the QR "residual" into positive and negative parts, yields the primal linear program,
\[
\min _{(b, u, v)}\left\{\tau 1^{\top} u+(1-\tau) 1^{\top} v \mid X b+u-v-y \in\{0\}, \quad(b, u, v) \in \mathbf{R}^{p} \times \mathbf{R}_{+}^{2 n}\right\}
\]
with dual program:
\[
\begin{gathered}
\max _{d}\left\{y^{\top} d \mid X^{\top} d \in\{0\}, \quad \tau 1-d \in \mathbf{R}_{+}^{n}, \quad(1-\tau) 1+d \in \mathbf{R}_{+}^{n}\right\} \\
\max _{d}\left\{y^{\top} d \mid X^{\top} d=0, d \in[\tau-1, \tau]^{n}\right\} \\
\max _{a}\left\{y^{\top} a \mid X^{\top} a=(1-\tau) X^{\top} 1, \quad a \in[0,1]^{n}\right\}
\end{gathered}
\]

\section*{Quantile Regression Dual}

The dual problem for quantile regression may be formulated as:
\[
\max _{a}\left\{y^{\top} a \mid X^{\top} a=(1-\tau) X^{\top} 1, a \in[0,1]^{n}\right\}
\]

What do these \(\hat{a}_{i}(\tau)\) 's mean statistically?
They are regression rank scores (Gutenbrunner and Jurečková (1992)):
\[
\hat{a}_{i}(\tau) \in\left\{\begin{array}{ccc}
\{1\} & \text { if } & y_{i}>x_{i}^{\top} \hat{\beta}(\tau) \\
(0,1) & \text { if } & y_{i}=x_{i}^{\top} \hat{\beta}(\tau) \\
\{0\} & \text { if } & y_{i}<x_{i}^{\top} \hat{\beta}(\tau)
\end{array}\right.
\]

The integral \(\int \hat{a}_{i}(\tau) d \tau\) is something like the rank of the \(i\) th observation. It answers the question: On what quantile does the \(i\) th observation lie?

Toy Story: From the Inside
Simplex goes around the outside of the polygon; interior point methods tunnel from the inside, solving a sequence of problems of the form:
\[
\max \left\{c^{\top} x+\mu \sum_{i=1}^{n} \log x_{i} \mid e^{\top} x=1\right\}
\]


\section*{Toy Story: From the Inside}

By letting \(\mu \rightarrow 0\) we get a sequence of smooth problems whose solutions approach the solution of the LP:
\[
\max \left\{c^{\top} x+\mu \sum_{i=1}^{n} \log x_{i} \mid e^{\top} x=1\right\}
\]


\section*{Mehrotra Primal-Dual Predictor-Corrector Algorithm}

The algorithms implemented in quantreg for R are based on Mehrotra's Predictor-Corrector approach. Although somewhat more complicated than Meketon this has several advantages:
- Better numerical stability and efficiency due to better central path following,
- Easily generalized to incorporate linear inequality constraints.
- Easily generalized to exploit sparsity of the design matrix.

These features are all incorporated into various versions of the algorithm in quant reg, and coded in Fortran.

Implementation: Meketon's Affine Scaling Algorithm
```

meketon <- function (x, y, eps = 1e-04, beta = 0.97) {
f <- lm.fit(x,y)
n <- length(y)
w <- rep(0, n)
d <- rep (1, n)
its <- 0
while(sum(abs(f$resid)) - crossprod(y, w) > eps) {
 its <- its + 1
 s <- f$resid * d
alpha <- max(pmax(s/(1 - w), -s/(1 + w)))
w <- w + (beta/alpha) * s
d<- pmin(1 - w, 1 + w)^2
f <- lm.wfit(x,y,d)
}
list(coef = f\$coef, iterations = its)
}

```

\section*{Back to Basics}

Which is easier to compute: the median or the mean?
```

> x <- rnorm(100000000) \# n = 10^8
> system.time(mean(x))
user system elapsed
10.277 0.035 10.320
> system.time(kuantile(x,.5))
user system elapsed
5.372 3.342 8.756

```
kuant ile is a quantreg implementation of the Floyd-Rivest (1975) algorithm. For the median it requires \(1.5 n+O\left((n \log n)^{1 / 2}\right)\) comparisons.

Portnoy and Koenker (1997) propose a similar strategy for "preprocessing" quantile regression problems to improve efficiency for large problems.

\section*{Globbing for Median Regression}

Rather than solving min \(\sum\left|y_{i}-x_{i} b\right|\) consider:
(1) Preliminary estimation using random \(m=n^{2 / 3}\) subset,
(2) Construct confidence band \(x_{i}^{\top} \hat{\beta} \pm \kappa\left\|\hat{V}^{1 / 2} x_{i}\right\|\).
(3) Find \(J_{L}=\left\{i \mid y_{i}\right.\) below band \(\}\), and \(J_{H}=\left\{i \mid y_{i}\right.\) above band \(\}\),
(4) Glob observations together to form pseudo observations:
\[
\left(x_{L}, y_{L}\right)=\left(\sum_{i \in J_{L}} x_{i},-\infty\right), \quad\left(x_{H}, y_{H}\right)=\left(\sum_{i \in J_{H}} x_{i},+\infty\right)
\]
(5) Solve the problem (with \(m+2\) observations)
\[
\min \sum\left|y_{i}-x_{i} b\right|+\left|y_{L}-x_{L} b\right|+\left|y_{H}-x_{H} b\right|
\]
(6) Verify that globbed observations have the correct predicted signs.

Outline

\section*{Appendix 2}

Quantile Autoregression

\section*{The Laplacian Tortoise and the Gaussian Hare}


Retouched 18th century woodblock photo-print

\section*{- A Motivating Example}
- The QAR Model
- Inference for QAR models
- Forecasting with QAR Models
- Surgeon General's Warning
- Conclusions

Based on joint work with Zhijie Xiao, Boston College.

\section*{Introduction}

In classical regression and autoregression models
\[
\begin{aligned}
& y_{i}=h\left(x_{i}, \theta\right)+u_{i}, \\
& y_{t}=\alpha y_{t-1}+u_{t}
\end{aligned}
\]
conditioning covariates influence only the location of the conditional distribution of the response:
\[
\text { Response }=\text { Signal + IID Noise } .
\]

But why should noise always be so well-behaved?

\section*{A Motivating Example}


Daily Temperature in Melbourne: An AR(1) Scatterplot

Estimated Conditional Quantiles of Daily Temperature


Daily Temperature in Melbourne: A Nonlinear QAR(1) Model

\section*{Linear AR(1) and QAR(1) Models}

The classical linear \(\operatorname{AR}(1)\) model
\[
y_{t}=\alpha_{0}+\alpha_{1} y_{t-1}+u_{t},
\]
with iid errors, \(u_{t}: t=1, \cdots, T\), implies
\[
E\left(y_{t} \mid \mathcal{F}_{t-1}\right)=\alpha_{0}+\alpha_{1} y_{t-1}
\]
and conditional quantile functions are all parallel:
\[
Q_{y_{t}}\left(\tau \mid \mathcal{F}_{t-1}\right)=\alpha_{0}(\tau)+\alpha_{1} y_{t-1}
\]
with \(\alpha_{0}(\tau)=F_{u}^{-1}(\tau)\) just the quantile function of the \(u_{t}\) 's.
But isn't this rather boring? What if we let \(\alpha_{1}\) depend on \(\tau\) too?

\section*{On Comonotonicity}

Definition: Two random variables \(X, Y: \Omega \rightarrow \mathrm{R}\) are comonotonic if there exists a third random variable \(Z: \Omega \rightarrow \mathrm{R}\) and increasing functions \(f\) and \(g\) such that \(X=f(Z)\) and \(Y=g(Z)\).
- If \(X\) and \(Y\) are comonotonic they have rank correlation one.
- From our point of view the crucial property of comonotonic random variables is the behavior of quantile functions of their sums, \(X, Y\) comonotonic implies:
\[
F_{X+Y}^{-1}(\tau)=F_{X}^{-1}(\tau)+F_{Y}^{-1}(\tau)
\]
- \(X\) and \(Y\) are driven by the same random (uniform) variable.

\section*{A Random Coefficient Interpretation}

If the conditional quantiles of the response satisfy:
\[
Q_{y_{t}}\left(\tau \mid \mathcal{F}_{t-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) y_{t-1}
\]
then we can generate responses from the model by replacing \(\tau\) by uniform random variables:
\[
y_{t}=\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1} \quad u_{t} \sim \operatorname{iid} U[0,1] .
\]

This is a very special form of random coefficient autoregressive (RCAR) model with comonotonic coefficients.

\section*{The \(\operatorname{QAR}(p)\) Model}

Consider a \(p\)-th order QAR process,
\[
Q_{y_{t}}\left(\tau \mid \mathcal{F}_{t-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) y_{t-1}+\ldots+\alpha_{p}(\tau) y_{t-p}
\]

Equivalently, we have random coefficient model,
\[
\begin{aligned}
y_{t} & =\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1}+\cdots+\alpha_{p}\left(u_{t}\right) y_{t-p} \\
& \equiv x_{t}^{\top} \alpha\left(u_{t}\right) .
\end{aligned}
\]

Now, all \(p+1\) random coefficients are comonotonic, functionally dependent on the same uniform random variable.

\section*{Vector \(\operatorname{QAR}(1)\) representation of the \(\operatorname{QAR}(p)\) Model}
\[
Y_{t}=\mu+A_{t} Y_{t-1}+V_{t}
\]
where
\[
\begin{gathered}
\mu=\left[\begin{array}{c}
\mu_{0} \\
0_{p-1}
\end{array}\right], A_{t}=\left[\begin{array}{cc}
a_{t} & \alpha_{p}\left(u_{t}\right) \\
I_{p-1} & 0_{p-1}
\end{array}\right], V_{t}=\left[\begin{array}{c}
v_{t} \\
0_{p-1}
\end{array}\right] \\
a_{t}=\left[\alpha_{1}\left(u_{t}\right), \ldots, \alpha_{p-1}\left(u_{t}\right)\right] \\
Y_{t}=\left[y_{t}, \cdots, y_{t-p+1}\right]^{\top} \\
v_{t}=\alpha_{0}\left(u_{t}\right)-\mu_{0}
\end{gathered}
\]

It all looks rather complex and multivariate, but it is really still nicely univariate and very tractable.

\section*{Stationarity}

Theorem 1: Under assumptions A. 1 and A.2, the QAR(p) process \(y_{t}\) is covariance stationary and satisfies a central limit theorem
\[
\frac{1}{\sqrt{n}} \sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right) \Rightarrow N\left(0, \omega_{y}^{2}\right)
\]
with
\[
\begin{aligned}
\mu_{y} & =\frac{\mu_{0}}{1-\sum_{j=1}^{p} \mu_{p}} \\
\mu_{j} & =E\left(\alpha_{j}\left(u_{t}\right)\right), \quad j=0, \ldots, p \\
\omega_{y}^{2} & =\lim \frac{1}{n} E\left[\sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right)\right]^{2}
\end{aligned}
\]

\section*{Slouching Toward Asymptopia}

We maintain the following regularity conditions:
A. \(1\left\{v_{t}\right\}\) are iid with mean 0 and variance \(\sigma^{2}<\infty\). The CDF of \(v_{t}, F\), has a continuous density \(f\) with \(f(v)>0\) on \(\mathcal{V}=\{v: 0<F(v)<1\}\).
A. 2 Eigenvalues of \(\Omega_{A}=E\left(A_{t} \otimes A_{t}\right)\) have moduli less than unity.
A. 3 Denote the conditional CDF \(\operatorname{Pr}\left[y_{t}<y \mid \mathcal{F}_{t-1}\right]\) as \(F_{t-1}(y)\) and its derivative as \(f_{t-1}(y), f_{t-1}\) is uniformly integrable on \(\mathcal{V}\).

\section*{Example: The QAR(1) Model}

For the QAR(1) model,
\[
Q_{y_{t}}\left(\tau \mid y_{t-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) y_{t-1}
\]
or with \(u_{t}\) iid \(U[0,1]\).
\[
y_{t}=\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1}
\]
if \(\omega^{2}=E\left(\alpha_{1}^{2}\left(u_{t}\right)\right)<1\), then \(y_{t}\) is covariance stationary and
\[
\frac{1}{\sqrt{n}} \sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right) \Rightarrow N\left(0, \omega_{y}^{2}\right)
\]
where \(\mu_{0}=E \alpha_{0}\left(u_{t}\right), \mu_{1}=E\left(\alpha_{1}\left(u_{t}\right), \sigma^{2}=V\left(\alpha_{0}\left(u_{t}\right)\right)\right.\), and
\[
\mu_{y}=\frac{\mu_{0}}{\left(1-\mu_{1}\right)}, \quad \omega_{y}^{2}=\frac{\left(1+\mu_{1}\right) \sigma^{2}}{\left(1-\mu_{1}\right)\left(1-\omega^{2}\right)}
\]

\section*{Qualitative Behavior of QAR(p) Processes}
- The model can exhibit unit-root-like tendencies, even temporarily explosive behavior, but episodes of mean reversion are sufficient to insure stationarity.
- Under certain conditions,the \(\operatorname{QAR}(\mathrm{p})\) process is a semi-strong ARCH(p) process in the sense of Drost and Nijman (1993).
- The impulse response of \(y_{t+s}\) to a shock \(u_{t}\) is stochastic but converges (to zero) in mean square as \(s \rightarrow \infty\).

\section*{Estimation of the QAR model}

Estimation of the QAR models involves solving,
\[
\hat{\alpha}(\tau)=\operatorname{argmin}_{\alpha} \sum_{t=1}^{n} \rho_{\tau}\left(y_{t}-x_{t}^{\top} \alpha\right),
\]
where \(\rho_{\tau}(u)=u(\tau-I(u<0))\), the \(\sqrt{ }\)-function.
Fitted conditional quantile functions of \(y_{t}\), are given by,
\[
\hat{Q}_{t}\left(\tau \mid x_{t}\right)=x_{t}^{\top} \hat{\alpha}(\tau),
\]
and conditional densities by the difference quotients,
\[
\hat{f}_{t}\left(\tau \mid x_{t-1}\right)=\frac{2 h}{\hat{Q}_{t}\left(\tau+h \mid x_{t-1}\right)-\hat{Q}_{t}\left(\tau-h \mid x_{t-1}\right)},
\]

Estimated QAR(1) v. AR(1) Models of U.S. Interest Rates


Data: Seasonally adjusted monthly: April, 1971 to June, 2002.
Do 3-month T-bills really have a unit root?

\section*{Inference for QAR models}

For fixed \(\tau=\tau_{0}\) we can test the hypothesis:
\[
H_{0}: \quad R \alpha(\tau)=r
\]
using the Wald statistic,
\[
W_{n}(\tau)=\frac{n(R \hat{\alpha}(\tau)-r)^{\top}\left[R \hat{\Omega}_{1}^{-1} \hat{\Omega}_{0} \hat{\Omega}_{1}^{-1} R^{\top}\right]^{-1}(R \hat{\alpha}(\tau)-r)}{\tau(1-\tau)}
\]

This approach can be extended to testing on general index sets \(\tau \in \mathcal{T}\) with the corresponding Wald process.

\section*{Example: Unit Root Testing}

Consider the augmented Dickey-Fuller model
\[
y_{t}=\delta_{0}+\delta_{1} y_{t-1}+\sum_{j=2}^{p} \delta_{j} \Delta y_{t-j}+u_{t} .
\]

We would like to test this constant coefficients version of the model against the more general QAR(p) version:
\[
Q_{y_{t}}\left(\tau \mid x_{t}\right)=\delta_{0}(\tau)+\delta_{1}(\tau) y_{t-1}+\sum_{j=2}^{p} \delta_{j}(\tau) \Delta y_{t-j}
\]

The hypothesis: \(H_{0}: \delta_{1}(\tau)=\bar{\delta}_{1}=1\), for \(\tau \in \mathcal{T}=\left[\tau_{0}, 1-\tau_{0}\right]\), is considered in Koenker and Xiao (JASA, 2004).

\section*{Asymptotic Inference}

Theorem: Under \(H_{0}, W_{n}(\tau) \Rightarrow Q_{m}^{2}(\tau)\), where \(Q_{m}(\tau)\) is a Bessel process of order \(m=\operatorname{rank}(R)\). For fixed \(\tau, Q_{m}^{2}(\tau) \sim \chi_{m}^{2}\).
- Kolmogorov-Smirov or Cramer-von-Mises statistics based on \(W_{n}(\tau)\) can be used to implement the tests.
- For known \(R\) and \(r\) this leads to a very nice theory - estimated \(R\) and/or \(r\) testing raises new questions.
- The situation is quite analogous to goodness-of-fit testing with estimated parameters.

\section*{Example: Two Tests}
- When \(\bar{\delta}_{1}<1\) is known we have the candidate process,
\[
V_{n}(\tau)=\sqrt{n}\left(\hat{\delta}_{1}(\tau)-\bar{\delta}_{1}\right) / \hat{\omega}_{11} .
\]
where \(\hat{\omega}_{11}^{2}\) is the appropriate element from \(\hat{\Omega}_{1}^{-1} \hat{\Omega}_{0} \hat{\Omega}_{1}^{-1}\). Fluctuations in \(V_{n}(\tau)\) can be evaluated with the Kolmogorov-Smirnov statistic,
\[
\sup _{\tau \in \mathcal{T}} V_{n}(\tau) \Rightarrow \sup _{\tau \in \mathcal{T}} B(\tau)
\]
- When \(\bar{\delta}_{1}\) is unknown we may replace it with an estimate, but this disrupts the convenient asymptotic behavior. Now,
\[
\hat{V}_{n}(\tau)=\sqrt{n}\left(\left(\hat{\delta}_{1}(\tau)-\bar{\delta}_{1}\right)-\left(\hat{\delta}_{1}-\bar{\delta}_{1}\right)\right) / \hat{\omega}_{11}
\]

\section*{Martingale Transformation of \(\hat{V}_{n}(\tau)\)}

Khmaladze (1981) suggested a general approach to the transformation of parametric empirical processes like \(\hat{V}_{n}(\tau)\) :
\[
\widetilde{V}_{n}(\tau)=\hat{V}_{n}(\tau)-\int_{0}^{\tau}\left[\dot{g}_{n}(s)^{\top} C_{n}^{-1}(s) \int_{s}^{1} \dot{g}_{n}(r) d \hat{V}_{n}(r)\right] d s
\]
where \(\dot{g}_{n}(s)\) and \(C_{n}(s)\) are estimators of
\[
\dot{g}(r)=\left(1,(\dot{f} / f)\left(F^{-1}(r)\right)\right)^{\top} ; C(s)=\int_{s}^{1} \dot{g}(r) \dot{g}(r)^{\top} d r .
\]

This is a generalization of the classical Doob-Meyer decomposition.

A test of the "location-shift" hypothesis yields a test statistic of 2.76 which has a p-value of roughly 0.01 , contradicting the conclusion of the conventional Dickey-Fuller test.

\section*{Restoration of the ADF property}

Theorem Under \(H_{0}, \tilde{V}_{n}(\tau) \Rightarrow W(\tau)\) and therefore
\[
\sup _{\tau \in \mathcal{T}}\left\|\tilde{V}_{n}(\tau)\right\| \Rightarrow \sup _{\tau \in \mathcal{T}}\|W(\tau)\|,
\]
with \(W(r)\) a standard Brownian motion.
- The martingale transformation of Khmaladze annihilates the contribution of the estimated parameters to the asymptotic behavior of the \(\hat{V}_{n}(\tau)\) process, thereby restoring the asymptotically distribution free (ADF) character of the test.

\section*{Three Month T-Bills Again}


\section*{QAR Models for Longitudinal Data}
- In estimating growth curves it is often valuable to condition not only on age, but also on prior growth and possibly on other covariates.
- Autoregressive models are natural, but complicated due to the irregular spacing of typical longitudinal measurements.
- Finnish Height Data: \(\left\{Y_{i}\left(t_{i, j}\right): j=1, \ldots, J_{i}, i=1, \ldots, n\right.\). \(\}\)
- Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:
\[
\begin{aligned}
Q_{Y_{i}\left(t_{i, j}\right)}(\tau & \left.\mid t_{i, j}, Y_{i}\left(t_{i, j-1}\right), x_{i}\right)=g_{\tau}\left(t_{i, j}\right) \\
+ & {\left[\alpha(\tau)+\beta(\tau)\left(t_{i, j}-t_{i, j-1}\right)\right] Y_{i}\left(t_{i, j-1}\right)+x_{i}^{\top} \gamma(\tau) . }
\end{aligned}
\]

\section*{Parametric Components of the Conditional Growth} Model
\begin{tabular}{|c||c|c|c||c|c|c|}
\hline \multicolumn{1}{|c|}{\(\tau\)} & \multicolumn{3}{c|}{ Boys } & \multicolumn{3}{c|}{ Girls } \\
\cline { 2 - 7 } & \(\hat{\alpha}(\tau)\) & \(\hat{\beta}(\tau)\) & \(\hat{\gamma}(\tau)\) & \(\hat{\alpha}(\tau)\) & \(\hat{\beta}(\tau)\) & \(\hat{\gamma}(\tau)\) \\
\hline 0.03 & 0.845 & 0.147 & 0.024 & 0.809 & 0.135 & 0.042 \\
& \((0.020)\) & \((0.011)\) & \((0.011)\) & \((0.024)\) & \((0.011)\) & \((0.010)\) \\
0.1 & 0.787 & 0.159 & 0.036 & 0.757 & 0.153 & 0.054 \\
& \((0.020)\) & \((0.007)\) & \((0.007)\) & \((0.022)\) & \((0.007)\) & \((0.009)\) \\
0.25 & 0.725 & 0.170 & 0.051 & 0.685 & 0.163 & 0.061 \\
& \((0.019)\) & \((0.006)\) & \((0.009)\) & \((0.021)\) & \((0.006)\) & \((0.008)\) \\
0.5 & 0.635 & 0.173 & 0.060 & 0.612 & 0.175 & 0.070 \\
& \((0.025)\) & \((0.009)\) & \((0.013)\) & \((0.027)\) & \((0.008)\) & \((0.009)\) \\
0.75 & 0.483 & 0.187 & 0.063 & 0.457 & 0.183 & 0.094 \\
& \((0.029)\) & \((0.009)\) & \((0.017)\) & \((0.027)\) & \((0.012)\) & \((0.015)\) \\
0.9 & 0.422 & 0.213 & 0.070 & 0.411 & 0.201 & 0.100 \\
& \((0.024)\) & \((0.016)\) & \((0.017)\) & \((0.030)\) & \((0.015)\) & \((0.018)\) \\
0.97 & 0.383 & 0.214 & 0.077 & 0.400 & 0.232 & 0.086 \\
& \((0.024)\) & \((0.016)\) & \((0.018)\) & \((0.038)\) & \((0.024)\) & \((0.027)\) \\
\hline
\end{tabular}

Estimates of the \(\operatorname{QAR}(1)\) parameters, \(\alpha(\tau)\) and \(\beta(\tau)\) and the mid-parental height effect, \(\gamma(\tau)\), for Finnish children ages 0 to 2 years.

\section*{Linear QAR Models May Pose Statistical Health Risks}
- Lines with distinct slopes eventually intersect. [Euclid: P5]
- Quantile functions, \(Q_{Y}(\tau \mid x)\) should be monotone in \(\tau\) for all \(x\), intersections imply point masses - or even worse.
- What is to be done?
- Constrained QAR: Quantiles can be estimated simultaneously subject to linear inequality restrictions.
- Nonlinear QAR: Abandon linearity in the lagged \(y_{t}\) 's, as in the Melbourne temperature example, both parametric and nonparametric options are available.

\section*{Forecasting with QAR Models}

Given an estimated QAR model,
\[
\hat{Q}_{y_{t}}\left(\tau \mid \mathscr{F}_{t-1}\right)=x_{t}^{\top} \hat{\alpha}(\tau)
\]
based on data: \(y_{t}: t=1,2, \cdots, T\), we can forecast
\[
\hat{y}_{T+s}=\tilde{x}_{T+s}^{\top} \hat{\alpha}\left(U_{s}\right), s=1, \cdots, S
\]
where \(\tilde{x}_{T+s}=\left[1, \tilde{y}_{T+s-1}, \cdots, \tilde{y}_{T+s-p}\right]^{\top}, U_{s} \sim U[0,1]\), and
\[
\tilde{y}_{t}=\left\{\begin{array}{lll}
y_{t} & \text { if } t \leqslant T \\
\hat{y}_{t} & \text { if } t>T
\end{array}\right.
\]

Conditional density forecasts can be made based on an ensemble of such forecast paths.

\section*{Nonlinear QAR Models via Copulas}

An interesting class of stationary, Markovian models can be expressed in terms of their copula functions:
\[
G\left(y_{t}, y_{t-1}, \cdots, y_{y-p}\right)=C\left(F\left(y_{t}\right), F\left(y_{t-1}\right), \cdots, F\left(y_{y-p}\right)\right)
\]
where \(G\) is the joint df and \(F\) the common marginal df.
- Differentiating, \(C(u, v)\), with respect to \(u\), gives the conditional df,
\[
H\left(y_{t} \mid y_{t-1}\right)=\left.\frac{\partial}{\partial u} C(u, v)\right|_{\left(u=F\left(y_{t}\right), v=F\left(y_{t-1}\right)\right)}
\]
- Inverting we have the conditional quantile functions,
\[
Q_{y_{t}}\left(\tau \mid y_{t-1}\right)=h\left(y_{t-1}, \theta(\tau)\right)
\]

\section*{Example 1 (Fan and Fan)}


Model: \(Q_{y_{t}}\left(\tau \mid y_{t-1}\right)=-(1.7-1.8 \tau) y_{t-1}+\Phi^{-1}(\tau)\).

\section*{Conclusions}
- QAR models are an attempt to expand the scope of classical linear time-series models permitting lagged covariates to influence scale and shape as well as location of conditional densities.
- Efficient estimation via familiar linear programming methods.
- Random coefficient interpretation nests many conventional models including ARCH.
- Wald-type inference is feasible for a large class of hypotheses; rank based inference is also an attractive option.
- Forecasting conditional densities is potentially valuable.
- Many new and challenging open problems....

\section*{Example 2 (Near Unit Root)}


Model: \(Q_{y_{t}}\left(\tau \mid y_{t-1}\right)=2+\min \left\{\frac{3}{4}+\tau, 1\right\} y_{t-1}+3 \Phi^{-1}(\tau)\).


Is there IV for QR?
- Amemiya (1982) and Powell (1983) consider analogues of 2SLS for median regression models
- Chen and Portnoy (1986) consider extensions to quantile regression
- Abadie, Angrist and Imbens (2002) consider models with binary endogonous treatment
- Chernozhukov and Hansen (2003) propose "inverse" quantile regression
- Chesher (2003) considers triangular models with continuous endogonous variables.

\section*{A Linear Location Shift Recursive Model}
\[
\begin{align*}
& Y=S \alpha_{1}+x^{\top} \alpha_{2}+\epsilon+\lambda v  \tag{13}\\
& S=z \beta_{1}+x^{\top} \beta_{2}+v \tag{14}
\end{align*}
\]

Suppose: \(\epsilon \Perp v\) and \((\epsilon, v) \Perp(z, x)\). Substituting for \(v\) from (2) into (1),
\[
\begin{aligned}
Q_{Y}\left(\tau_{1} \mid S, x, z\right) & =S\left(\alpha_{1}+\lambda\right)+x^{\top}\left(\alpha_{2}-\lambda \beta_{2}\right)+z\left(-\lambda \beta_{1}\right)+F_{\epsilon}^{-1}\left(\tau_{1}\right) \\
Q_{S}\left(\tau_{2} \mid z, x\right) & =z \beta_{1}+x^{\top} \beta_{2}+F_{v}^{-1}\left(\tau_{2}\right) \\
\pi_{1}\left(\tau_{1}, \tau_{2}\right) & =\nabla_{S_{i}} Q_{Y_{i} \left\lvert\, S_{i}=Q_{S_{i}}+\frac{\nabla_{z_{i}} Q_{Y_{i}} \mid S_{i}=Q_{S_{i}}}{\nabla_{z_{i}} Q_{S_{i}}}\right.}=\left(\alpha_{1}+\lambda\right)+\left(-\lambda \beta_{1}\right) / \beta_{1} \\
& =\alpha_{1}
\end{aligned}
\]

\section*{Chernozhukov and Hansen QRIV}

Motivation: Yet another way to view two stage least squares.
Model: \(y=X \beta+Z \alpha+u, \quad W \Perp u\)
Estimator:
\[
\begin{gathered}
\hat{\alpha}=\operatorname{argmin}_{\alpha}\|\hat{\gamma}(\alpha)\|_{A=W^{\top} M_{X} W}^{2} \\
\hat{\gamma}(\alpha)=\operatorname{argmin}_{\gamma}\|y-X \beta-Z \alpha-W \gamma\|^{2}
\end{gathered}
\]

Thm \(\quad \hat{\alpha}=\left(Z^{\top} P_{M_{X} W} Z\right)^{-1} Z^{\top} P_{M_{X} W} y\), the 2SLS estimator.
Heuristic: \(\hat{\alpha}\) is chosen to make \(\|\hat{\gamma}(\alpha)\|\) as small as possible to satisfy (approximately) the exclusion restriction/assumption.

Generalization: The quantile regression version simply replaces \(\|\cdot\|^{2}\) in the definition of \(\hat{\gamma}\) by the corresponding QR norm.

\section*{A Linear Location-Scale Shift Model}
\[
\begin{aligned}
Y & =S \alpha_{1}+x^{\top} \alpha_{2}+S(\epsilon+\lambda v) \\
S & =z \beta_{1}+x^{\top} \beta_{2}+v \\
\pi_{1}\left(\tau_{1}, \tau_{2}\right) & =\alpha_{1}+F_{\epsilon}^{-1}\left(\tau_{1}\right)+\lambda F_{v}^{-1}\left(\tau_{2}\right)
\end{aligned}
\]
\[
\begin{aligned}
Q_{Y}\left(\tau_{1} \mid S, x, z\right) & =S \theta_{1}\left(\tau_{1}\right)+x^{\top} \theta_{2}+S^{2} \theta_{3}+S z \theta_{4}+S x^{\top} \theta_{5} \\
Q_{S}\left(\tau_{2} \mid z, x\right) & =z \beta_{1}+x^{\top} \beta_{2}+F_{\gamma}^{-1}\left(\tau_{2}\right)
\end{aligned}
\]
\[
Q_{S}\left(\tau_{2} \mid z, x\right)=z \beta_{1}+x^{\top} \beta_{2}+F_{v}^{-1}\left(\tau_{2}\right)
\]
\(\hat{\pi}_{1}\left(\tau_{1}, \tau_{2}\right)=\sum_{i=1}^{n} w_{i}\left\{\hat{\theta}_{1}\left(\tau_{1}\right)+2 \hat{Q}_{S_{i}} \hat{\theta}_{3}\left(\tau_{1}\right)+z_{i} \hat{\theta}_{4}\left(\tau_{1}\right)+x_{i}^{\top} \hat{\theta}_{5}\left(\tau_{1}\right)+\frac{\hat{Q}_{S_{i}} \hat{\theta}_{4}\left(\tau_{1}\right)}{\hat{\beta}_{1}\left(\tau_{2}\right)}\right\}\)
a weighted average derivative estimator with \(\hat{Q}_{S_{i}}=\hat{Q}_{S}\left(\tau_{2} \mid z_{i}, x_{i}\right)\).

\section*{The General Recursive Model}

\[
\begin{aligned}
Y & =\varphi_{1}(S, x, \epsilon, \nu ; \alpha) \\
S & =\varphi_{2}(z, x, \nu ; \beta)
\end{aligned}
\]

Suppose: \(\epsilon \Perp v\) and \((\epsilon, v) \Perp(z, x)\). Solving for \(v\) and substituting we have the conditional quantile functions,
\[
\begin{aligned}
Q_{Y}\left(\tau_{1} \mid S, x, z\right) & =h_{1}\left(S, x, z, \theta\left(\tau_{1}\right)\right) \\
Q_{S}\left(\tau_{2} \mid z, x\right) & =h_{2}\left(z, x, \beta\left(\tau_{2}\right)\right)
\end{aligned}
\]

Extensions to more than two endogonous variables are "straightforward."

\section*{2SLS as a Control Variate Estimator}
\[
\begin{aligned}
& Y=S \alpha_{1}+X_{1} \alpha_{2}+u \equiv Z \alpha+u \\
& S=X \beta+V, \text { where } X=\left[X_{1} \vdots X_{2}\right]
\end{aligned}
\]

Set \(\hat{V}=S-\hat{S} \equiv M_{X} Y_{1}\), and consider the least squares estimator of the model,
\[
Y=Z \alpha+\hat{V} \gamma+w
\]

Claim: \(\hat{\alpha}_{C V} \equiv\left(Z^{\top} M_{\hat{V}} Z\right)^{-1} Z^{\top} M_{\hat{V}} Y=\left(Z^{\top} P_{X} Z\right)^{-1} Z^{\top} P_{X} Y \equiv \hat{\alpha}_{2 S L S}\).

The (Chesher) Weighted Average Derivative Estimator
\[
\begin{aligned}
& \hat{\theta}\left(\tau_{1}\right)=\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \rho_{\tau_{1}}\left(Y_{i}-h_{1}\left(S, x, z, \theta\left(\tau_{1}\right)\right)\right) \\
& \hat{\beta}\left(\tau_{2}\right)=\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \rho_{\tau_{2}}\left(S_{i}-h_{2}\left(z, x, \beta\left(\tau_{2}\right)\right)\right)
\end{aligned}
\]
where \(\rho_{\tau}(u)=u(\tau-I(u<0))\), giving structural estimators:
\[
\begin{gathered}
\hat{\pi}_{1}\left(\tau_{1}, \tau_{2}\right)=\sum_{i=1}^{n} w_{i}\left\{\left.\nabla_{S} \hat{h}_{1 i}\right|_{S_{i}=\hat{h}_{2 i}}+\frac{\left.\nabla_{z} \hat{h}_{1 i}\right|_{S_{i}=\hat{h}_{2 i}}}{\nabla_{z} \hat{h}_{2 i}}\right\}, \\
\hat{\pi}_{2}\left(\tau_{1}, \tau_{2}\right)=\sum_{i=1}^{n} w_{i}\left\{\left.\nabla_{x} \hat{h}_{1 i}\right|_{S_{i}=\hat{h}_{2 i}}-\frac{\left.\nabla_{z} \hat{h}_{1 i}\right|_{S_{i}=\hat{h}_{2 i}}}{\nabla_{z} \hat{h}_{2 i}} \hat{h}_{2 i}\right\},
\end{gathered}
\]

Proof of Control Variate Equivalence
\[
\begin{aligned}
& M_{\hat{V}}=M_{M_{X} S}=I-M_{X} S\left(S^{\top} M_{X} S\right)^{-1} S^{\top} M_{X} \\
& S^{\top} M_{\hat{V}}=S^{\top}-S^{\top} M_{X}=S^{\top} P_{X} \\
& X_{1}^{\top} M_{\hat{V}}=X_{1}^{\top}-X_{1}^{\top} M_{X}=X_{1}^{\top}=X_{1}^{\top} P_{X}
\end{aligned}
\]

Reward for information leading to a reference prior to Dhrymes (1970).
Recent work on the control variate approach by Blundell, Powell, Smith, Newey and others.

\section*{Quantile Regression Control Variate Estimation I}

Location scale shift model:
\[
\begin{aligned}
Y & =S\left(\alpha_{1}+\epsilon+\lambda \nu\right)+x^{\top} \alpha_{2} \\
S & =z \beta_{1}+x^{\top} \beta_{2}+v .
\end{aligned}
\]

Using \(\hat{v}\left(\tau_{2}\right)=S-\hat{Q}_{S}\left(\tau_{2} \mid z, x\right)\) as a control variate,
\[
\begin{aligned}
Y= & w^{\top} \alpha\left(\tau_{1}, \tau_{2}\right)+\lambda S\left(\hat{Q}_{S}-Q_{S}\right)+S\left(\epsilon-F_{\epsilon}^{-1}\left(\tau_{1}\right)\right), \\
\text { where } \quad & w^{\top}=\left(S, x^{\top}, S \hat{v}\left(\tau_{2}\right)\right) \\
& \alpha\left(\tau_{1}, \tau_{2}\right)=\left(\alpha_{1}\left(\tau_{1}, \tau_{2}\right), \alpha_{2}, \lambda\right)^{\top} \\
& \alpha_{1}\left(\tau_{1}, \tau_{2}\right)=\alpha_{1}+F_{\epsilon}^{-1}\left(\tau_{1}\right)+\lambda F_{v}^{-1}\left(\tau_{2}\right) . \\
& \hat{\alpha}\left(\tau_{1}, \tau_{2}\right)=\operatorname{argmin}_{a} \sum_{i=1}^{n} \rho_{\tau_{1}}\left(Y_{i}-w_{i}^{\top} a\right) .
\end{aligned}
\]

\section*{Asymptopia}

Theorem: Under regularity conditions, the weighted average derivative and control variate estimators of the Chesher structural effect have an asymptotic linear (Bahadur) representation, and after efficient reweighting of both estimators, the control variate estimator has smaller covariance matrix than the weighted average derivative estimator.

Remark: The control variate estimator imposes more stringent restrictions on the estimation of the hybrid structural equation and should thus be expected to perform better when the specification is correct. The advantages of the control variate approach are magnified in situations of overidentification.

\section*{Quantile Regression Control Variate Estimation II}
\[
\begin{aligned}
Y & =\varphi_{1}(S, x, \epsilon, \vee ; \alpha) \\
S & =\varphi_{2}(z, x, \vee ; \beta)
\end{aligned}
\]

Regarding \(v\left(\tau_{2}\right)=v-F_{v}^{-1}\left(\tau_{2}\right)\) as a control variate, we have
\[
\begin{gathered}
Q_{Y}\left(\tau_{1} \mid S, x, v\left(\tau_{2}\right)\right)=g_{1}\left(S, x, v\left(\tau_{2}\right), \alpha\left(\tau_{1}, \tau_{2}\right)\right) \\
Q_{S}\left(\tau_{2} \mid z, x\right)=g_{2}\left(z, x, \beta\left(\tau_{2}\right)\right) \\
\hat{\mathrm{v}}\left(\tau_{2}\right)=\varphi_{2}^{-1}(S, z, x, \hat{\beta})-\varphi_{2}^{-1}\left(\hat{Q}_{s}, z, x, \hat{\beta}\right) \\
\hat{\alpha}\left(\tau_{1}, \tau_{2}\right)=\operatorname{argmin}_{a} \sum_{i=1}^{n} \rho_{\tau_{1}}\left(Y_{i}-g_{1}\left(S, x, \hat{v}\left(\tau_{2}\right), a\right)\right) .
\end{gathered}
\]

\section*{Asymptotics for WAD}

\section*{Theorem}

The \(\hat{\pi}_{n}\left(\tau_{1}, \tau_{2}\right)\) has the asymptotic linear (Bahadur) representation,
\[
\begin{array}{r}
\sqrt{n}\left(\hat{\pi}_{n}\left(\tau_{1}, \tau_{2}\right)-\pi\left(\tau_{1}, \tau_{2}\right)\right)=W_{1} \bar{J}_{1}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sigma_{i 1} \dot{h}_{i 1} \psi_{\tau_{1}}\left(Y_{i 1}-\xi_{i 1}\right) \\
+W_{2} \bar{J}_{2}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sigma_{i 2} \dot{h}_{i 2} \psi_{\tau_{2}}\left(Y_{i 2}-\xi_{i 2}\right) \\
\Longrightarrow \mathcal{N}\left(0, \omega_{11} W_{1} \bar{J}_{1}^{-1} J_{1} \bar{J}_{1}^{-1} W_{1}^{\top}+\omega_{22} W_{2} \bar{J}_{2}^{-1} J_{2} \bar{J}_{2}^{-1} W_{2}^{\top}\right) \\
J_{j}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum \sigma_{i j}^{2} \dot{h}_{i j} \dot{h}_{i j}^{\top}, \bar{J}_{j}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum \sigma_{i j} f_{i j}\left(\xi_{i j}\right) h_{i j} \dot{h}_{i j}^{\top}, \\
W_{1}=\nabla_{\theta} \pi\left(\tau_{1}, \tau_{2}\right), W_{2}=\nabla_{\beta} \pi\left(\tau_{1}, \tau_{2}\right), \\
\dot{h}_{i 1}=\nabla_{\theta} h_{i 1}, \dot{h}_{i 2}=\nabla_{\beta} h_{i 2}, \omega_{j j}=\tau_{j}\left(1-\tau_{j}\right) .
\end{array}
\]

\section*{Asymptotics for CV}

\section*{Theorem}

The \(\hat{\alpha}_{n}\left(\tau_{1}, \tau_{2}\right)\) has the Bahadur representation,
\[
\begin{array}{r}
\sqrt{n}\left(\hat{\alpha}_{n}\left(\tau_{1}, \tau_{2}\right)-\alpha\left(\tau_{1}, \tau_{2}\right)\right)=\bar{D}_{1}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sigma_{i 1} \dot{g}_{i 1} \psi_{\tau_{1}}\left(Y_{i 1}-\xi_{i 1}\right) \\
+\bar{D}_{1}^{-1} \bar{D}_{12} \bar{D}_{2}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sigma_{i 2} \dot{g}_{i 2} \psi_{\tau_{2}}\left(Y_{i 2}-\xi_{i 2}\right) \\
\Longrightarrow \mathcal{N}\left(0, \omega_{11} \bar{D}_{1}^{-1} D_{1} \bar{D}_{1}^{-1}+\omega_{22} \bar{D}_{1}^{-1} \bar{D}_{12} \bar{D}_{2}^{-1} D_{2} \bar{D}_{2}^{-1} \bar{D}_{12}^{\top} \bar{D}_{1}^{-1}\right) \\
D_{j}=\lim _{n \rightarrow \infty} n^{-1} \sum \sigma_{i j}^{2} \dot{g}_{i j} \dot{g}_{i j}^{\top}, \quad \bar{D}_{j}=\lim _{n \rightarrow \infty} n^{-1} \sum \sigma_{i j} f_{i j}\left(\xi_{i j}\right) \dot{g}_{i j} \dot{g}_{i j}^{\top} \\
\bar{D}_{12}=\lim _{n \rightarrow \infty} n^{-1} \sum \sigma_{i 1} f_{i 1} \eta_{i} \dot{g}_{i 1} \dot{g}_{i 2}^{\top}, \\
\dot{g}_{i 1}=\nabla_{\alpha} g_{i 1}, \dot{g}_{i 2}=\nabla_{\beta} g_{i 2}, \quad \eta_{i}=\left(\partial g_{1 i} / \partial v_{i 2}\left(\tau_{2}\right)\right)\left(\nabla_{v_{i 2}} \varphi_{i 2}\right)^{-1} .
\end{array}
\]

\section*{ARE of WAD and CV}
- Efficient weights: \(\sigma_{i j}=f_{i j}\left(\xi_{i j}\right)\)
\[
\sqrt{n}\left(\hat{\pi}_{n}\left(\tau_{1}, \tau_{2}\right)-\pi\left(\tau_{1}, \tau_{2}\right)\right) \Rightarrow \mathcal{N}\left(0, \omega_{11} W_{1} J_{1}^{-1} W_{1}^{\top}+\omega_{22} W_{2} J_{2}^{-1} W_{2}^{\top}\right)
\]
\[
\sqrt{n}\left(\hat{\alpha}_{n}\left(\tau_{1}, \tau_{2}\right)-\alpha\left(\tau_{1}, \tau_{2}\right)\right) \Rightarrow \mathcal{N}\left(0, \omega_{11} D_{1}^{-1}+\omega_{22} D_{1}^{-1} D_{12} D_{2}^{-1} D_{12}^{\top} D_{1}^{-1}\right)
\]

The mapping: \(\tilde{\pi}_{n}=L \hat{\alpha}_{n}, L \alpha=\pi\).
\[
\begin{aligned}
& W_{1} J_{1}^{-1} W_{1}^{\top} \geqslant L D_{1}^{-1} L^{\top} \\
& W_{2} J_{2}^{-1} W_{2}^{\top} \geqslant L D_{1}^{-1} D_{12} D_{2}^{-1} D_{12}^{\top} D_{1}^{-1} L^{\top} .
\end{aligned}
\]

\section*{Theorem}

Under efficient reweighting of both estimators,
\[
\operatorname{Avar}\left(\sqrt{n} \tilde{\pi}_{n}\right) \leqslant \operatorname{Avar}\left(\sqrt{n} \hat{\pi}_{n}\right)
\]

\section*{Conclusions}
- Triangular structural models facilitate causal analysis via recursive conditioning, directed acyclic graph representation.
- Recursive conditional quantile models yield interpretable heterogeneous structural effects.
- Control variate methods offer computationally and statistically efficient strategies for estimating heterogeneous structural effects.
- Weighted average derivative methods offer a less restrictive strategy for estimation that offers potential for model diagnostics and testing.

Appendix 4
Risk, Choquet Portfolios and Quantile Regression

\section*{Outline}
- Is there a useful role for pessimism in decision theory?
- A pessimistic theory of risk
- How to be pessimistic?

\section*{Expected Utility}

To decide between two real valued gambles
\[
X \sim F \quad \text { and } \quad Y \sim G
\]
we choose \(X\) over \(Y\) if
\[
E u(X)=\int u(x) d F(x) \geqslant \int u(y) d G(y)=E u(Y)
\]


\section*{St. Petersburg Paradox}

What would you be willing to pay to play the game:
\[
G=\left\{\text { pay: } p, \quad \text { win: } 2^{n} \text { with probability } 2^{-n}, \quad n=1,2, \ldots\right\}
\]


Daniel Bernoulli ( \(\sim 1728\) ) observed that even though the expected payoff was infinite, the gambler who maximized logarithmic utility would pay only a finite value to play. For example, given initial wealth 100,000 Roubles, our gambler would be willing to pay only 17 Roubles and 55 kopecks. If initial wealth were only 1000 Roubles, then the value of the game is only about 11 Roubles.

\section*{On Axiomatics}

Suppose we have acts \(P, Q, R, \ldots\) in a space \(\mathcal{P}\), which admits enough convex structure to allow us to consider mixtures,
\[
\alpha P+(1-\alpha) Q \in \mathcal{P} \quad \alpha \in(0,1)
\]

Think of \(P, Q, R\) as probability measures on some underlying outcome/event space, \(X\).
Or better, view \(P, Q, R\) as acts mapping a space \(\mathcal{S}\) of soon-to-be-revealed "states of nature" to the space of probability measures on the outcome space, \(x\).

\section*{The Expected Utility Theorem}

Theorem(von-Neumann-Morgenstern) Suppose we have a preference relation \(\{\succeq, \succ, \sim\}\) on \(\mathcal{P}\) satisfying the axioms:
(A.1) (weak order) For all \(P, Q, R \in \mathcal{P}, P \succeq Q\) or \(Q \succeq P\), and \(P \succeq Q\) and \(Q \succeq R \Rightarrow P \succeq R\),
(A.2) (independence) For all \(P, Q, R \in \mathcal{P}\) and \(\alpha \in(0,1)\), then
\[
P \succ Q \Rightarrow \alpha P+(1-\alpha) R \succ \alpha Q+(1-\alpha) R,
\]
(A.3) (continuity) For all \(P, Q, R \in \mathcal{P}\), if \(P \succ Q\) and \(Q \succ R\), then there exist \(\alpha\) and \(\beta \in(0,1)\), such that, \(\alpha P+(1-\alpha) R \succ \beta Q(1-\beta) R\).
Then there exists a linear function \(u\) on \(\mathcal{P}\) such that for all \(P, Q \in \mathcal{P}\),
\(P \succ Q\) if and only if \(u(P)>u(Q)\).

\section*{On Comonotonicity}

Definition The two functions \(X, Y: \Omega \rightarrow \mathrm{R}\) are comonotonic if there exists a third function \(Z: \Omega \rightarrow \mathfrak{R}\) and increasing functions \(f\) and \(g\) such that \(X=f(Z)\) and \(Y=g(Z)\).

From our point of view the crucial property of comonotonic random variables is the behavior of quantile functions of their sums. For comonotonic random variables \(X, Y\), we have
\[
F_{X+Y}^{-1}(u)=F_{X}^{-1}(u)+F_{Y}^{-1}(u)
\]

By comonotonicity we have a \(U \sim U[0,1]\) such that \(Z=g(U)=F_{X}^{-1}(U)+F_{Y}^{-1}(U)\) where \(g\) is left continuous and increasing, so by monotone invariance, \(F_{g(U)}^{-1}=g \circ F_{U}^{-1}=F_{X}^{-1}+F_{Y}^{-1}\). Comonotonic random variables are maximally dependent a la Fréchet

\section*{Weakening the Independence Axiom}

The independence axiom seems quite innocuous, but it is extremely powerful. We will consider a weaker form of independence due to Schmeidler (1989).
(A.2') (comonotonic independence) For all pairwise comonotonic
\[
P, Q, R \in \mathcal{P} \text { and } \alpha \in(0,1) P \succ Q \Rightarrow \alpha P+(1-\alpha) R \succ \alpha Q+(1-\alpha) R,
\]

Definition Two acts \(P\) and \(Q\) in \(\mathcal{P}\) are comonotonic, or similarly ordered, if for no \(s\) and \(t\) in \(\mathcal{S}\),
\[
P(\{t\}) \succ P(\{s\}) \quad \text { and } \quad Q(\{s\}) \succ Q(\{t\}) .
\]
"If \(P\) is better in state \(t\) than state \(s\), then \(Q\) is also better in \(t\) than \(s\). "

\section*{Choquet Expected Utility}

Among the many proposals offered to extend expected utility theory the most attractive (to us) replaces
\[
E_{F} u(X)=\int_{0}^{1} u\left(F^{-1}(t)\right) d t \geqslant \int_{0}^{1} u\left(G^{-1}(t)\right) d t=E_{G} u(Y)
\]
with
\[
E_{\gamma, F} u(X)=\int_{0}^{1} u\left(F^{-1}(t)\right) d v(t) \geqslant \int_{0}^{1} u\left(G^{-1}(t)\right) d v(t)=E_{\gamma, G} u(Y)
\]

The measure \(v\) permits distortion of the probability assessments after ordering the outcomes. This rank dependent form of expected utility has been pioneered by Quiggin (1981), Yaari (1987), Schmeidler (1989), Wakker (1989) and Dennenberg (1990).

By relaxing the independence axiom we obtain a larger class of preferences representable as Choquet capacities and introducing pessimism. The simplest form of Choquet expected utility is based on the "distortion"
\[
v_{\alpha}(t)=\min \{t / \alpha, 1\}
\]

SO
\[
E_{\gamma_{\alpha, F}} u(X)=\alpha^{-1} \int_{0}^{\alpha} u\left(F^{-1}(t)\right) d t
\]

This exaggerates the probability of the proportion \(\alpha\) of least favorable events, and totally discounts the probability of the \(1-\alpha\) most favorable events.

Expect the worst - and you won't be disappointed.

\section*{Savage on Pessimism}

I have, at least once heard it objected against the personalistic view of probability that, according to that view, two people might be of different opinions, according as one is pessimistic and the other optimistic. I am not sure what position I would take in abstract discussion of whether that alleged property of personalistic views would be objectionable, but I think it is clear from the formal definition of qualitative probability that the particular personalistic view sponsored here does not leave room for optimism and pessimism, however these traits may be interpreted, to play any role in the person's judgement of probabilities. (Savage(1954), p. 68)

\section*{A Smoother example}

A simple, yet intriguing, one-parameter family of pessimistic Choquet distortions is the measure:
\[
v_{\theta}(t)=1-(1-t)^{\theta} \quad \theta \geqslant 1
\]

Note that, changing variables, \(t \rightarrow F_{X}(u)\), we have,
\[
E_{v_{\theta}} X=\int_{0}^{1} F_{X}^{-1}(t) d v(t)=\int_{-\infty}^{\infty} u d\left(1-\left(1-F_{X}(u)\right)^{\theta}\right)
\]

The pessimist imagines that he gets not a single draw from \(X\) but \(\theta\) draws, and from these he always gets the worst. The parameter \(\theta\) is a natural "measure of pessimism," and need not be an integer.

\section*{Pessimistic Medical Decision Making?}


Survival Functions for a hypothetical medical treatment: The Lehmann quantile treatment effect (QTE) is the horizontal distance between the survival curves. In this example consideration of the mean treatment effect would slightly favor the (dotted) treatment curve, but the pessimistic patient might favor the (solid) placebo curve. Only the luckiest \(15 \%\) actually do better under the treatment.

\section*{Risk as Pessimism?}

In expected utility theory risk is entirely an attribute of the utility function:
\begin{tabular}{lll} 
Risk Neutrality & \(\Rightarrow\) & \(u(x) \sim\) affine \\
Risk Aversion & \(\Rightarrow\) & \(u(x) \sim\) concave \\
Risk Attraction & \(\Rightarrow\) & \(u(x) \sim\) convex
\end{tabular}

Locally, the risk premium, i.e. the amount one is willing to pay to accept a zero mean risk, \(X\), is
\[
\pi(w, X)=\frac{1}{2} A(w) V(X)
\]
where \(A(w)=-u^{\prime \prime}(w) / u^{\prime}(w)\) is the Arrow-Pratt coefficient of absolute risk aversion and \(V(X)\) is the variance of \(X\). Why is variance a reasonable measure of risk?

\section*{Are Swiss Bicycle Messengers Risk Averse?}


When Veloblitz and Flash bicycle messengers from Zurich were confronted with the bet:
\[
50-50<\begin{gathered}
\text { win } 8 C H F \\
\text { lose } 5 C H F
\end{gathered}
\]

More than half ( \(54 \%\) ) rejected the bet.
Reference: Fehr and Götte (2002)

\section*{A Little Risk Aversion is a Dangerous Thing}

Would you accept the gamble:
\(G_{1} \quad 50-50 \quad<\)\begin{tabular}{c} 
win \(\$ 110\) \\
lose \(\$ 100\)
\end{tabular}

Suppose you say "no", then what about the gamble:
\(G_{2}\)
\[
50-50 \quad \begin{gathered}
\text { win } \$ 700,000 \\
\text { lose } \$ 1,000
\end{gathered}
\]

If you say "no" to \(G_{1}\) for any initial wealth up to \(\$ 300,000\), then you must also say "no" to \(G_{2}\).
Moral: A little local risk aversion over small gambles implies implausibly large risk aversion over large gambles. Reference: Rabin (2000)

\section*{Coherent Risk}

Definition (Artzner, Delbaen, Eber and Heath (1999)) For real valued random variables \(X \in \mathcal{X}\) on \((\Omega, \mathcal{A})\) a mapping \(\rho: X \rightarrow \mathcal{R}\) is called a coherent risk measure if,
(1) Monotone: \(X, Y \in X\), with \(X \leqslant Y \Rightarrow \rho(X) \geqslant \rho(Y)\).
(2) Subadditive: \(X, Y, X+Y \in X, \Rightarrow \rho(X+Y) \leqslant \rho(X)+\rho(Y)\).
(3) Linearly Homogeneous: For all \(\lambda \geqslant 0\) and \(X \in X, \rho(\lambda X)=\lambda \rho(X)\).
(9) Translation Invariant: For all \(\lambda \in \mathcal{R}\) and \(X \in \mathcal{X}, \rho(\lambda+X)=\rho(X)-\lambda\).

Many conventional measures of risks including those based on standard deviation are ruled out by these requirements. So are quantile based measures like "value at risk."

\section*{Choquet \(\alpha\)-Risk}

The leading example of a coherent risk measure is
\[
\rho_{v_{\alpha}}(X)=-\alpha^{-1} \int_{0}^{\alpha} F^{-1}(t) d t
\]

Variants of this risk measure have been introduced under several names
- Expected shortfall (Acerbi and Tasche (2002))
- Conditional VaR (Rockafellar and Uryasev (2000))
- Tail conditional expectation (Artzner, et al (1999)).

Note that \(\rho_{v_{\alpha}}(X)=-E_{v_{\alpha}, F}(X)\), so Choquet \(\alpha\)-risk is just negative Choquet expected utility with the distortion function \(v_{\alpha}\).

\section*{Approximating General Pessimistic Risk Measures}

We can approximate any pessimistic risk measure by taking
\[
d \varphi(t)=\sum \varphi_{i} \delta_{\tau_{i}}(t)
\]
where \(\delta_{\tau}\) denotes (Dirac) point mass 1 at \(\tau\). Then
\[
\rho(X)=-\varphi_{0} F^{-1}(0)-\int_{0}^{1} F^{-1}(t) \gamma(t) d t
\]
where \(\gamma(t)=\sum \varphi_{i} \tau_{i}^{-1} I\left(t<\tau_{i}\right)\) and \(\varphi_{i}>0\), with \(\sum \varphi_{i}=1\).

\section*{Pessimistic Risk Measures}

Definition A risk measure \(\rho\) will be called pessimistic if, for some probability measure \(\varphi\) on \([0,1]\)
\[
\rho(X)=\int_{0}^{1} \rho_{v_{\alpha}}(X) d \varphi(\alpha)
\]

By Fubini
\[
\begin{aligned}
\rho(X) & =-\int_{0}^{1} \alpha^{-1} \int_{0}^{\alpha} F^{-1}(t) d t d \varphi(\alpha) \\
& =-\int_{0}^{1} F^{-1}(t) \int_{t}^{1} \alpha^{-1} d \varphi(\alpha) d t \\
& \equiv-\int_{0}^{1} F^{-1}(t) d v(t)
\end{aligned}
\]

\[
d \varphi(t)=\frac{1}{2} \delta_{1 / 3}(t)+\frac{1}{3} \delta_{2 / 3}(t)+\frac{1}{6} \delta_{1}(t)
\]

\section*{A Theorem}

Theorem (Kusuoka (2001)) A regular risk measure is coherent in the sense of Artzner et. al. if and only if it is pessimistic.
- Pessimistic Choquet risk measures correspond to concave v, i.e., monotone decreasing \(d v\).
- Probability assessments are distorted to accentuate the probability of the least favorable events.
- The crucial coherence requirement is subadditivity, or submodularity, or 2-alternatingness in the terminology of Choquet capacities.

\section*{Payoff Density of 100 Samuelson trials}


Odds of losing money on the 100 trial bet is 1 chance in 2300.

\section*{An Example}

Samuelson (1963) describes asking a colleague at lunch whether he would be willing to make a
\[
50-50 \text { bet } \quad\left\langle\begin{array}{l}
\text { win } 200 \\
\text { lose } 100
\end{array}\right.
\]

The colleague (later revealed to be E. Cary Brown) responded
"no, but I would be willing to make 100 such bets."
This response has been interpreted not only as reflecting a basic confusion about how to maximize expected utility but also as a fundamental misunderstanding of the law of large numbers.

\section*{Was Brown really irrational?}

Suppose, for the sake of simplicity that
\[
d \varphi(t)=\frac{1}{2} \delta_{1 / 2}(t)+\frac{1}{2} \delta_{1}(t)
\]
so for one Samuelson coin flip we have the unfavorable evaluation,
\[
E_{V, F}(X)=\frac{1}{2}(-100)+\frac{1}{2}(50)=-25
\]
but for \(S=\sum_{i=1}^{100} X_{i} \sim \operatorname{Bin}(.5,100)\) we have the favorable evaluation,
\[
\begin{aligned}
E_{V, F}(S) & =\frac{1}{2} 2 \int_{0}^{1 / 2} F_{S}^{-1}(t) d t+\frac{1}{2}(5000) \\
& =1704.11+2500 \\
& =4204.11
\end{aligned}
\]

\section*{How to be Pessimistic}

Theorem Let \(X\) be a real-valued random variable with \(E X=\mu<\infty\), and \(\rho_{\alpha}(u)=u(\alpha-I(u<0))\). Then
\[
\min _{\xi \in \mathcal{R}} E \rho_{\alpha}(X-\xi)=\alpha \mu+\rho_{v_{\alpha}}(X)
\]

So \(\alpha\) risk can be estimated by the sample analogue
\[
\hat{\rho}_{v_{\alpha}}(x)=(n \alpha)^{-1} \min _{\xi} \sum \rho_{\alpha}\left(x_{i}-\xi\right)-\hat{\mu}_{n}
\]

I knew it! Eventually everything looks like quantile regression to this guy!

\section*{An Example}

\section*{Pessimistic Portfolios}

Now let \(X=\left(X_{1}, \ldots, X_{p}\right)\) denote a vector of potential portfolio asset returns and \(Y=X^{\top} \pi\), the returns on the portfolio with weights \(\pi\). Consider
\[
\min _{\pi} \rho_{v_{\alpha}}(Y)-\lambda \mu(Y)
\]

Minimize \(\alpha\)-risk subject to a constraint on mean return. This problem can be formulated as a linear quantile regression problem
\[
\min _{(\beta, \xi) \in \mathcal{R}^{p}} \sum_{i=1}^{n} \rho_{\alpha}\left(x_{i 1}-\sum_{j=2}^{p}\left(x_{i 1}-x_{i j}\right) \beta_{j}-\xi\right) \quad \text { s.t. } \quad \bar{x}^{\top} \pi(\beta)=\mu_{0}
\]
where \(\pi(\beta)=\left(1-\sum_{j=2}^{p} \beta_{j}, \beta^{\top}\right)^{\top}\).

\section*{An Example}


Two more asset return densities with identical mean and variance.

\section*{An Example}


Two pairs of asset return densities with identical mean and variance.

\section*{Optimal Choquet and Markowitz Portfolio Returns}


Now, the Markowitz portfolio minimizes the standard deviation of returns subject to mean return \(\mu=.07\). The Choquet portfolio maximizes expected return subject to achieving the same Choquet risk (for \(\alpha=.10\) ) as the Markowitz portfolio. Choquet portfolio has expected return \(\mu=.08\) a full percentage point higher than the Markowitz portfolio.

Optimal Choquet and Markowitz Portfolio Returns


Markowitz portfolio minimizes the standard deviation of returns subject to mean return \(\mu=.07\). The Choquet portfolio minimizes Choquet risk (for \(\alpha=.10)\) subject to earning the same mean return. The Choquet portfolio has better performance in both tails than mean-variance Markowitz portfolio.

\section*{A Unified Theory of Pessimism}

Any pessimistic risk measure may be approximated by
\[
\rho_{v}(X)=\sum_{k=1}^{m} \varphi_{k} \rho_{{v_{\alpha_{k}}}}(X)
\]
where \(\varphi_{k}>0\) for \(k=1,2, \ldots, m\) and \(\sum \varphi_{k}=1\).
Portfolio weights can be estimated for these risk measures by solving linear programs that are weighted sums of quantile regression problems:
\[
\min _{(\beta, \xi) \in \mathcal{R}^{p}} \sum_{k=1}^{m} \sum_{i=1}^{n} v_{k} \rho_{\alpha_{k}}\left(x_{i 1}-\sum_{j=2}^{p}\left(x_{i 1}-x_{i j}\right) \beta_{j}-\xi_{k}\right) \quad \text { s.t. } \quad \bar{x}^{\top} \pi(\beta)=\mu_{0}
\]

Software in \(R\) is available on from my web pages.

\section*{Conclusions}
- Expected Utility is unsatisfactory both as a positive, i.e., descriptive, theory of behavior and as a normative guide to behavior.
- Choquet (non-additive, rank dependent) expected utility provides a simple, tractable alternative.
- Mean-variance Portfolio allocation is also unsatisfactory since it relies on unpalatable assumptions of Gaussian returns, or quadratic utility.
- Choquet portfolio optimization can be formulated as a quantile regression problem thus providing an attractive practical alternative to the dominant mean-variance approach of Markowitz (1952).

\section*{Appendix 5: Yet Another R FAQ, or How I Learned to Stop Worrying and Love Computing}

More official R FAQs are available from the CRAN website. A FAQ for the quantile regression package quantreg can be found by the invoking the command FAQ () from within R after loading the package.
"It was a splendid mind. For if thought is like the keyboard of a piano, divided into so many notes, or like the alphabet is ranged in twenty-six letters all in order, then his splendid mind had no sort of difficulty in running over those letters one by one, firmly and accurately, until it had reached the letter Q. He reached Q. Very few people in the whole of England reach the letter Q.... But after Q? What comes next?... Still, if he could reach \(R\) it would be something. Here at least was \(Q\). He dug his heels in at \(Q\). \(Q\) he was sure of. \(Q\) he could demonstrate. If \(Q\) then is \(Q-R-\).... Then R... He braced himself. He clenched himself.... In that flash of darkness he heard people saying-he was a failure-that \(R\) was beyond him. He would never reach R. On to R, once more. R-... ...He had not genius; he had no claim to that: but he had, or he might have had, the power to repeat every letter of the alphabet from \(A\) to \(Z\) accurately in order. Meanwhile, he stuck at \(Q\). On then, on to R."

Virginia Woolf (To the Lighthouse)

\section*{R FAQ}
(1) How to get it? Google CRAN, click on your OS, and download. Buy a case of wine with what you've saved.
(2) How to start? Click on the \(R\) icon if you are mousey, type \(R\) in a terminal window if you are penguinesque.
(3) What next? At the prompt, > type \(2+2\)
(1) What next? At the prompt, \(>\) type 1:9/10
(6) What next? At the prompt, \(>\) type \(\mathrm{x}<-1: 99 / 100\)
(6) What next? At the prompt, \(>\) type plot \((x, \sin (1 / x))\)
(1) What next? At the prompt, \(>\) type lines \((x, \sin (1 / x), \operatorname{col}=\) "red")
(3) How to stop? Click on the Stop sign if you are mousey, type q() if you are penguinesque.
(9) Isn't there more to R? Yes, try downloading some packages: using the menu in the GUI if you are mousey, or typing install.packages("pname") if you are penguinesque.
(1) What's a package? A package is a collection of R software that augments in some way the basic functionality of \(R\), that is it is a way of going "beyond R." For example, the quantreg package is a collection of functions to do quantile regression. There were 2992 packages on CRAN as of July 9, 2014.
(1) How to use a package? Downloading and installing a package isn't enough, you need to tell R that you would like to use it, for this you can either type: require (pname) or library (pname).

\section*{R FAQ}
(13) How to get help? If you know what command you want to use, but need further details about how to use it, you can get help by typing ? fname, if you don't know the function name, then you might try apropos ("concept"). If this fails then a good strategy is to search http://finzi.psych.upenn.edu/search.html with some relevant keywords; here you can specify that you would like to search through the R-help newsgroup, which is a rich source of advice about all things \(R\).
(5) Are there manuals? Yes, of course there are manuals, but only to be read as a last resort, but when things get desparate you can always RTFM. The left side of the CRAN website has links to manuals, FAQs and contributed documentation. Some of the latter category is quite good, and is also available in a variety of natural languages. There is also an extensive shelf of published material about R , but indulging in this tends to put a crimp in one's wine budget.

\section*{R FAQ}
(1) How to read data files? For simple files with values separated by white space you can use read.table, or read.csv for data separated by commas, or some other mark. For more exotic files, there is scan. And for data files from other statistical environments, there is the package foreign which facilitates the reading of Stata, SAS and other data. There are also very useful packages to read html and other files from the web, but this takes us beyond our introductory objective.
(3) What is a data.frame? A data.frame is a collection of related variables; in the simplest case it is simply a data matrix with each row indexing an observation. However, unlike conventional matrices, the columns of a data. frame can be non-numeric, e.g. logical or character or in R parlance, "factors." In many R functions one can specify a data = "dframe" argument that specifies where to find the variables mentioned elsewhere in the call.
(2) What about illustrative examples? A strength of \(R\) is the fact that most of the documentation files for R functions have example code that can be easily executed. Thus, for example if you would like to see an example of how to use the command \(r q\) in the quantreg package, you can type example ( rq ) and you will see some examples of its use. Alternatively, you can cut and paste bits of the documentation into the R window; in the OSX GUI you can simply highlight code in a help document, or other window and then press Command-Enter to execute. Similarly, many packages have demo files that act as auxiliary documentation. To see what demos are available for currently loaded packages, just try demos (). Finally, many packages have vignettes, short overviews of various aspects of the functionality of the package usually with explicit examples of how to do things. For example, the quantreg package has three vignettes: one basic, one about survival modeling, and one about additive nonparametric models. Vignettes can be accessed from R by simply typing vignette ("vname"). The names of the various package vignettes can be found by typing vignette ().
(1) What's in a name? Objects in R can be of various types called classes. You can create objects by assignment, typically as above with a command like \(f<-\) function \((x, y, z)\). A list of the objects currently in your private environment can be viewed with ls (), objects in lower level environments like those of the packages that you have loaded can be viewed with is ( \(k\) ) where k designates the number of the environment. A list of these environments can be seen with search (). Objects can be viewed by simply typing their name, but sometimes objects can be very complicated so a useful abbreviated summary can be obtained with str(object).
(B) What about my beloved least squares? Fitting linear models in R is like taking a breath of fresh air after inhaling the smog of other industrial environments. To do so, you specify a model formula like this: \(\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3\), data \(=\) "dframe"), if one or more of the x's are factor variables, that is take discrete, qualitative values, then they are automatically exanded into several indicator variables. Interactions plus main effects can be specified by replacing the " + " in the formula by "*". Generalized linear models can be specified in much the same way, as can quantile regression models using the quantreg package.

\section*{R FAQ}
(0) What about class conflict? Class analysis can get complicated, but you can generally expect that classes behave themselves in accordance with their material conditions. Thus, for example, suppose you have fitted a linear regression model by least squares using the command \(f<-\operatorname{lm}\left(y{ }^{\sim} x 1+x 2+x 3\right)\), thereby assigning the fitted object to the symbol \(f\). The object \(f\) will have class 1 m , and when you invoke the command summary ( \(f\) ), R will try to find a summary method appropriate to objects of class 1 m . In the simplest case this will entail finding the command summary. Im which will produce a conventional table of coefficients, standard errors, t -statistics, p -values and other descriptive statistics. Invoking summary on a different type of object, say a data.frame, will produce a different type of summary object. Methods for prediction, testing, plotting and other functionalities are also provided on a class specific basis.
(2) What about graphics? R has a very extensive graphics capability. Interactive graphics of the type illustrated already above is quite simple and easy to use. For publication quality graphics, there are device drivers for various graphical formats, generally I find that pdf is satisfactory. Dynamic and 3D graphics can be accessed from the package rgl.
(21) Latex tables? The packages Hmisc and xtable have very convenient functions to convert R matrices into latex tables.
(23) Random numbers? There is an extensive capability for generating pseudo random numbers from R. Reproducibility of random sequences is ensured by using the set. seed command. Various distributions are accessible with families of functions using the prefixes pdqr, thus for example pnorm, dnorm, qnorm and rnorm can be used to evaluate the distribution function, density function, quantile function, or to generate random normals, respectively. See ?Distribut ions for a complete list of standard distributions available in base \(R\) in this form. Special packages provide additional scope, although it is sometimes tricky to find them.

\section*{R FAQ}
(3) Programming and simulation? The usual language constructs for looping, switching and data management are available, as are recent developments for exploiting multicore parallel processing. Particularly convenient are the family of apply functions that facilitate summarizing matrix and list objects. A good way to learn the \(R\) language is to look at the code for existing functions. Most of this code is easily accessible from the \(R\) command line. If you simply type the name of an R function, you will usually be able to see its code on the screen. Sometimes of course, this code will involve calls to lower level languages, and this code would have to be examined in the source files of the system. But everything is eventually accessible. If you don't like the way a function works you can define a modified version of it for your private use. If you are inspired to write lower level code this is also easily incorporated into the language as explained in the manual called "Writing R Extensions."

Choi, H. M. and Hobert, J. P. (2013). Analysis of MCMC algorithms for bayesian linear regression with Laplace errors. Journal of Multivariate Analysis, 117:32-40.
Doksum, K. (1974). Empirical probability plots and statistical inference for nonlinear models in the two-sample case. The Annals of Statistics, 2:267-277.
Doksum, K. and Gasko, M. (1990). On a correspondence between models in binary regression and survival analysis. Intl. Stat. Rev., 58:243-252.
Dunson, T. and Taylor, J. (2005). Approximate Bayesian inference for quantiles. Journal of Nonparametric Statistics, 17(3):385-400.
Feng, X., He, X., and Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika, 98:995-999.
Fenske, N., Kneib, T., and Hothorn, T. (2011). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. Journal of the American Statistical Association, 106:494-510.
Fitzenberger, B. (1997). Computational aspects of censorted quantile regression. In Dodge, Y., editor, L1-Statistical Procedures and Related Topics. IMS Lecture Notes- Monograph Series.
Gelfand, A. E. and Kottas, A. (2002). A computational approach for full nonparametric bayesian inference under dirichlet process mixture models. Journal of Computational and Graphical Statistics, 11(2):289-305.

\section*{References}

Abrevaya, J. (2001). The effect of demographics and maternal behavior on the distribution of birth outcomes. Empirical Economics, 26:247-259.
Abrevaya, J. and Dahl, C. M. (2008). The effects of birth inputs on birthweight. Journal of Business and Economic Statistics, 26:379-397.
Bang, H. and Tsiatis, A. a. (2002). Median regression with censored cost data. Biometrics, 58(3):643-9.
Belloni, A. and Chernozhukov, V. (2009). \(l_{1}\)-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics, 39:82-130.
Bose, A. and S., C. (2003). Generalized bootstrap for estimators of minimizers of convex functions. Journal of Statistical Planning and Inference, 117:225-239.
Brown, B. M. and Wang, Y. G. (2005). Standard errors and covariance matrices for smoothed rank estimators. Biometrika, 92:149-158.
Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics, 18:5-46.
Chernozhukov, V., Fernandez-Val, I., and Melly, B. (2013). Inference on counterfactual distributions. Econometrica, 81:2205-2268.
Chernozhukov, V. and Hong, H. (2003). An MCMC approach to classical estimation. Journal of Econometrics, 114:293-346.

Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics, 8:140-154.
Geraci, M. and Bottai, M. (2013). Linear quantile mixed models. Stat Comput, DOI 10.1007/s11222-013-9381-9.
Goh, S. C. and Knight, K. (2009). Nonstandard quantile-regression inference. Econometric Theory, 25:1415-1432.
Gutenbrunner, C. and Jurečková, J. (1992). Regression quantile and regression rank score process in the linear model and derived statistics. Ann. Statist., 20:305-330.
Gutenbrunner, C., Jurečková, J., Koenker, R., and Portnoy, S. (1993). Tests of linear hypotheses based on regression rank scores. Journal of Nonparametric Statistics, 2:307-333.
He, X. and Hu, F. (2002). Markov chain marginal bootstrap. Journal of the American Statistical Association, 97:783-795.

Jung, S. (1996). Quasi-likelihood for median regression models. Journal of the American Statistical Association, 91(433):251-257.
Kim, M.-O. and Yang, Y. (2011). Semiparametric approach to a random effects quantile regression model. Journal of the American Statistical Association, 106(496):1405-1417.

Kocherginsky, M., He, X., and Mu, Y. (2005). Practical confidence intervals for regression quantiles. Journal of Computational and Graphical Statistics, 14:41-55.
Koenker, R. (1994). Confidence intervals for regression quantiles, in P. Mandl and M. Huskova (eds.). Asymptotic Statistics, pages 349-359.
Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1):74-89.
Koenker, R. (2008). Censored quantile regression redux. Journal of Statistical Software, 27.
Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46:33-50.
Koenker, R. and Hallock, K. (2000). Quantile regression: An introduction. www.econ.uiuc.edu/~roger/research/intro/intro.html.
Koenker, R. and Park, B. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71:265-283.
Kottas, A. and Krnjajić, M. (2009). Bayesian semiparametric modelling in quantile regression. Scandinavian Journal of Statistics, 36(2):297-319.
Kozumi, H. and Kobayashi, G. (2011). Gibbs sampling methods for bayesian quantile regression. Journal of Statistical Computation and Simulation, 81:1565-1578.

Parzen, M. I., Wei, L., and Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika, 81:341-350.
Peng, L. (2012). Self-consistent estimation of censored quantile regression. Journal of Multivariate Analysis, 105:368-379.
Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical Association, 98(464):1001-1012.
Powell, J. L. (1984). Least absolute deviations estimation for the censored regression model. Journal of Econometrics, 25(3):303-325.
Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics, 32:143-155.
Reich, B. J., Bondell, H. D., and Wang, H. J. (2010). Flexible Bayesian quantile regression for independent and clustered data. Biostatistics, 11(2):337-352.
Reich, B. J., Fuentes, M., and Dunson, D. B. (2011). Bayesian spatial quantile regression. Journal of the American Statistical Association, 106:6-20.
Rosenblatt, F. (1958). The perceptron: a probablistic model for information storage and retrieval in the brain. Psychological Review, 65:386-408.
Stengos, T. and Wang, D. (2007). An algorithm for censored quantile regressions. Economics Bulletin, 3:1-9.

Lancaster, T. and Jun, S. J. (2010). Bayesian quantile regression methods. Journal of Applied Econometrics, 25(2):287-307.
Leng, C. and Zhang, W. (2014). Smoothing combined estimating equations in quantile regression for longitudinal data. Statistics and Computing, 24:123-136.
Li, Q., Xi, R., and Lin, N. (2010). Bayesian regularized quantile regression. Bayesian Analysis, 5(3):533-556.
Lum, K. and Gelfand, A. (2012). Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Analysis, 7:235-258.
Machado, J. and Mata, J. (2001). Counterfactual decomposition of changes in wage distributions using quantile regression. \(E E, 26: 115-134\).
Manski, C. (1975). Maximum score estimation of the stochastic utility model of choice. J. of Eonometrics, 3:205-228.
Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. The Annals of Statistics, 28:1083-1104.
Mosteller, F. and Tukey, J. (1977). Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading Mass.
Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile regression models. Journal of Econometrics, 142(1):508-538.
Owen, A. (2001). Empirical Likelihood. Chapman \& Hall/CRC Press.

Tang, Y., Wang, H., He, X., and Zhu, Z. (2012). Informative subset estimation for censored quantile regression. TEST, 21:635-655.
Tokdar, S. T. and Kadane, J. B. (2011). Simulatenous linear quantile regression: A semiparametric bayesian approach. Bayesian Analysis, 6:1-22.
Tsionas, E. G. (2003). Bayesian quantile inference. Journal of Statistical Computation and Simulation, 73:659-674.
Tuddenham, R. D. and Snyder, M. M. (1954). Physical growth of california boys and girls from birth to age 18. California Public Child Development, 1:183-364.
Wang, H. and He, X. (2007). Detecting differential expressions in genechip microarray studies. Journal of the American Statistical Association, 102(477):104-112.
Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile regression. Journal of the American Statistical Association, 104(487):1117-1128.
Wei, Y., Pere, A., Koenker, R., and He, X. (2006). Quantile regression methods for reference growth charts. Statistics in Medicine, 25:1369-1382.
Yang, Y. and He, X. (2012). Bayesian empirical likelihood for quantile regression. Annals of Statistics, 40:1102-1131.

Yang, Y., Wang, H., and He, X. (2014). Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood. Technical report.
Ying, Z., Jung, S. H., and Wei, L. J. (1995). Survival analysis with median regression models. Journal of the American Statistical Association, 90:178-184.
Yu, K. and Moyeed, R. A. (2001). Bayesian quantile regression. Statistics and Probability Letters, 54:437-447.
Zhou, L. (2006). A simple censored median regression estimator. Statistica Sinica, 16:1043-1058.```

