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Lecture 1. The Basics: What, Why and How?

Univariate Quantiles
Scatterplot Smoothing
Equivariance Properties
Quantile Treatment Effects
Three Empirical Examples
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The Middle Sized Egg

Volume of the eggs can be measured by the amount of water they
displace (Archimedes’ Eureka!) and the median (middle-sized) egg
found by sorting these measurements.

Note that even if we measure the logarithm of the volumes, the middle
sized egg is the same. Not true for the mean egg!
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Stem and Leaf Plot: Tukey’s EDA I
Given a “batch” of numbers, {X

1

, X
2

, ..., Xn} one can make a quick and
dirty histogram in R this way:
> x <- r ch i sq (100 ,5) # 100 Chi-squared ( 5 )
> q u a n t i l e ( x ) # Tukey ’ s Five Number Summary

0% 25% 50% 75% 100%
0.9042396 2.7662230 4.2948642 6.2867588 16.5818573

> stem ( x )

The decimal p o in t i s a t the |

0 | 92356668
2 | 001111244445667778889990111222455666
4 | 01223334666678901125567889
6 | 023344667802888
8 | 556691

10 | 7
12 | 159
14 | 06
16 | 6
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Boxplot of CEO Pay: Tukey’s EDA II
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Motivation

What the regression curve does is give a grand summary for
the averages of the distributions corresponding to the set of of
x’s. We could go further and compute several different
regression curves corresponding to the various percentage
points of the distributions and thus get a more complete
picture of the set. Ordinarily this is not done, and so
regression often gives a rather incomplete picture. Just as the
mean gives an incomplete picture of a single distribution, so
the regression curve gives a correspondingly incomplete
picture for a set of distributions.

Mosteller and Tukey (1977)
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Univariate Quantiles
Given a real-valued random variable, X, with distribution function F, we
will define the ⌧th quantile of X as

QX(⌧) = F-1

X (⌧) = inf{x | F(x) > ⌧}.

This definition follows the usual convention that F is CADLAG, and Q is
CAGLAD as illustrated in the following pair of pictures.
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Univariate Quantiles
Given a real-valued random variable, X, with distribution function F, we
will define the ⌧th quantile of X as

QX(⌧) = F-1

X (⌧) = inf{x | F(x) > ⌧}.

This definition follows the usual convention that F is CADLAG, and Q is
CAGLAD as illustrated in the following pair of pictures.
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Univariate Quantiles

Viewed from the perspective of densities, the ⌧th quantile splits the
area under the density into two parts: one with area ⌧ below the ⌧th
quantile and the other with area 1 - ⌧ above it:
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Two Bits Worth of Convex Analysis

A convex function ⇢ and its subgradient  :

ττ − 1

ρτ(u)
τ

τ − 1

ψτ(u)

The subgradient of a convex function f (u) at a point u consists of all the
possible “tangents.” Sums of convex functions are convex.
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Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

↵̂(⌧) = argmin E ⇢⌧(Y - ↵)

Proof: Let  ⌧(u) = ⇢
0
⌧(u), so differentiating wrt to ↵:

0 =

Z1

-1
 ⌧(y - ↵)dF(y)

= (⌧- 1)

Z↵

-1
dF(y) + ⌧

Z1

↵
dF(y)

= (⌧- 1)F(↵) + ⌧(1 - F(↵))

implying ⌧ = F(↵) and thus ↵̂ = F-1(⌧).
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Sample Quantiles as Optimizers
For sample quantiles replace F by F̂, the empirical distribution function.
The objective function becomes a polyhedral convex function whose
derivative is monotone decreasing, in effect the gradient simply counts
observations above and below and weights the sums by ⌧ and ⌧- 1.
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Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y - m)2

The conditional mean µ(x) = E(Y |X = x) solves

µ(x) = argminmEY|X=x(Y - m(X))2.

Similarly, the unconditional ⌧th quantile solves

↵⌧ = argminaE⇢⌧(Y - a)

and the conditional ⌧th quantile solves

↵⌧(x) = argminaEY|X=x⇢⌧(Y - a(X))
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Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into
positive and negative parts and sum with appropriate weights:

min{⌧1

>u + (1 - ⌧)1>v|y = Xb + u - v, (b, u, v) 2 |Rp ⇥ |R2n
+ }

Dual Formulation as a Linear Program

max{y 0d|X>d = (1 - ⌧)X>
1, d 2 [0, 1]n}

Solutions are characterized by an exact fit to p observations.
Let h 2 H index p-element subsets of {1, 2, ..., n} then primal solutions
take the form:

�̂ = �̂(h) = X(h)-1y(h)
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Least Squares from the p-subset Perspective
Exact fits to p observations:

�̂ = �̂(h) = X(h)-1y(h)

OLS is a weighted average of these �̂(h)’s:

�̂OLS = (X>X)-1X>y =
X

h2H

w(h)�̂(h),

w(h) = |X(h)|2/
X

h2H

|X(h)|2

The determinants |X(h)| are the (signed) volumes of the parallelipipeds
formed by the columns of the the matrices X(h). In the simplest
bivariate case, we have,

|X(h)|2 =

����
1 xi
1 xj

����
2

= (xj - xi)
2

so pairs of observations that are far apart are given more weight.
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Conditional vs Marginal Quantiles

Interpretation of QR results must be careful to distinguish conditional
and marginal covariate effects:

QR estimates covariate effects on conditional quantiles,
How do changes in covariates impact conditional quantiles of the
response,
Such effects may depend crucially on what the other conditioning
covariates are,
All of this is familiar from classical mean (least-squares)
regression,
But, perhaps, too easily overlooked.

Effects on marginal quantiles may be estimated by integrating with
respect to the marginal distribution of the covariates, Machado and
Mata (2001), Chernozhukov et al. (2013).
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What is a College Degree Worth?

Yi = ↵i + �i + �i,

Yi Discounted Career Earnings
↵i Ability Component
�i College Component
�i Major Component

Conditional Quantile Interpretation: Among individuals of a given ↵
and �, what income level, �, is such that proportion ⌧ are below �, and
(1 - ⌧) are above.
Conditional Distribution Interpretation: Given a fixed income level,
y, how do changes in ability, college completion status, and choice of
major influence the probability of exceeding that level.
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Quantile Regression: The Movie

Bivariate linear model with iid Student t errors
Conditional quantile functions are parallel in blue
100 observations indicated in blue
Fitted quantile regression lines in red.
Intervals for ⌧ 2 (0, 1) for which the solution is optimal.
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2
0

2
4

6
8

10
12

x

y

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.619  ,  0.636  ]

Roger Koenker & Judy Huixia Wang Lecture 1. The Basics: What, Why and How? 27 / 349

Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2
0

2
4

6
8

10
12

x

y

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.768  ,  0.798  ]

Roger Koenker & Judy Huixia Wang Lecture 1. The Basics: What, Why and How? 29 / 349

Quantile Regression in the iid Error Model
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Virtual Quantile Regression II

Bivariate quadratic model with Heteroscedastic �2 errors
Conditional quantile functions drawn in blue
100 observations indicated in blue
Fitted quadratic quantile regression lines in red
Intervals of optimality for ⌧ 2 (0, 1).
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Quantile Regression in the Heteroscedastic Error
Model
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Conditional Means vs. Medians
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Minimizing absolute errors for median regression can yield something
quite different from the least squares fit for mean regression.
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Equivariance of Regression Quantiles

�̂(⌧; y, X) = argminb

nX

i=1

⇢⌧(yi - x>i b)

Scale Equivariance: For any a > 0, �̂(⌧; ay, X) = a�̂(⌧; y, X) and
�̂(⌧;-ay, X) = a�̂(1 - ⌧; y, X)
Regression Shift: For any � 2 |Rp �̂(⌧; y + X�, X) = �̂(⌧; y, X) + �
Reparameterization of Design: For any |A| 6= 0,
�̂(⌧; y, XA) = A-1�̂(⌧; y, X)
Robustness: For any diagonal matrix D with nonnegative
elements. �̂(⌧; y, X) = �̂(⌧; y + Dû, X) where û = y - X�̂(⌧; y, X).
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Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions QY(⌧|x) are
equivariant in the sense that

Qh(Y)|X(⌧|x) = h(QY|X(⌧|x))

In contrast to conditional mean functions for which, generally,

E(h(Y)|X) 6= h(EY |X)

Examples:
h(y) = min{0, y}, censored regression estimator of Powell (1986) .
h(y) = sgn{y}, perceptron of Rosenblatt (1958), maximum score
estimator of Manski (1975).
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Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount �(x) when the
response of the untreated subject would be x. Then the
distribution G of the treatment responses is that of the random
variable X + �(X) where X is distributed according to F.”
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Lehmann QTE as a QQ-Plot

Doksum (1974) defines �(x) as the “horizontal distance” between F
and G at x, i.e.

F(x) = G(x + �(x)).

Then �(x) is uniquely defined as

�(x) = G-1(F(x))- x.

This is the essence of the conventional QQ-plot. Changing variables
so ⌧ = F(x) we have the quantile treatment effect (QTE):

�(⌧) = �(F-1(⌧)) = G-1(⌧)- F-1(⌧).
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Lehmann-Doksum QTE
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Lehmann-Doksum QTE
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An Asymmetric Example
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Treatment shifts the distribution from right skewed to left skewed
making the QTE U-shaped.
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The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal
distributions, F and G, but it cannot reveal anything about the joint
distribution, H. The copula function, Schweizer and Wolf (1981),
Genest and McKay, (1986),

'(u, v) = H(F-1(u), G-1(v)),

is not identified. Lehmann’s formulation assumes that the treatment
leaves the ranks of subjects invariant. If a subject was going to be the
median control subject, then he will also be the median treatment
subject. This is an inherent limitation of the Neymann-Rubin potential
outcomes framework.
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QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

�̂(⌧) = Ĝ-1

n (⌧)- F̂-1

m (⌧),

where Ĝn and F̂m denote the empirical distribution functions of the
treatment and control observation. Consider the quantile regression
model

QYi(⌧|Di) = ↵(⌧) + �(⌧)Di,

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.
Yi = log Ti, which can be estimated by solving,

min

nX

i=1

⇢⌧(yi - ↵- �Di).
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Galton’s (1885) Anthropometric Quantiles
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QTE: Strength of Squeeze
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“Very powerful women exist, but happily perhaps for the repose of the
other sex, such gifted women are rare.”
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the dependence

of households’ food expenditure on household income. Seven estimated quantile regression lines

for ⌧ 2 {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot. The median ⌧ = .5 fit

is indicated by the blue solid line; the least squares estimate of the conditional mean function is

indicated by the red dashed line.
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the dependence

of households’ food expenditure on household income. Seven estimated quantile regression lines

for ⌧ 2 {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot. The median ⌧ = .5 fit

is indicated by the blue solid line; the least squares estimate of the conditional mean function is

indicated by the red dashed line.
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2000).
Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between
18-45, and residing in the U.S. Sample size: 198,377.
Response: Infant Birthweight (in grams)
Covariates:

I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

0
20

40
60

80
10

0

College

•

•
• • • •

•
•

•
• •

•
• • •

•
•

•

•

0.0 0.2 0.4 0.6 0.8 1.0

-5
00

-4
00

-3
00

-2
00

-1
00

0

No Prenatal

•

•

•

•

•
• •

• • • • •
• • • • •

•
•

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

Prenatal Second

•

•

•
•

•

•
•

• • •
• •

•
•

•
•

• •

•

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

0
50

10
0

15
0

Prenatal Third

•

•

•

•

• • •
• •

• • •
• • • •

• •

•

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
80

-1
60

-1
40

Smoker

•

•

•

• •
• •

•

• •
•

•
•

•

•

•

•

•

•

0.0 0.2 0.4 0.6 0.8 1.0

-6
-5

-4
-3

-2

Cigarette’s/Day

•

•

•

•
• •

•

•
• • •

•
•

•

•
•

•

• •

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Mother’s Weight Gain

•

•

•

•
•

•
• • • • • • • • •

• • • •

0.0 0.2 0.4 0.6 0.8 1.0

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Mother’s Weight Gain^2

•

•

•

•
•

•
• • •

• • •
• • •

• •
• •

Roger Koenker & Judy Huixia Wang Lecture 1. The Basics: What, Why and How? 59 / 349

Marginal Effect of Mother’s Age
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Marginal Effect of Mother’s Weight Gain
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Daily Temperature in Melbourne
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Nonparametric QAR(1) Fit
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Conditional Densities of Daily Temperature
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Review of Lecture 1

Least squares methods of estimating conditional mean functions
were developed for, and
promote the view that,

Response = Signal + iid Measurement Error

In fact the world is rarely this simple.
More flexible models can be formulated that allow one to estimate
several conditional quantile functions of the response, and thereby
reveal scale and shape effects of the covariates, not simply their
location shift effect.
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Lecture 2. Inference for Quantile Regression
Inference for the Sample Quantiles
QR Inference in iid Error Models*
QR Inference in Heteroscedastic Error Models*
Classical Rank Tests and the Quantile Regression Dual*
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The Precision of Sample Quantiles?
For random samples from a continuous distribution, F, the sample
quantiles, F̂-1

n (⌧) are consistent, by the Glivenko-Cantelli theorem.
Rates of convergence and precision are governed by the density near
the quantile of interest, if it exists.
Note that differentiating the identity: F(F-1(t)) = t, yields,

d
dt

F(F-1(t)) = f (F-1(t))
d
dt

F-1(t) = 1

thus, provided of course that f (F-1(t)) > 0,

d
dt

F-1(t) =
1

f (F-1(t))
.

So, limiting normality of F̂n and the �-method imply limiting normality of
the sample quantiles with

p
n rate and variance proportional to

f-2(F-1(t)).
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Inference for the Sample Quantiles

Minimizing
Pn

i=1

⇢⌧(yi - ⇠) consider

gn(⇠) = -n-1

nX

i=1

 ⌧(yi - ⇠) = n-1

nX

i=1

(I(yi < ⇠)- ⌧).

By convexity of the objective function,

{⇠̂⌧ > ⇠}, {gn(⇠) < 0}

and the DeMoivre-Laplace CLT yields, expanding F,
p

n(⇠̂⌧ - ⇠) N(0,!2(⌧, F))

where !2(⌧, F) = ⌧(1 - ⌧)/f 2(F-1(⌧)). Classical Bahadur-Kiefer
representation theory provides further refinement of this result.
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Some Gory Details
Instead of a fixed ⇠ = F-1(⌧) consider,

P{⇠̂n > ⇠+ �/
p

n} = P{gn(⇠+ �/
p

n) < 0}

where gn ⌘ gn(⇠+ �/
p

n) is a sum of iid terms with

Egn = En-1

nX

i=1

(I(yi < ⇠+ �/
p

n)- ⌧)

= F(⇠+ �/
p

n)- ⌧
= f (⇠)�/

p
n + o(n-1/2)

⌘ µn�+ o(n-1/2)

Vgn = ⌧(1 - ⌧)/n + o(n-1) ⌘ �2

n + o(n-1).

Thus, by (a triangular array form of) the DeMoivre-Laplace CLT,

P(
p

n(⇠̂n - ⇠) > �) = �((0 - µn�)/�n) ⌘ 1 -�(!-1�)

where ! = µn/�n =
p
⌧(1 - ⌧)/f (F-1(⌧)).
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Finite Sample Density for QR

Let h 2 H index the
�n

p

�
p-element subsets of {1, 2, . . . , n} and X(h), y(h)

denote corresponding submatrices and vectors of X and y.
Lemma: �̂ = b(h) ⌘ X(h)-1y(h) is the ⌧th regression quantile iff
⇠h 2 C where ⇠h =

P
i/2h ⌧(yi - xi�̂)x>i X(h)-1, C = [⌧- 1, ⌧]p, and

 ⌧(u) = ⌧- I(u < 0).
Theorem: (Koenker and Bassett, 1978) In the linear model with iid
errors, {ui} ⇠ F, f , the density of �̂(⌧) is given by

g(b) =
P

h2H

Q·
i2h f (x>i (b - �(⌧)) + F-1(⌧))

·P(⇠h(b) 2 C)|det(X(h))|

Asymptotic behavior of �̂(⌧) follows by (painful) consideration of the
limiting form of this density, see also Goh and Knight (2009).
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Asymptotic Theory of Quantile Regression I

In the classical linear model,

yi = xi�+ ui

with ui iid from df F, with density f (u) > 0 on its support
{u|0 < F(u) < 1}, the joint distribution of

p
n(�̂n(⌧i)- �(⌧i))m

i=1

is
asymptotically normal with mean 0 and covariance matrix ⌦⌦ D-1.
Here �(⌧) = �+ F-1

u (⌧)e
1

, e
1

= (1, 0, . . . , 0)>, x
1i ⌘ 1, n-1

P
xix>i ! D,

a positive definite matrix, and

⌦ = ((⌧i ^ ⌧j - ⌧i⌧j)/(f (F-1(⌧i))f (F-1(⌧j)))
m
i,j=1

.
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Asymptotic Theory of Quantile Regression II

When the response is conditionally independent over i, but not
identically distributed, the asymptotic covariance matrix of
⇣(⌧) =

p
n(�̂(⌧)- �(⌧)) is somewhat more complicated. Let

⇠i(⌧) = xi�(⌧), fi(·) denote the corresponding conditional density, and
define,

Jn(⌧1

, ⌧
2

) = (⌧
1

^ ⌧
2

- ⌧
1

⌧
2

)n-1

nX

i=1

xix>i ,

Hn(⌧) = n-1

X
xix>i fi(⇠i(⌧)).

Under mild regularity conditions on the {fi}’s and {xi}’s, we have joint
asymptotic normality for (⇣(⌧i), . . . , ⇣(⌧m)) with covariance matrix

Vn = (Hn(⌧i)
-1Jn(⌧i, ⌧j)Hn(⌧j)

-1)m
i,j=1

.
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Making Sandwiches
The crucial ingredient of the QR Sandwich is the quantile density
function fi(⇠i(⌧)), which can be estimated by a difference quotient.
Differentiating the identity: F(Q(t)) = t we get

s(t) =
dQ(t)

dt
=

1

f (Q(t))

sometimes called the “sparsity function” so we can compute

f̂i(x>i �̂(⌧)) = 2hn/(x>i (�̂(⌧+ hn)- �̂(⌧- hn))

with hn = O(n-1/3). Prudence suggests a modified version:

f̃i(x>i �̂(⌧)) = max{0, f̂i(x>i �̂(⌧))}.

Various other strategies can be employed including a variety of
bootstrapping options. More on this in Lecture 3.
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Testing Equality of “Slopes”
Wald-type inference with QR sandwiches is applicable to a wide
variety of hypotheses. Frequently, it is of interest to test whether
covariate (treatment) effects differ across quantiles. In the R package
quantreg such tests and many others can be accomplished with the
command anova, e.g.

> data(engel)
> f1 <- rq(foodexp ~ income, tau = .25, data = engel)
> f2 <- rq(foodexp ~ income, tau = .5, data = engel)
> f3 <- rq(foodexp ~ income, tau = .75, data = engel)
> anova(f1,f2,f3)
Quantile Regression Analysis of Deviance Table

Model: foodexp ~ income
Joint Test of Equality of Slopes: tau in { 0.25 0.5 0.75 }

Df Resid Df F value Pr(>F)
1 2 703 15.557 2.449e-07
---
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Rank Based Inference for Quantile Regression

Ranks play a fundamental dual role in QR inference, via a
generalization Hájek rankscore functions,
Classical rank tests for the p-sample problem can thereby be
extended to regression settings,
Rank tests play the role of Rao (score) tests for quantile
regression,
Rank tests can be inverted to produce confidence intervals
(regions).
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Duality of Ranks and Quantiles

We have seen that quantiles may be defined as

⇠̂(⌧) = argmin
X

⇢⌧(yi - ⇠),

where ⇢⌧(u) = u(⌧- I(u < 0)). This can be formulated as a linear
program whose dual solution

â(⌧) = arg max{y>a|1>n a = (1 - ⌧)n, a 2 [0, 1]n}

generates the Hájek rankscore functions.

Reference: Gutenbrunner and Jurečková (1992).
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Regression Quantiles and Rank Scores

�̂n(⌧) = argminb2Rp

X
⇢⌧(yi - x>i b)

ân(⌧) = arg maxa2[0,1]n{y
>a|X>a = (1 - ⌧)X>

1n}

x>�̂n(⌧) Estimates QY(⌧|x)
Piecewise constant on [0, 1].
For X = 1n, �̂n(⌧) = F̂-1

n (⌧).

{âi(⌧)}ni=1

Regression rankscore functions
Piecewise linear on [0, 1].
Generalized to regression via the dual formulation.
For X = 1n, âi(⌧) are the Hajek functions.
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Regression Rankscore “Residuals”

The Wilcoxon rankscores,

ũi =

Z
1

0

âi(t)dt

play the role of quantile regression residuals. For each observation yi
they answer the question: on which quantile does yi lie? The ũi satisfy
an orthogonality restriction:

X>ũ = X>
Z

1

0

â(t)dt = nx̄
Z

1

0

(1 - t)dt = nx̄/2.

This is something like the X>û = 0 condition for OLS. Note that if the X
is “centered” then x̄ = (1, 0, · · · , 0). The ũ vector is approximately
uniformly “distributed;” in the one-sample setting ui = (Ri + 1/2)/n so
they are obviously “too uniform.”
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Regression Rankscore Tests

Y = X �+ Z �+ u

H
0

: � = 0 versus Hn : � = �
0

/
p

n

Given the regression rank score process for the restricted model,

ân(⌧) = arg max

⌦
Y>a |X>a = (1 - ⌧)X>

1n

↵

A test of H
0

is based on the linear rank statistics,

b̂n =

Z
1

0

ân(t) d'(t)

Choice of the score function ' permits test of location, scale or
(potentially) other effects.
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Regression Rankscore Tests

Theorem: (Gutenbrunner et al., 1993) Under Hn and regularity
conditions, the test statistic Tn = S>n Q-1

n Sn where
Sn = (Z - Ẑ)>b̂n, Ẑ = X(X>X)-1X>Z, Qn = n-1(Z - Ẑ)>Z - Ẑ)

Tn  �2

q(⌘)

where

⌘2 = !2(', F)�>
0

Q�
0

!(', F) =

Z
1

0

f (F-1(t)) d'(t)
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Regression Rankscores for Stackloss Data
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Regression Rankscores for Stackloss Data
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Inversion of Rank Tests: Confidence Intervals

For the scalar � case and using the score function

'⌧(t) = ⌧- I(t < ⌧)

b̂ni = -

Z
1

0

'⌧(t)dâni(t) = âni(⌧)- (1 - ⌧)

with '̄ =
R

1

0

'⌧(t)dt = 0 and A2('⌧) =
R

1

0

('⌧(t)- '̄)2dt = ⌧(1 - ⌧).
Thus, a test of the hypothesis H

0

: � = ⇠ may be based on ân from
solving,

max{(y - x
2

⇠)>a|X>
1

a = (1 - ⌧)X>
1

1, a 2 [0, 1]n}

and the fact that

Sn(⇠) = n-1/2x>
2

b̂n(⇠) N(0, A2('⌧)q2

n).
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Inversion of Rank Tests: Confidence Intervals

That is, we may compute

Tn(⇠) = Sn(⇠)/(A('⌧)qn),

where q2

n = n-1x>
2

(I - X
1

(X>
1

X
1

)-1X>
1

)x
2

, and reject H
0

if
|Tn(⇠)| > �-1(1 - ↵/2).

Inverting this test, that is finding the interval of ⇠’s such that the test
fails to reject yields a confidence interval for the parameter �. Unlike
the Wald type inference it delivers asymmetric intervals. This is the
default approach to parametric inference in R package quantreg for
problems of modest sample size.
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Bootstrap Inference for QR

There are several bootstrapping methods for QR inference
Standard pairwise Xy
Gradient resampling a la Parzen et al. (1994)
Markov chain marginal bootstrap of Kocherginsky et al. (2005)
Weighted bootstrap of Bose and S. (2003)
Wild bootstrap of Feng et al. (2011)
Wild bootstrap for clustered data Hagemann (2014)
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Four Concluding Comments about Inference

Asymptotic inference for quantile regression poses some
statistical challenges since it involves elements of nonparametric
density estimation, but this shouldn’t be viewed as a major
obstacle.
Classical rank statistics and Hájek ’s rankscore process are
closely linked via Gutenbrunner and Jurečková ’s regression
rankscore process, providing an attractive approach to many
inference problems while avoiding density estimation.
Inference on the quantile regression process can be conducted
with the aid of Khmaladze’s extension of the Doob-Meyer
construction.
Resampling offers many further lines of development for inference
in the quantile regression setting.
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Lecture 3. Computation and Examples

Estimation in R and Examples
Inference in R and Examples
Estimation and Inference in SAS
Nonparametric Quantile Regression in R
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Estimation in Linear Quantile Regression

Linear quantile regression model:

yi = x

T
i �(⌧) + ei, Qei|xi(⌧) = 0.

Estimator:

�̂(⌧) = argmin�

nX

i=1

⇢⌧(yi - x

T
i �).
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Software

R package quantreg

SAS/STAT PROC QUANTREG
STATA: www.stata.com
SPLUS
Mathematica:
http://mathematicaforprediction.wordpress.com

Matlab code for quantile regression:
www.econ.uiuc.edu/~roger/research/rq/rq.m
www.stat.psu.edu/~dhunter/code/qrmatlab
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Estimation in R

R package quantreg.
Install the quantreg package in R

I From CRAN directly: install.packages("quantreg")
I From local source:
install.packages("dir/filename", repos = NULL,
type="source")

e.g. Windows:
install.packages("C:/quantreg_5.05.zip",
repos = NULL, type="source")

Mac:
install.packages("/Users/Documents/
quantreg_5-1.05.tar", repos = NULL,
type="source")
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Estimation in R

The syntax of rq() function

library(quantreg)
rq(formula, tau=0.5, data, method="br", ...)

formula: model statement, e.g.

y ⇠ x1 + x2

tau: quantile level(s) of interest
I If tau is a single number 2 (0, 1), returns the estimates from

regression at this specified quantile level.
I If tau is a vector, e.g. tau = c(0.25, 0.5, 0.75), returns the estimates

from regression at multiple quantiles.
I If tau /2 (0, 1), returns the entire quantile process.
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Estimation in R

rq methods
I method=“br": Simplex method (default). Efficient for problems with

modest size (several thousands). Slow relative to LSE for large
problems.

I method=“fn": the Frisch-Newton interior point method. More
efficient than simplex for larger sample size.

I method=“pfn": the Frisch-Newton approach with preprocessing.
Recommended for very large problems (e.g. n > 10

5).

I method=“lasso": the Frisch-Newton approach with lasso penalty.
Recommended for very large problems (e.g. n > 10

5). See also
rqss.
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Example 1: Engel’s Food Expenditure

Linear quantile regression model:

Q⌧(foodexp|income) = ↵⌧ + �⌧ ⇥ income.

R code:

library(quantreg)
#plot the data
plot(engel)

#estimation at median
f1 = rq(foodexp~income, tau=0.5, data=engel)

#superimpose median regression line
abline(f1,col="red")
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Example 1: Engel’s Food Expenditure

#view the estimated coefficients
f1
coef(f1) #or f1$coef

#fit at other quantile levels and plot
taus = c(0.1, 0.25, 0.75, 0.9)
f2 = rq(foodexp~income, taus, data=engel)
f2
for(i in 1:length(taus)){
abline(coef(f2)[,i],col="blue")
}
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Example 1: Engel’s Food Expenditure

> f1
Call:
rq(formula = foodexp ~ income, tau = 0.5, data = engel)

Coefficients:
(Intercept) income
81.4822474 0.5601806

> f2
Call:
rq(formula = foodexp ~ income, tau = taus, data = engel)

Coefficients:
tau= 0.10 tau= 0.25 tau= 0.75 tau= 0.90

(Intercept) 110.1415742 95.4835396 62.3965855 67.3508721
income 0.4017658 0.4741032 0.6440141 0.6862995
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Example 1: Engel’s Food Expenditure
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Example 1: Engel’s Food Expenditure

Automatic plots of the estimated quantile coefficients across quantile
levels can be obtained by using the R function plot.rqs:

taus = 1:49/50
fm = rq(foodexp~income, taus, data=engel)
plot(fm, mfrow=c(1,2))

#or plot only the second coefficient (slope)
plot(fm, parm = 2, xlab = "tau", cex = 1, pch = 19)

Try the R function example(rq) for illustration of quantile regression
analysis on the data stackloss and engel.
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Example 1: Engel’s Food Expenditure
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Compare the Computing Time of Estimation Methods
via Simulation
library(quantreg)
#a simulated data with one predictor
set.seed(1278991)
n = 1000
x = runif(n)
y = 1 + x + (1+x)*rnorm(n)
system.time(lmfit <- lm(y~x))
system.time(f1 <- rq(y~x, tau=0.5, method="br"))
system.time(f2 <- rq(y~x, tau=0.5, method="fn"))
system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))

> system.time(lmfit <- lm(y~x))
user system elapsed

0.349 0.008 0.445
> system.time(f1 <- rq(y~x, tau=0.5, method="br"))

user system elapsed
0.003 0.001 0.009

> system.time(f2 <- rq(y~x, tau=0.5, method="fn"))
user system elapsed

0.328 0.004 0.352
> system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))

user system elapsed
0.008 0.002 0.014
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A Simulated Data with n = 10, 000

> set.seed(1278991)
> n = 10000
> x = runif(n)
> y = 1 + x + (1+x)*rnorm(n)
> system.time(lmfit <- lm(y~x))

user system elapsed
0.301 0.016 0.491

> system.time(f1 <- rq(y~x, tau=0.5, method="br"))
user system elapsed

0.304 0.008 0.342
> system.time(f2 <- rq(y~x, tau=0.5, method="fn"))

user system elapsed
0.035 0.002 0.043

> system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))
user system elapsed

0.217 0.009 0.280
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A Simulated Data with n = 200, 000

> set.seed(1278991)
> n = 200000
> x = runif(n)
> y = 1 + x + (1+x)*rnorm(n)
> system.time(lmfit <- lm(y~x))

user system elapsed
0.955 0.036 1.119

> system.time(f1 <- rq(y~x, tau=0.5, method="br"))
user system elapsed

9.438 0.074 9.516
> system.time(f2 <- rq(y~x, tau=0.5, method="fn"))

user system elapsed
1.031 0.066 1.099

> system.time(f3 <- rq(y~x, tau=0.5, method="pfn"))
user system elapsed

0.562 0.055 0.635
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A Simulated Data with Sparse Design Matrix

set.seed(1278991)
n = 1000; p=500
X = matrix(rbinom(n*p,1,0.5),ncol=p)
beta = c(rep(2,5), rep(0,p-5))
y = 1 + X%*%beta + (1+X[,1])*rnorm(n)
system.time(f1 <- rq(y~X, tau=0.5, method="br"))
system.time(f2 <- rqss(y~X, tau=0.5, method="sfn"))
system.time(f3 <- rq(y~X, tau=0.5, method="lasso",
lambda=10))
plot(f3$coef)

> system.time(f1 <- rq(y~X, tau=0.5, method="br"))
user system elapsed
9.439 0.056 9.494

> system.time(f2 <- rqss(y~X, tau=0.5, method="sfn"))
user system elapsed
4.082 0.202 4.305

> system.time(f3 <- rq(y~X, tau=0.5, method="lasso",
+ lambda=10))

user system elapsed
2.046 0.042 2.110
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Inference in R

function:

rq.object = rq(y~x, tau)
summary.rq(rq.object, se="nid",...)

se="rank": default method, constructs confidence intervals by the
inversion of rank score test (Gutenbrunner et al., 1993; Koenker,
1994). The default confidence level is 90%, use “alpha=0.05" to
obtain 95% confidence intervals.
se=“nid": based on the asymptotic normality and direct
estimation of the asymptotic variance assuming non i.i.d. errors.
se=“iid": similar as “nid" but assumes i.i.d. errors.
se="ker": based on direct estimation of the asymptotic variance
and uses a kernel estimate of the sandwich.
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Inference in R

se="boot": uses bootstrap to estimate standard errors.
I bsmethod=“xy": xy-pair bootstrap.

I bsmethod=“pwy": resampling the estimating equations (Parzen
et al., 1994).

I bsmethod=“mcmb": Markov chain marginal bootstrap (He and Hu,
2002), relieves the computational burden by reducing a
high-dimensional problem to several one-dimensional problems.

I bmethod = "wxy": uses the generalized bootstrap with unit
exponential weights (Bose and S., 2003).

I bsmethod=“wild": wild bootstrap (Feng et al., 2011).
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Engel’s—Confidence Band (rank)
Manually construct 95% pointwise confidence band of the
estimated coefficients using the rank score method.

taus = 1:49/50
coef = lb = ub = NULL
for(i in 1:length(taus)){

obj = rq(foodexp~income, tau=taus[i], data=engel)
f1 = summary(obj, se="rank", alpha=0.05)
coef = rbind(coef, f1$coef[,1])
lb = rbind(lb, f1$coef[,2])
ub = rbind(ub, f1$coef[,3])

}
#intercept
plot(coef[,1]~taus,ylim=range(c(coef[,1],lb[,1],ub[,1])),
ylab="intercept",type="b")
lines(lb[,1]~taus,col="blue",lty=5)
lines(ub[,1]~taus,col="blue",lty=5)

#slope
plot(coef[,2]~taus,ylim=range(c(coef[,2],lb[,2],ub[,2])),
ylab="income",type="b")
lines(lb[,2]~taus,col="blue",lty=5)
lines(ub[,2]~taus,col="blue",lty=5)
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Engel’s—Confidence Band (rank)

Construct 95% pointwise confidence bands automatically by using
the R function plot.summary.rqs().

taus = 1:49/50
fm = rq(foodexp~income, taus, data=engel)
sfm = summary(fm, se="rank", alpha=0.05)
plot(sfm, mfrow=c(1,2))

#plot the CB for only the slope
plot(sfm, parm = 2, xlab = "tau", cex = 1, pch = 19)

Roger Koenker & Judy Huixia Wang Lecture 3. Computation and Examples 106 / 349

Engel’s—Confidence Band (rank)
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Engel’s—Confidence Band (nid)

Construct 95% pointwise confidence band of the estimated
coefficients using the "nid" method.

sfm = summary(fm, se="nid")
plot(sfm, mfrow=c(1,2))
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Engel’s—Confidence Band (nid)
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Example 2: Birthweight
Data: a random subset of NATALITY1997, 10,000 observations

Variable Description
weight Infant’s birth weight (grams)
black Indicator of black mother
married Indicator of married mother
boy Indicator of boy
visit Prenatal visit: 0 = no visit, 1 = visit in 1st,

2 = visit in 2nd, 3 = visit in 3rd trimester
ed Mother’s edu.: 0 = high school, 1 = some college,

2 = college, 3 = less than high school
smoke Indicator of smoking mother
cigsper Number of cigarettes smoked per day
momage Mother’s age
mwtgain Mother’s weight gain during pregnancy
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Example 2: Infant Birthweight

Quantile regression model:

Q⌧(Birthweight) = Boy + Married + Black + Mother’s Age
+Mother’s Age2 + High School + Some College + College
+No Prenatal + Prenatal Second + Prenatal Third
+Smoker + Cigarette’s/Day + Mother’s Weight Gain
+Mother’s Weight Gain2

Quantile levels considered:

⌧ = 0.05, 0.1, 0.15, . . . , 0.9, 0.95
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Estimation—R Code

bweight = read.csv(
"http://www4.stat.ncsu.edu/~wang/RQ/bweight.csv")
taus=seq(0.05, 0.95, 0.05)
coef = se = NULL
for(i in 1:length(taus)){
obj = rq(weight~ boy + married + black + mom.age +

mom.age2 + ed.hs + ed.smcol + ed.col + novisit +
tri2 + tri3 + smoke + cigsper + m.wtgain +
m.wtgain2, tau=taus[i], data=bweight)

f1 = summary(obj, se="nid")
coef = rbind(coef, f1$coef[,1])
se = rbind(se, f1$coef[,2])
}
lb = coef - 1.96*se
ub = coef + 1.96*se
}
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Estimation—R Code

par(mfrow=c(2,4))
for(j in 1:8){
plot(coef[,j]~taus,ylim=range(c(coef[,j],lb[,j],ub[,j])),
main=names(coef(obj))[j],type="b")
lines(lb[,j]~taus,col="blue",lty=5)
lines(ub[,j]~taus,col="blue",lty=5)
}

for(j in 9:16){
plot(coef[,j]~taus,ylim=range(c(coef[,j],lb[,j],ub[,j])),
main=names(coef(obj))[j],type="b")
lines(lb[,j]~taus,col="blue",lty=5)
lines(ub[,j]~taus,col="blue",lty=5)
}

Roger Koenker & Judy Huixia Wang Lecture 3. Computation and Examples 113 / 349

Confidence Band (nid)
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Confidence Band (nid)
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Estimation in SAS

Package: SAS/STAT PROC QUANTREG

Basic syntax
PROC QUANTREG DATA = sas-data-set <options> CI =
<NONE|RANK|...> ALPHA=value;
BY variables;
CLASS variables;
MODEL response = independents </options>;
RUN;
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To specify the quantile level

Use the option QUANTILE in the MODEL statement
MODEL Y = X / QUANTILE = <number list | ALL>;

Choice of quantile(s) Example
A single quantile QUANTILE = 0.25
Multiple quantiles QUANTILE = 0.25 0.5 0.75

Entire Quantile process QUANTILE = ALL

Default value is 0.5, corresponding to the median.
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To specify the algorithm

Use the option ALGORITHM in the PROC QUANTREG statement
Method Option
Simplex ALGORITHM = SIMPLEX
Interior point ALGORITHM = INTERIOR
Interior point with

preprocessing ALGORITHM = INTERIOR PP
Smoothing ALGORITHM = SMOOTHING

The default is Simplex algorithm.
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Default Output

Model information: report the name of the data set and the
response variable, the number of covariates, the number of
observations, algorithm of optimization and the method for
confidence intervals.
Summary statistics: report the sample mean and standard
deviation, sample median, MAD and interquartile range for each
variable included in the MODEL statement.
Quantile objective function: report the quantile level to be
estimated and the optimized objective function.
Parameter Estimates: report the estimated coefficients and their
95% confidence intervals.
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Nonparametric Quantile Regression in R

Locally polynomial method
lprq(y~x, h= , tau= )

B-spline method
rq(y~bs(x, knots= ), tau= )

Smoothing spline (penalty) method
rqss(y~qss(x, constraint="N"), tau= )

#options for constraint:
"N","I","D","V","C" "VI","VD","CI","CD"
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Example 3: Growth Chart

Data: Berkeley growth data (Tuddenham and Snyder, 1954)
Number of female subjects: 54
Measurements: longitudinal height measurements collected at 31
time points from age 0 to age 18, specifically

I quarterly between ages 0 and 2;
I yearly between ages 2 and 8;
I semi-yearly between ages 8 and 21.
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Growth Chart—R code

growth = read.csv(
"http://www4.stat.ncsu.edu/~wang/RQ/growth.csv")
attach(growth)
taus = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)

#locally polynomial (kernel) method
plot(height~age,col="grey", main="Locally polynomial")
for(i in 1:length(taus)){
fit = lprq(age, height, h=1, taus[i])
lines(fit$fv~fit$xx, col=i)
}
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Growth Chart (lprq)
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Growth Chart—R code

#B-spline method
plot(height~age,col="grey", main="B-spline (10 knots)")
for(i in 1:length(taus)){
fit = rq(height~bs(age,knots=10), tau=taus[i])
lines(fit$fitted[1:31]~age[1:31], col=i)
}

#smoothing spline method
plot(height~age,col="grey", main="Smoothing spline")
for(i in 1:length(taus)){
fit = rqss(height~qss(age,constraint="N"), tau=taus[i])
fit = c(fit$coef[1], fit$coef[1]+fit$coef[-1])
lines(fit~age[1:31], col=i)
}
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Growth Chart (B-spline)
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Growth Chart (rqss)
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Lecture 4. Censored QR and Survival Analysis

Beyond the Transformation Model

Quantile Regression under Censorship
I Fixed Censoring
I Random Censoring

Some One-sample Asymptotics

Conclusions
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Transformation Model
A wide variety of survival analysis models (e.g. Cox,
proportional-odds), following Doksum and Gasko (1990), may be
written as,

h(Ti) = x>i �+ ui,

Ti: an observed survival time;
h: a monotone transformation;
xi: a vector of covariates;
�: an unknown parameter vector;
{ui}: i.i.d. ⇠ F.

Accelerated failure time model:

log(Ti) = x>i �+ ui
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Beyond the Transformation Model

The common feature of all these models is that after transformation of
the observed survival times we have:

a pure location-shift, iid-error regression model;

covariate effects shift the center of the distribution of h(T);

but covariates cannot affect scale, or shape of this distribution.
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Quantile Regression Model

Quantile regression model:

Qh(Ti)(⌧|xi) = x

T
i �(⌧),

where h(·) is a monotone transformation. By the equivariance property
of quantile regression to monotone transformation (suppose h is
increasing),

QTi(⌧|xi) = h-1

�
x

T
i �(⌧)

 
.

Claim I:
quantile regression allows the covariate to affect not only
location but also scale and shape of the conditional distribution;
interpretation is simpler.
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Quantile Regression under Censorship

WLLG assume Ti is the transformed survival/duration.

Data: (xi, Yi, �i), i = 1, · · · , n, where

Yi = min(Ti, Ci), �i = I(Ti 6 Ci).

Censored quantile regression:

QTi(⌧|xi) = x

T
i �0

(⌧).
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Why Censored Quantile Regression?
Example: Average Weekly Earnings v.s. Study Hours
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Identifiability under Censoring

Conditional mean E(T |X) is not identifiable.

But the conditional quantiles QT(⌧|x) are identifiable for some ⌧.

40% right censoring (red) at 200.
Identifiable quantile region: ⌧ 2 (0, 0.6).

Claim II: quantile regression has better identifiability under
censorship.
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Censored Quantile Regression

Fixed censoring: the censoring times Ci are observed or known
for all observations, even for those subjects that are not censored.
WLOG assume Ci = C. Examples:

I viral load of HIV patients;
I antibody concentration in blood;
I age or salary in survey studies.

Random censoring: censoring points are unknown for
uncensored observations, more common in biomedical studies.
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Powell’s Approach for Fixed Censoring

Rationale: quantiles are equivariant to monotone transformations
so

QT(⌧|xi) = x

T
i �0

(⌧), Yi = min(Ti, C)

) QY {⌧|xi} = min{xT
i �0

(⌧), C}.

Powell’s estimator:

�̂(⌧) = argmin�

nX

i=1

⇢⌧{Yi - min(xT
i �, C)}.

Powell’s approach estimates truncated conditional quantile
functions (nonlinear in parameters).

References: Powell (1984, 1986); Fitzenberger (1997); Koenker and Park
(1996).
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About Powell’s Estimator

Semiparametric optimality for Powell’s estimator was claimed in
Newey and Powell (1990)

I but the optimality result is far from optimal.

Computational challenges (Fitzenberger, 1997; Zhou, 2006;
Stengos and Wang, 2007)

I non-convex objective function;
I easy to get stuck at a local minimum;
I exponential growth in computation
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Informative Subset Estimation (ISUB)

Tang et al. (2012)

Powell’s estimator is asymptotically equivalent to

argmin�

nX

i=1

⇢⌧(Yi - x

T
i �)I{x

T
i �0

(⌧) < C}. (1)

Idea: apply standard QR on (xi, Yi) to the informative subset:
{i : x

T
i �0

(⌧) < C}.

Q⌧(T |x) = x

T�
0

(⌧) < C, ⇡
0

(x) = P(� = 1|x) > ⌧
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ISUB
Idea: apply standard QR on (xi, Yi) to the informative subset:

{i : x

T
i �0

(⌧) < C} = {i : ⇡
0

(xi) > ⌧}.
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True median line
ISUB estimation
Naive
pi(1)=0.03
pi(2)=0.22
pi(3)=0.86
pi(4)=1.00
pi(5)=1.00

⇡
0

(xi) = P(�i = 0|xi) can be estimated by parametric or nonparametric
regression on (1 - �i, xi), e.g. local logistic regression, generalized
additive model.
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Random Censoring

Random censoring: censoring points are unobserved for uncensored
observations.

Two Different Assumptions
Assumption A: C is independent of T and X.

Assumption B: C and T are independent conditional on X.

Roger Koenker & Judy Huixia Wang Lecture 4. Censored QR and Survival Analysis 139 / 349

Common Approach under Assumption A
Idea: re-weight the quantile estimating equation accounting for
censoring.

Ying et al. (1995)

nX

i=1

xi

�
I(Yi > x

T
i �)

Ĝ(xT
i �)

- (1 - ⌧)

�
⇡ 0, (2)

where G is the Kaplan-Meier estimate of the survival function of
Ci. Rationale:

P{Yi > x

T
i �0

(⌧)|xi} = P{min(Ti, Ci) > x

T
i �0

(⌧)|xi}

= P{Ti > x

T
i �0

(⌧)|xi}P{Ci > x

T
i �0

(⌧)|xi}

= (1 - ⌧)G{xT
i �0

(⌧)},

thus the estimating function in (2) is unbiased if G is known.
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Common Approach under Assumption A

Bang and Tsiatis (2002):

nX

i=1

�i

Ĝ(Yi)
xi{I(Yi < x

T
i �)- ⌧} ⇡ 0. (3)

Rationale:

E


�i

G(Yi)
{I(Yi < x

T
i �)- ⌧}|xi

�

= E
✓

E


I(Ti < Ci)

G(Ti)
{I(Ti < x

T
i �)- ⌧}|xi, Ti

�◆

= 0

when � = �
0

(⌧).
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Common Approach under Assumption B

Idea: distribute mass of censored observations to the right

min

nX

i=1

⇥
wi⇢⌧(Yi - x

T
i �) + (1 - wi)⇢⌧(+1- x

T
i �)

⇤
,

where each right censored observation is split into two points
at Yi with mass point wi

at infinity with mass 1 - wi

Reference: Portnoy (2003); Wang and Wang (2009).
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Redistribution-of-Mass: How to Distribute?

When there is no censoring, Yi = Ti and �
0

(⌧) can be estimated by
minimizing

Sn(�) = n-1

nX

i=1

⇢⌧(Ti - x

T
i �), (4)

where ⇢⌧(u) = u {⌧- I(u < 0)}. The minimizer of Sn(�) is a root of the
estimating equation

Dn(�) = n-1

nX

i=1

xi
�
⌧- I(Ti - x

T
i � 6 0)

 
⇡ 0. (5)

Here Dn(�) is the gradient function.
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Redistribution-of-Mass: How to Distribute?
Note: the gradient depends only on the signs of Ti - x

T
i �0

(⌧).

Uncensored: wi = 1.

Censored and not yet crossed (above the ⌧th quantile): i.e.,
Yi = Ci > x

T
i �0

(⌧). Treat it as uncensored: wi = 1.

Censored and crossed: �i = 0 and Yi = Ci < x

T
i �0

(⌧), i.e.
⌧̃i

.
= F(Ci|xi) < ⌧,

E
�

I(Ti - x

T
i �0

(⌧) < 0)|Ti > Ci, Ci, xi
 
=
⌧- ⌧̃i

1 - ⌧̃i

.
= wi.
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Portnoy’s (2003) Approach

How to estimate ⌧̃i = P(Ti 6 Ci|xi): the quantile level at which the
conditional quantile crosses Ci?

Portnoy’s approach: estimate quantiles at a fine grid starting from
⌧ = 0 and then move up step by step.
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Demonstration: start at ⌧ = 0.05
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Demonstration: ⌧ = 0.05, 0.15, 0.25
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Demonstration: ⌧ = 0.05, 0.15, 0.25, 0.35

For the left two censored and crossed points:

⌧̃i = 0.35, wi =
⌧- 0.35

1 - 0.35

for ⌧ > 0.35.
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Demonstration: ⌧ = 0.05, 0.15, 0.25, 0.35, 0.45

For the third censored and crossed point:

⌧̃i = 0.45, wi =
⌧- 0.45

1 - 0.45

for ⌧ > 0.45.
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Demonstration: ⌧ = · · · , 0.75, 0.85
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About Portnoy’s Approach

Efron’s (1967) redistribution-of-mass idea: all observations are
assigned weights depending on whether they are uncensored,
censored but not yet crossed, or censored and crossed.

Reduces to Kaplan Meier’s estimator for the univariate case (if X
has finitely many distinct values).

Allows more general censoring.

Each update is a weighted quantile regression problem
I has to estimate all the quantiles below ⌧;
I assumes all the quantile functions are linear in covariates.
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Wang and Wang (2009)

Provides an alternative method to estimate ⌧̃i = F(Ci|xi) by using
the local Kaplan-Meier estimator (Beran, 1981) of F(·|x).

No recursive fitting is required.

Linearity of quantile function is needed only at the quantile level of
interest.

Challenging for high dimensional data.
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Peng and Huang (2008)

Idea II: extend the martingale representation of the Nelson-Aalen
estimator of the cumulative hazard function to produce an “estimating
equation" for conditional quantiles.

⇤T(t|x) = - log{1 - FT(t|x)}: cumulative hazard function of T
conditional on x;

Ni(t) = I(Yi 6 t, �i = 1);

Mi(t) = Ni(t)-⇤T {t ^ Yi|xi) is a martingale process so that
E{Mi(t)|xi} = 0 for all t > 0.

So
E
⇥
Ni{x

T
i �0

(⌧)}-⇤T {x
T
i �0

(⌧)^ Yi}|xi
⇤
= 0.
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Peng and Huang (2008)

Connection between ⇤T and the quantile functions:

⇤T {x
T
i �0

(⌧)^ Yi|xi} = H(⌧)^ H{FT(Yi|xi)}

=

Z⌧

0

I{Yi > x

T
i �0

(u)}dH(u),

where H(u) = - log(1 - u) for 0 6 u 6 1.

The estimating equation becomes

n-1/2

nX

i=1

xi


Ni(x

T
i �)-

Z⌧

0

I{Yi > x

T
i �(u)}dH(u)

�
= 0.

Roger Koenker & Judy Huixia Wang Lecture 4. Censored QR and Survival Analysis 154 / 349

Peng and Huang (2008)
Approximating the integral on a grid, 0 = ⌧

0

< ⌧
1

< · · · < ⌧J < 1 yields
a simple linear programming formulation to be solved at the gridpoints,

↵i(⌧j) =
j-1X

k=0

I{Yi > x

T
i �̂(⌧k)}{H(⌧k+1

)- H(⌧k)},

yielding Peng and Huang’s final estimating equation,

n-1/2

X
xi
⇥
Ni{x

T
i �(⌧)}- ↵i(⌧)

⇤
= 0.

Setting ri(b) = Yi - x

T
i b, this convex function for the Peng and Huang

problem takes the form

R(b, ⌧j) =
nX

i=1

ri(b)
⇥
↵i(⌧j)- I{ri(b) < 0}�i

⇤
= min!
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About Portnoy and Peng-Huang Estimators

Simulation evidence confirms the asymptotic conclusion that the
Portnoy and Peng-Huang estimators are similar (Koenker, 2008;
Peng, 2012).

Both methods require estimation of all the quantiles below ⌧, and
they assume global linearity of quantile functions.
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Implementation in R

R syntax:

library(quantreg)
#fixed censoring
fit=crq(Curv(y,yc, ctype="left") ~ x, tau = tau,
method = "Pow")
summary(fit)

#Random censoring
fit=crq(Surv(log(time), delta, type="left") ~ x,
method=c("Por", "PengHuang"))
summary(fit)
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Some One-sample Asymptotics

Suppose that we have a random sample of pairs,
{(Ti, Ci) : i = 1, · · · , n} with Ti ⇠ F, Ci ⇠ G, and Ti and Ci
independent.
Let Yi = min{Ti, Ci} and �i = I(Ti < Ci).
In this setting the Powell estimator of ✓ = F-1(⌧),

✓̂P = argmin✓

nX

i=1

⇢⌧(Yi - min{✓, Ci})

is asymptotically normal

p
n(✓̂P - ✓) N

✓
0,

⌧(1 - ⌧)

f 2(✓){1 - G(✓)}

◆
.

Roger Koenker & Judy Huixia Wang Lecture 4. Censored QR and Survival Analysis 158 / 349

One-sample Asymptotics

In contrast,
p

n(✓̂KM - ✓) N
�
0, Avar

�
Ŝ(✓)

 
/f 2(✓)

�
,

where Avar{Ŝ(t)} = S2(t)
Z t

0

{1 - H(u)}-2dF̃(u),

1 - H(u) = {1 - F(u)}{1 - G(u)}, F̃(u) =
Rt

0

{1 - G(u)}dF(u) and
S(t) = 1 - F(t).

The Powell estimator makes use of more sample information. Is it
more efficient? The answer is NO!
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Kaplan Meier v.s. Powell
Proposition
Avar(✓̂KM) 6 Avar(✓̂P).

Proof. f 2(✓)Avar(✓̂KM) = S(✓)2

Z✓

0

(1 - H(s))-2dF̃(s)

= S(✓)2

Z✓

0

(1 - G(s))-1(1 - F(s))-2dF(s)

6 S(✓)2

1 - G(✓)

Z✓

0

(1 - F(s))-2dF(s)

=
S(✓)2

1 - G(✓)
· 1

1 - F(s)

����
✓

0

=
S(✓)2

1 - G(✓)
· F(✓)

1 - F(✓)

=
F(✓)(1 - F(✓))

(1 - G(✓))

=
⌧(1 - ⌧)

(1 - G(✓))
.
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Conclusions

The Powell estimator, though conceptually attractive, suffers from
some serious computational difficulties, imposes strong data
requirements, and has a loss in asymptotic efficiency.

Even for fixed censoring where Ci are observed, it is better to use
Portnoy or Peng-Huang estimators than Powell estimator.

Quantile regression provides a flexible complement to classical
survival analysis methods, and is now well equipped to handle
censoring.
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Lecture 5. Nonparametric Quantile Regression
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In the Beginning, . . . were the Quantiles

Unconditional Reference Quantiles −− Boys 0−2.5 Years
Box−Cox

Parameter Functions
λ(t)

µ(t)

σ(t)
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0.03
0.1
0.25
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0.9
0.97

Age (years)

H
ei

gh
t (

cm
)

LMS  edf = (7,10,7)

LMS  edf = (22,25,22)

QR  edf = 16
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Age (years)

0.034
0.036
0.038
0.04
0.042
0.044
0.046

Wei et al. (2006)
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Three Approaches to Nonparametric QR
Locally Polynomial (Kernel) Methods: lprq

↵̂(⌧, x) = argmin
nX

i=1

⇢⌧(yi - ↵0

- ↵
1

(xi - x)- ... -
1

p!
↵p(xi - x)p)

ĝ(⌧, x) = ↵̂
0

(⌧, x)

Series Methods rq( y ⇠ bs(x,knots = k) + z)

↵̂(⌧) = argmin↵

nX

i=1

⇢⌧(yi -
X

j

'j(xi)↵j)

ĝ(⌧, x) =
pX

j=1

'j(x)↵̂j

Penalty Methods rqss

ĝ(⌧, x) = argming

nX

i=1

⇢⌧(yi - g(xi)) + �P(g)
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Total Variation Regularization I

There are many possible penalties, ways to measure the roughness of
fitted function, but total variation of the first derivative of g is particularly
attractive:

P(g) = V(g 0) =

Z
|g 00(x)|dx.

As �!1 we constrain g to be closer to linear in x. Solutions of

ming2G

nX

i=1

⇢⌧(yi - g(xi)) + �V(g 0)

are continuous and piecewise linear.
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Fish in a Bottle
Objective: to study metabolic activity of various fish species in an effort
to better understand the nature of the feeding cycle. Metabolic rates
based on oxygen consumption as measured by sensors mounted on
the tubes.

Three primary aspects are of interest:
1 Basal (minimal) Metabolic Rate,
2 Duration and Shape of the Feeding Cycle, and
3 Diurnal Cycle.
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Some Experimental Details

Experimental data of Denis Chabot, Institut Maurice-Lamontagne,
Quebec, Canada and his colleagues.

1 Basal (minimal) metabolic rate MO
2

(aka Standard Metabolic Rate
SMR) is measured in mg O

2

h-1 kg-1 for fish “at rest” after several
days without feeding,

2 Fish are then fed and oxygen consumption monitored until MO
2

returns to its prior SMR level for several hours.
3 Elevation of MO

2

after feeding (aka Specific Dynamic Action SDA)
ideally measures the energy required for digestion,

4 Procedure is repeated for several cycles, so each estimation of
the cycle is based on a few hundred observations.
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Juvenile Codfish
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Tuning Parameter Selection
There are two tuning parameters:

1 ⌧ = 0.15 the (low) quantile chosen to represent the SMR,
2 � controls the smoothness of the SDA cycle.

One way to interpret the parameter � is to note that it controls the
number of effective parameters of the fitted model (Meyer and
Woodroofe, 2000):

p(�) = div ĝ�,⌧(y1

, ..., yn) =
nX

i=1

@ŷi/@yi

This is equivalent to the number of interpolated observations, the
number of zero residuals. Selection of � can be made by minimizing,
e.g. Schwarz Criterion:

SIC(�) = n log(n-1

X
⇢⌧(yi - ĝ�,⌧(xi))) +

1

2

p(�) log n.
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Total Variation Regularization II

For bivariate functions we consider the analogous problem:

ming2G

nX

i=1

⇢⌧(yi - g(x
1i, x

2i)) + �V(rg),

where the total variation variation penalty is now:

V(rg) =
Z
kr2g(x)kdx.

Solutions are again continuous, but now they are piecewise linear on a
triangulation of the observed x observations. Again, as �!1
solutions are forced toward linearity.
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Chicago Land Values via TV Regularization

Chicago Land Values: Based on 1194 vacant land sales and 7505 “virtual”
sales introduced to increase the flexibility of the triangulation.
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Additive Models: Putting the pieces together

We can combine such models:

ming2G

nX

i=1

⇢⌧(yi -
X

j

gj(xij)) +
X

j

�jV(rgj)

Components gj can be univariate, or bivariate.
Additivity is intended to muffle the curse of dimensionality.
Linear terms are easily allowed, or enforced.
And shape restrictions like monotonicity and convexity/concavity
as well as boundry conditions on gj’s can also be imposed.
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Implementation in the R quantreg Package

Problems are typically large, very sparse linear programs.
Optimization via interior point methods are quite efficient,
Provided sparsity of the linear algebra is exploited, quite large
problems can be estimated.
The nonparametric qss components can be either univariate, or
bivariate
Each qss component has its own � specified
Linear covariate terms enter formula in the usual way
The qss components can be shape constrained.

fit <- rqss(y ⇠ qss(x1,3) + qss(x2,8) + x3, tau =
.6)
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Pointwise Confidence Bands

It is obviously crucial to have reliable confidence bands for
nonparametric components. Following Wahba (1983) and
Nychka(1983), conditioning on the � selection, we can construct bands
from the covariance matrix of the full model:

V = ⌧(1 - ⌧)(X̃> X̃)-1(X̃>X̃)-1(X̃> X̃)-1

with

X̃ =

2

666664

X G
1

· · · GJ
�

0

HK 0 · · · 0

0 �
1

P
1

· · · 0

... · · · . . . ...
0 0 · · · �jPJ

3

777775
and  = diag(�(ûi/hn)/hn)

Pointwise bands can be constructed by extracting diagonal blocks of V.
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Uniform Confidence Bands

Uniform bands are also important, but more challenging. We would
like:

Bn(x) = (ĝn(x)- c↵�̂n(x), ĝn(x) + c↵�̂n(x))

such that the true curve, g
0

, is covered with specified probability 1 - ↵
over a given domain X:

P{g
0

(x) 2 Bn(x) | x 2 X} > 1 - ↵.

We can follow the “Hotelling tube” approach based on Hotelling(1939)
and Weyl (1939) as developed by Naiman (1986), Johansen and
Johnstone (1990), Sun and Loader (1994) and others.
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Uniform Confidence Bands
Hotelling’s original formulation for parametric nonlinear regression has
been extended to non-parametric regression. For series estimators

ĝn(x) =
pX

j=1

'j(x)✓̂j

with pointwise standard error �(x) =
p
'(x)>V-1'(x) we would like to

invert test statistics of the form:

Tn = sup

x2X

ĝn(x)- g
0

(x)
�(x)

.

This requires solving for the critical value, c↵ in

P(Tn > c) 6 

2⇡
(1 + c2/⌫)-⌫/2 + P(t⌫ > c) = ↵

where  is the length of a “tube” determined by the basis expansion, t⌫
is a Student random variable with degrees of freedom ⌫ = n - p.
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Confidence Bands in Simulations
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Mean Estimate

Yi =
p

xi(1 - xi) sin

⇣
2⇡(1+2

-7/5)
xi+2

-7/5

⌘
+ Ui, i = 1, · · · , 400, Ui ⇠ N(0, 0.04)

,
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.063 0.046 12.936 0.960 0.999 0.323 0.920
gam 0.045 0.035 20.461 0.956 0.998 0.205 0.898

t
3

rqss 0.071 0.052 11.379 0.955 0.998 0.274 0.929
gam 0.071 0.054 17.118 0.948 0.994 0.159 0.795

t
1

rqss 0.099 0.070 9.004 0.930 0.996 0.161 0.867
gam 35.551 2.035 8.391 0.920 0.926 0.203 0.546
�2

3

rqss 0.110 0.083 8.898 0.950 0.997 0.270 0.883
gam 0.096 0.074 14.760 0.947 0.987 0.218 0.683

Performance of Penalized Estimators and Their Confidence Bands: IID Error
Model
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.081 0.063 10.685 0.951 0.998 0.265 0.936
gam 0.064 0.050 17.905 0.957 0.999 0.234 0.940

t
3

rqss 0.091 0.070 9.612 0.952 0.998 0.241 0.938
gam 0.103 0.078 14.656 0.949 0.992 0.232 0.804

t
1

rqss 0.122 0.091 7.896 0.938 0.997 0.222 0.893
gam 78.693 4.459 7.801 0.927 0.958 0.251 0.695
�2

3

rqss 0.145 0.114 7.593 0.947 0.998 0.307 0.921
gam 0.138 0.108 12.401 0.941 0.973 0.221 0.626

Performance of Penalized Estimators and Their Confidence Bands: Linear
Scale Model
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Example 3: Childhood Malnutrition in India

A larger scale problem illustrating the use of these methods is a model
of risk factors for childhood malnutrition considered by Fenske et al.
(2011).

They motivate the use of models for low conditional quantiles of
height as a way to explore influences on malnutrition,
They employ boosting as a model selection device,
Their model includes six univariate nonparametric components
and 15 other linear covariates.
There are 37,623 observations on the height of children from
India.
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Example 3: R Formulation
fit <- rqss(cheight ⇠ qss(cage, lambda = lam[1]) +

qss(bfed, lambda = lam[2]) + qss(mage, lambda = lam[3]) +

qss(mbmi, lambda = lam[4]) + qss(sibs, lambda = lam[5]) +

qss(medu, lambda = lam[6]) + qss(fedu, lambda = lam[7]) +

csex + ctwin + cbirthorder + munemployed + mreligion +

mresidence + deadchildren + wealth + electricity +

radio + television + frig + bicycle + motorcycle + car +

tau = 0.10, method = "lasso", lambda = lambda, data = india)

The seven coordinates of lam control the smoothness of the
nonparametric components,
lambda controls the degree of shrinkage in the linear (lasso)
coefficients.
The estimated model has roughly 40,000 observations, including
the penalty contribution, and has 2201 parameters.
Fitting the model for a single choice of �’s takes approximately 5
seconds.
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Example 3: Selected Smooth Components
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Example 3: Lasso Shrinkage of Linear Components

β1

β2
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Lasso � Selection – Another Approach
Lasso shrinkage is a special form of the TV penalty:

R⌧(b) =
nX

i=1

⇢⌧(yi - x>i b)

�̂⌧,� = argmin{R⌧(b) + �kbk1

}

2 {b : 0 2 @R⌧(b) + �@kbk1

}.

At the true parameter, �
0

(⌧), we have the pivotal statistic,

@R⌧(�0

(⌧)) =
X

(⌧- I(Fyi(yi) 6 ⌧))xi

⇠
X

(⌧- I(Ui 6 ⌧))xi

Proposal: (Belloni and Chernozhukov, 2009) Choose � as the 1 - ↵
quantile of the simulated distribution of k

P
(⌧- I(Ui 6 ⌧))xik1 with iid

Ui ⇠ U[0, 1].
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Example 3: Lasso Shrinkage of Linear Components
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Conclusions

Nonparametric specifications of Q(⌧|x) improve flexibility.
Additive models keep effective dimension in check.
Total variation roughness penalties are natural.
Schwarz model selection criteria are useful for � selection.
Hotelling tubes are useful for uniform confidence bands.
Lasso Shrinkage is useful for parametric components.
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Lecture 6. Bayesian Quantile Regression

Introduction
Bayesian QR Based on Asymmetric Laplace Likelihood

Bayesian Empirical Likelihood

Nonparametric/Semiparametric Likelihood
I Mixtures with Dirichlet Process Priors
I Semiparametric Bayesian for Simultaneous Linear Quantile

Regression
I Approximate Likelihood
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Introduction

Linear quantile regression model:

Qyi(⌧|xi) = x

T
i �(⌧), i = 1, . . . , n.

Frequentist estimator of �(⌧):

�̂(⌧) = argmin�

nX

i=1

⇢⌧(yi - x

T
i �), ⇢⌧(u) = u{⌧- I(u < 0)}.

Advantages of Bayesian QR:
I point estimates and confidence intervals can be calculated

simultaneously from the posterior sequences;

I the use of MCMC can help avoid the suffering from the
computational curse of dimensionality, and the difficulty in the
optimization of a (highly) nonconvex objective function such as for
Powell’s estimator for fixed censored data.
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Introduction

Bayesian QR is challenging as quantile regression typically does
not assume any parametric likelihood.

A working likelihood is needed for Bayesian QR:
I parametric working likelihood, e.g. asymmetric Laplacian (Yu and

Moyeed, 2001; Geraci and Bottai, 2007);

I nonparametric/semiparametric working likelihood, e.g. Gelfand and
Kottas (2002); Kottas and Krnjajić (2009); Reich et al. (2010);
Dunson and Taylor (2005); Reich et al. (2011);

I empirical likelihood (Lancaster and Jun, 2010; Otsu, 2008; Yang
and He, 2012).
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Asymmetric Laplacian (AL) Likelihood

A random variable Z is said to follow an asymmetric Laplace
distribution AL(µ,�, ⌧) if its density is given by

f (z) =
⌧(1 - ⌧)

�
exp

�
-⇢⌧

✓
z - µ

�

◆�
.

Therefore, the MLE of µ (assume ⌧ is known):

argminµ

nX

i=1

⇢⌧

✓
zi - µ

�

◆
= argminµ

nX

i=1

⇢⌧ (zi - µ)

is just the sample quantile of (z
1

, · · · , zn).
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Asymmetric Laplacian (AL) Likelihood

Yu and Moyeed (2001) developed a Bayesian quantile regression
method assuming AL likelihood for y = (y

1

, · · · , yn):

L(y|�) = {⌧(1 - ⌧)}n exp

�

-
nX

i=1

⇢⌧{yi - x

T
i �)

✏

,

that is, assuming Y |xi ⇠ AL(xT
i �, 1, ⌧).

Posterior distribution of � = �(⌧):

⇡(�|y) / L(y|�)⇡(�),

where ⇡(�) is the prior distribution of �.
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Properties of the AL-based Bayesian QR:

If the flat prior ⇡(�) / 1 is used, then
I the posterior distribution of �, ⇡(�|y) is proper;

I the posterior mode is the frequentist estimator �̂(⌧).

However, when the AL likelihood is misspecified,
I posterior chain from the Bayesian AL quantile regression does not

lead to valid posterior inference;

I correction to the covariance matrix of the posterior chain is possible
to enable an asymptotically valid posterior inference
(Chernozhukov and Hong, 2003; Yang et al., 2014).
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Other Bayesian AL QR Developments

Geraci and Bottai (2007), Geraci and Bottai (2013)
Quantile regression with a random intercept effect:

Q⌧(Yij|xij, bi) = x

T
ij� + bi.

Assume (Yij|xij,⌘, bi) ⇠ AL(xT
ij� + bi,�, ⌧) and bi ⇠ N(0,'2), where

⌘ = (�,�,').

Estimate ⌘ with EM by integrating out bi from
f (y, b|⌘) = f (y|⌘, b)f (b|⌘).
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Other Bayesian AL QR Developments

Tsionas (2003), Kozumi and Kobayashi (2011): developed Gibbs
sampling procedures using the conditionally Gaussian representation
for AL:

if ✏ ⇠ AL(0,�, ⌧), then we can represent ✏ as:

✏ =

s
2⇠�

⌧(1 - ⌧)
Z +

(1 - 2⌧)

⌧(1 - ⌧)
⇠,

where Z ⇠ N(0, 1), and ⇠ ⇠ Gamma(1, 1/�) = Exp(1/�).
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Other Bayesian AL QR Developments

MCMC algorithm for Bayesian linear regression with Laplace errors
(Choi and Hobert, 2013).

Model: Yi = x

T
i � + �✏i, ✏i ⇠ Laplace(0, 1) = AL(0, 1, 1/2).

Data augmentation algorithm: based on the representation of the
Laplace density as a scale mixture of normals with respect to the
inverse gamma distribution, i.e.

Z ⇠ IG(1, 1/8), Y |Z = z ⇠ N(xT�,�2/z)

) Y |x ⇠ Laplace(xT�,�).

Choi and Hobert (2013) showed that the MCMC underlying the
DA algorithm is geometrically ergodic, which guarantees the
existence of the central limit theorems that form the basis of all the
standard methods of calculating valid asymptotic standard errors
for MCMC-based estimators.

Roger Koenker & Judy Huixia Wang Lecture 6. Bayesian Quantile Regression 195 / 349

Other Bayesian AL QR Developments

Li et al. (2010): Bayesian regularized quantile regression.

Lum and Gelfand (2012): Bayesian spatial quantile regression
assuming asymmetric Laplace process:

Y(s) = µ⌧(s) + ✏⌧(s), µ⌧(s) = x

T(s)�⌧,

✏⌧(s) =

s
2⇠(s)�
⌧(1 - ⌧)

Z(s) +
1 - 2⌧

⌧(1 - ⌧)
⇠(s),

where Z(s) is a Gaussian process, and ⇠(s) is a process with
marginal to be exponential with rate 1/�.
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Bayesian Empirical Likelihood 1

Suppose we observe a random sample (yi, xi) from the quantile
regression model

Q⌧(Y |X) = X

T�(⌧), (6)

Conventional estimator of �:

b� = argmin�2Rp

nX

i=1

⇢⌧(yi - x

T
i �),

which is also a solution to the estimating equation

n-1/2

nX

i=1

xi ⌧(yi - x

T
i �) ⇡ 0,

where  ⌧(u) = ⌧- I(u < 0).
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Bayesian Empirical Likelihood 2

For a proposed �, profile empirical likelihood (EL):

R(�) = max

⌦ nY

i=1

pi

���
nX

i=1

pim⌧(xi, yi,�) = 0,

nX

i=1

pi = 1, 0 6 pi 6 1

↵
,

where pi is the weight for the ith observation, and
m⌧(xi, yi,�) = xi ⌧(yi - x

T
i �) is the score function.
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Bayesian Empirical Likelihood 3

For a given �, the EL Ln(�) can be calculated by using the standard
Lagrange multiplier method (Owen, 2001):

R(�) =
Y

i

pi(�),

pi(�) = [n {1 + �(�)m⌧(xi, yi,�)}]-1,

where �(�) satisfies

X

i

m⌧(xi, yi,�)
1 + �(�)m⌧(xi, yi,�)

= 0.

BEL posterior density:

f (�|D) / R(�)⇥ ⇡(�).
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Bayesian Empirical Likelihood 4

Multiple quantiles
Consider the quantile regression model at ⌧

1

< · · · < ⌧k, k quantile
levels.

Stacked estimating function

m(xi, yi,✓) = (mT
⌧

1

(xi, yi,✓), · · · , mT
⌧k
(xi, yi,✓))T ,

where ✓ = (�(⌧
1

)T , · · · ,�(⌧k)T)T .

The similar procedure follows by replacing m⌧ by m, � by ✓, and
�(�)m⌧(xi, yi,�) by �(✓)Tm(xi, yi,✓).
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Bayesian Empirical Likelihood 5

Properties
Asymptotically the posterior variance is the same as that of the
sampling variance of quantile regression estimator.

The method allows joint modeling of multiple quantiles to borrow
information across quantiles to improve efficiency.

The empirical likelihood can be generalized to a class of
nonparametric likelihoods, such as exponential tilting.
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Bayesian Empirical Likelihood 6

Some remarks
The BEL posterior is not really a posterior.
No need to solve for the maximum EL estimator, and the
calculation of R(✓) is easy.
Metropolis-Hastings algorithm is used for sampling from the
posterior.
An improper prior cannot guarantee a proper posterior.
The posterior will be improper for flat priors on ✓.
Shrinking priors on ✓ can be used to shrink quantile slopes
towards common values or a pre-specified parametric form.

Reference: Yang and He (2012).
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Nonparametric/Semiparametric Likelihood

Mixtures with Dirichlet Process Priors

Suppose ✏ ⇠ AL(0, ⌧,�) with density

kAL
⌧ (✏;�) =

⌧(1 - ⌧)

�
exp

⌦
-⇢⌧

⇣✏
�

⌘↵
,

where � > 0 is a scale parameter and ⌧ 2 (0, 1). Then ✏ has the
⌧th quantile zero, i.e.

R
0

-1 kAL
p (✏;�)d✏ = ⌧.

Thus mixture of kAL
⌧ (✏;�i), i = 1, · · · , n also has the ⌧th quantile

zero.
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(A). Kottas and Krnjajić (2009)

Model 1: scale mixture of AL densities

Yi|xi,�,�i
ind.
⇠ kAL

⌧ (yi - x

T
i �;�i), i = 1, · · · , n,

�i|G
i.i.d.
⇠ G, i = 1, · · · , n,

G|↵, d ⇠ Drichilet process DP(↵, G
0

),

This mixture model
preserves the zero ⌧th quantile for the residual;
is more flexible than the AL distribution;
it has the same issue as the AL likelihood approach, both have
lack of coherence for multiple quantiles.
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Kottas and Krnjajić (2009)
Model 2: nonparametric scale mixture of uniform densities

k⌧(✏;�
1

,�
2

) =
⌧

�
1

I(-�
1

< ✏ < 0) +
1 - ⌧

�
2

I(0 6 ✏ < �
2

),�r > 0, r = 1, 2.

has the ⌧th quantile zero. Hierarchical model:

Yi|xi,�,�
1i,�2i

ind.
⇠ k⌧(yi - x

T
i �;�

1i,�2i), i = 1, · · · , n,

�ri|Gr
i.i.d.
⇠ Gr, r = 1, 2, i = 1, · · · , n,

Gr|↵r, dr ⇠ DP(↵r, Gr0

), r = 1, 2.

Model 2 poses separate priors for the negative and positive
residuals to ensure zero ⌧th quantiles.
The resulting conditional distribution of Y is discontinuous at the
mode.
The model forces the mode to be at the quantile of interest.
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(B). Reich et al. (2010)
Assume the location-scale shift model

yi = x

T
i � + x

T
i �✏i,

where x

T
i � > 0 for all xi, and ✏i are i.i.d. with ⌧th quantile zero.

Assume ✏i follows the infinite mixture distribution

h(✏|µ,�2) =
1X

k=1

pkf (✏|µk,�2

k , qk),
1X

k=1

pk = 1,

f (✏|µk,�2

k , qk) is the quantile-restricted 2-component mixture

f (✏|µk,�2

k , qk) = qk�(µ1k,�2

1k) + (1 - qk)�(µ2k,�2

2k);

to ensure that
R

0

-1 f (✏|µk,�2

k , qk)d✏ = ⌧, let

qk =
⌧-�(-µ

2k)/�2k

�(-µ
1k/�1k)-�(-µ

2k/�2k)
.

Roger Koenker & Judy Huixia Wang Lecture 6. Bayesian Quantile Regression 206 / 349

Tokdar and Kadane (2011)

Tokdar and Kadane (2011): Semiparametric Bayesian for
Simultaneous Linear Quantile Regression
For an univariate x:

Q⌧(Y |x) = �
0

(⌧) + �
1

(⌧)x, ⌧ 2 [0, 1] is monotonically increasing in ⌧
for every x 2 [-1, 1] if and only if

Q⌧(Y |x) = µ+ �x +
1 - x

2

⌘
1

(⌧) +
1 + x

2

⌘
2

(⌧),

where ⌘
1

(⌧) and ⌘
2

(⌧) are monotonically increasing in ⌧ 2 [0, 1].
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Tokdar and Kadane (2011)

Pose a prior for ⌘
1

(⌧) and ⌘
2

(⌧) by a logistic transformation of a
smooth Gaussian process:

I ⌘
1

(⌧) = �
1

Q̃{⇠
1

(⌧)};
I ⌘

2

(⌧) = �
2

Q̃{⇠
2

(⌧)};
I Q̃ is the quantile function of a target parametric distribution whose

support is (ymin, ymax);
I ⇠j(⌧), j = 1, 2 are monotonically increasing random functions

mapping [0, 1] to [0, 1], defined through a logistic transformation of a
smooth Gaussian process.

Log-likelihood function

X

i

log fY(yi|xi) = -
X

i

log


@

@⌧
Q⌧(Y |xi)

���
⌧i

�
,

where ⌧i = {⌧ : yi = Q⌧(Y |xi)}.
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Approximate Likelihood (Reich et al., 2011)
Reich et al. (2011): used an approximate likelihood from the
multivariate normal distribution of the joint quantile regression
estimates.

Main ideas:
Assume a global linear quantile regression model:

Q⌧(Y |x) = x

T�(⌧), ⌧ 2 (0, 1).

Using the observed data {(yi, xi), i = 1, · · · , n}, fit quantile
regression at each quantile level from 0 < ⌧

1

< · · · < ⌧K < 1

separately to obtain �̂(⌧k), k = 1, · · · , K.
Fit the approximate model

(�̂(⌧k), k = 1, · · · , K) ⇠ N
�
�(⌧),⌃

�
,

where �(⌧) = (�(⌧k), k = 1, · · · , K), ⌃ is the covariance matrix of
(�̂(⌧k), k = 1, · · · , K) and can be estimated using existing methods
in R package quantreg.
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Approximate Likelihood (Reich et al., 2011)

Model the quantile coefficient process �j(⌧), the jth element of
�(⌧), by using Bernstein basis polynomials

�j(⌧) =
MX

m=1

Bm(⌧)↵jm,

where
I Bm(⌧) =

�M
m

�
⌧m(1 - ⌧)M-m are the Bernstein basis polynomials.

I ↵jm are unknown coefficients with specific priors to ensure
monotonicity of the conditional quantile functions.
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Lecture 7. Quantile Regression for Longitudinal Data

Marginal Quantile Regression Model
I Estimator Based on Working Independence
I Jung’s Estimator

Conditional Quantile Regression Model
I Penalized Method–Koenker (2004)
I Correlated Random Effects
I Empirical Likelihood
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Longitudinal/Clustered Data

Observed data: {(yij, xij), j = 1, · · · , mi} are associated with subject
i, i = 1, · · · , n. Observations from the same subject tend to be
correlated.

Main challenges for quantile regression
I quantiles are not linear operators, that is, QX+Y(⌧) 6= QX(⌧) + QY(⌧)

in general;

I usually no parametric likelihood is assumed.
Two types of models

I Marginal model

I Conditional model
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Marginal Quantile Regression Model

Captures the average trend among all subjects.
Association among repeated measures within subjects:
accounted for by modeling the intra-subject correlation among
residuals, after removing the average trend.
A general marginal (linear) quantile regression model

Yij = x

T
ij�(⌧) + uij(⌧), i = 1, · · · , n, j = 1, · · · , mi,

where the ⌧th conditional quantile of uij(⌧) given xij is zero, uij(⌧)
are correlated within the same subject, and independent between
subjects.
Under this model, the ⌧th conditional quantile of Yij given xij is

QYij(⌧|xij) = x

T
ij�(⌧).
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Estimation under Working Independence

Estimate �(⌧) pretending that data are independent,

�̂(⌧) = argmin
b2Rp

X

ij

⇢⌧(yij - x

T
ijb).

The working independence estimator is still consistent and
asymptotically normally distributed

n1/2(�̂(⌧)- �(⌧)) = AN(0, H-1

n JnH-1

n ),

I Hn = n-1

P
ij xijx

T
ij fij(0), f is the density of uij(⌧),

I Jn = n-1

P
i XT

i Cov { ⌧(ui1(⌧)), · · · , ⌧(uimi(⌧)}Xi,
I  ⌧(u) = ⌧- I(u < 0),
I

Xi = (xT
i1, · · · , x

T
imi
)T .

Roger Koenker & Judy Huixia Wang Lecture 7. Quantile Regression for Longitudinal Data 214 / 349

Inference

To carry out inference for estimators obtained under working
independence, correlation needs to be accounted for in the statistical
inference.

Wald test: estimate H and J directly.
Rank score test: Wang and He (2007).
Block bootstrap: resample subjects.
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More Efficient Estimation

The estimator obtained under working independence is not most
efficient.

Efficiency can be improved by incorporating the intra-subject
correlation in the estimation process. But empirical studies
show that the improvement is limited except when the intra-subject
correlation is extremely high.
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Jung’s Estimator (Jung, 1996)

Extension of Jung’s estimator to quantile regression with clustered
data: estimate �(⌧) by solving the following estimating equation

n-1/2

nX

i=1

X

T
i WiV-1

i  ⌧{Yi - X

T
i �(⌧)} ⇡ 0, (7)

where
Yi = (yi1, . . . , yimi)

T ,
Wi = diag {fi1(0), · · · , fimi(0)},
fij(·) is the density of uij(⌧),

Vi = Cov
⇣
 ⌧(yi1 - xT

i1�(⌧)), · · · , ⌧(yim - xT
imi
�(⌧))

⌘
.
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Jung’s Estimator (Jung, 1996)

Following the reweighted least squares algorithm, we can compute �̂
by iterating

�̂  
"

nX

i=1

x

T
i WiV-1

i Aixi

#-1

"
nX

i=1

x

T
i WiV-1

i AiYi

#

,

where Ai = diag
⌦
 ⌧(yij - x

T
ij �̂)/(yij - x

T
ij �̂)

↵
with the convention that

 ⌧(u)/u = 0 when u = 0.

Alternatively, we can adopt the induced smoothing method in Brown
and Wang (2005) to estimate a smoothed estimator, which has the
same asymptotic distribution as �̂; see e.g. Leng and Zhang (2014).
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Conditional Quantile Regression Model

Conditional model, or subject-specific model
The model captures an individual trend for each subject/cluster.

Variability between subjects is due to variation in individual trends.

Association among repeated measures within subjects: arises
because all observations on the same subject have the same
underlying trend.
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Random Intercept Model

Model:
Yij = x

T
ij� + b

i

+ eij,

where bi is the random subject effect, eij is the independent
random measurement error, and bi and eij are independent.

Under this model: E(Yij|xij) = x

T
ij� + E(bi|xij) + E(eij|xij).

However, Qbi+eij(⌧|xij) 6= Qbi(⌧|xij) + Qeij(⌧|xij).

Conditional QR model with a random intercept effect:

QYij(⌧|xij, bi) = x

T
ij�(⌧) + bi, (8)

so each subject has a subject-specific location parameter.
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Penalized Method–Koenker (2004)

Assume the QR model with random intercept effects:

Q⌧(Yij|xij, bi) = bi + x

T
ij�(⌧), i = 1, . . . , n, j = 1, . . . , mi.

bi has purely a location shift effect so it is the same across
quantile levels.

Estimate bi and �(⌧k) for several quantiles simultaneously by
solving

min

b,�

pX

k=1

nX

i=1

miX

j=1

wk⇢⌧
�

yij - bi - x

T
ij�(⌧k)

 
,

where wk is the weight on the quantile level ⌧k.
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Penalized QR with Fixed Effects

Since n is often large (relative to mi), estimating a large number of
bi will inflate the variability of the estimates of other covariate
effects.

A fix: shrink bi towards a common value through penalization.

Minimize the following penalized objective function:

pX

k=1

nX

i=1

miX

j=1

wk⇢⌧{yij - bi - x

T
ij�(⌧k)}+ �

nX

i=1

|bi|,

where � is the penalization parameter:
I � = 0: no shrinkage
I � = 1: b̂i ! 0.
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Correlated Random Effects

Abrevaya and Dahl (2008) adapt the Chamberlain (1982)
correlated random effects model and estimate a model of
birthweight, assuming that data contains exactly two births from a
large number of mothers.
Model:

yij = x

T
ij� + bi + eij, i = 1, · · · , n, j = 1, 2, (9)

where
I bi: unobservable mother effect;
I (xi1, xi2): covariate values from both births of a given mother;
I bi and xij are likely to be correlated.
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Correlated Random Effects

Assume the correlated-random-effect model (Chamberlain, 1982):

bi = ✓+ x

T
i1�1

+ x

T
i2�2

+ vi,

where vi is independent of xij and eij.
Inserting the above expression to model (9) we get

yi1 = ✓+ x

T
i1(� + �

1

) + x

T
i2�2

+ vi + eij,
yi2 = ✓+ x

T
i1�1

+ x

T
i2(� + �

2

) + vi + eij,

so

� =
@E(yi1|xi1, xi2)

@xi1
-
@E(yi2|xi1, xi2)

@xi1

=
@E(yi2|xi1, xi2)

@xi2
-
@E(yi1|xi1, xi2)

@xi2
.
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Correlated Random Effects

Analogous to the conditional mean model, assume the following
models:

Q⌧(yi1|xij) = ✓
1

(⌧) + x

T
i1{�(⌧) + �1

(⌧)}+ x

T
i2�2

(⌧),
Q⌧(yi2|xij) = ✓

2

(⌧) + x

T
i1�1

(⌧) + x

T
i2{�(⌧) + �2

(⌧)}. (10)

Can interpret �(⌧) as

�(⌧) =
@Q⌧(yi1|xi1, xi2)

@xi1
-
@Q⌧(yi2|xi1, xi2)

@xi1

=
@Q⌧(yi2|xi1, xi2)

@xi2
-
@Q⌧(yi1|xi1, xi2)

@xi2
.
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Correlated Random Effects

Parameters in (10) can be estimated with standard linear quantile
regression.

The R package rqpd implements both this method and the penalized
fixed effect approach. Available from R-Forge with the command:

install.packages("rqpd",repos="http://R-Forge.R-project.org")
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Empirical Likelihood—Kim and Yang (2011)

Model:

Yij = x

T
ijbi(⌧) + eij, (11)

where bi(⌧) ⇠ N(�(⌧),⌃i), Qeij(⌧|xij) = 0, and eij and bi(⌧) are
independent.
Equivalent model:

Yij = x

T
ij�(⌧) + x

T
ijb

⇤
i (⌧) + eij, b

⇤
i (⌧) ⇠ N(0,⌃i). (12)

�(⌧): the average over cluster-specific quantile effects bi(⌧).
For notational simplicity, write �(⌧) = �, bi(⌧) = bi and b

⇤
i (⌧) = b

⇤
i .
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Cluster-specific quantile estimator of bi:

b
bi = argmin

b2Rq

miX

j=1

⇢⌧(yij - x

T
ijb),

which is also a solution to the estimating equation

m-1/2

i

miX

j=1

xij ⌧(yij - x

T
ijb) ⇡ 0,

where  ⌧(u) = ⌧- I(u < 0).
Empirical likelihood (EL) for bi(⌧) in the ith cluster:

Lmi(bi) = max

⌦ miY

j=1

pj

���
miX

j=1

pjxij ⌧(yij - x

T
ijbi) = 0,

miX

j=1

pj = 1, 0 6 pj 6 1

↵
,

where pj is the weight for the jth observation in the ith cluster.
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Kim and Yang (2011)

For a given bi, the EL Lmi(bi) can be calculated by using the standard
Lagrange multiplier method; see Owen (2001), and Qin and Lawless
(1994).

Notations
�: collection of parameters involved in ⌃

1

, · · · ,⌃n.
✓ = (�,�): collection of unknown parameters.
✓

0

: true value.
gi(b|✓): the density of bi, that is, of N(�,⌃i).
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Kim and Yang (2011)
Semiparametric likelihood criterion function for bi

eLmi(b|✓) = Lmi(b)gi(b|✓).

Semiparametric likelihood criterion function for ✓

nY

i=1

Z

bi

eLmi(bi|✓)dbi.

Proposed estimators of ✓ and bi:

e✓ = arg max✓

nY

i=1

Z

bi

eLmi(bi|✓)dbi,

e
bi = arg max

bi
eLmi(bi|e✓).

These estimators are computed by the quasi-posterior means using
MCMC samplers.

Roger Koenker & Judy Huixia Wang Lecture 7. Quantile Regression for Longitudinal Data 230 / 349

Kim and Yang (2011)

Properties
As mi !1, the posterior mean estimator ebi is a weighted average
of e� and the cluster-specific quantile regression estimator bbi.
As mi !1, the posterior mean estimator e� is a weighted average
of the cluster-specific QR estimator bbi, and it is asymptotically
normal.
The variances of ebi and e✓ can be estimated by the
variance-covariance matrices of the corresponding MCMC
sequences. In contrast to conventional inference for quantile
regression, the estimation of error density function is not required.
Confidence intervals based on the normality or the percentiles of
the MCMC sequence have approximately correct coverage as
mi !1 for bi and as n!1 for ✓. The result also holds when bi
have non-normal densities.
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Appendix 1
Quantile Regression Computation:
From the Inside and the Outside
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The Origin of Regression – Regression Through the
Origin
Find the line with mean residual zero that minimizes the sum of
absolute residuals.
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Problem: min↵,�
Pn

i=1

|yi - ↵- xi�| s.t. ȳ = ↵+ x̄�.
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Boscovich/Laplace Methode de Situation

Algorithm: Order the n candidate slopes: bi = (yi - ȳ)/(xi - x̄)
denoting them by b(i) with associated weights w(i) where wi = |xi - x̄|.
Find the weighted median of these slopes.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weighted EDF Plot

x

f(x
)

Appendix 1. Quantile Regression Computation 235 / 349

Methode de Situation via Optimization

R(b) =
X

|ỹi - x̃ib| =
X

|ỹi/x̃i - b| · |x̃i|.

R 0(b) = -
X

sgn(ỹi/x̃i - b) · |x̃i|.
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Quantile Regression through the Origin in R

This can be easily generalized to compute quantile regression
estimates:

wquantile <- function(x, y, tau = 0.5) {
o <- order(y/x)
b <- (y/x)[o]
w <- abs(x[o])
k <- sum(cumsum(w) < ((tau - 0.5) * sum(x) + 0.5 * sum(w)))
list(coef = b[k + 1], k = ord[k+1])

}

Warning: When x̄ = 0 then ⌧ is irrelevant. Why?
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Edgeworth’s (1888) Plural Median
What if we want to estimate both ↵ and � by median regression?

Problem: min↵,�
Pn

i=1

|yi - ↵- xi�|
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Points in sample space map to lines in parameter space.

(xi, yi) 7! {(↵,�) : ↵ = yi - xi�}
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Lines through pairs of points in sample space map to points in
parameter space.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

All pairs of observations produce
�n

2

�
points in dual plot.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex
Follow path of steepest descent through points in the dual plot.
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Barrodale-Roberts Implementation of Edgeworth

rqx<- function(x, y, tau = 0.5, max.it = 50) { # Barrodale and Roberts -- lite
p <- ncol(x); n <- nrow(x)
h <- sample(1:n, size = p) #Phase I -- find a random (!) initial basis
it <- 0
repeat {

it <- it + 1
Xhinv <- solve(x[h, ])
bh <- Xhinv %*% y[h]
rh <- y - x %*% bh

#find direction of steepest descent along one of the edges
g <- - t(Xhinv) %*% t(x[ - h, ]) %*% c(tau - (rh[ - h] < 0))
g <- c(g + (1 - tau), - g + tau)
ming <- min(g)
if(ming >= 0 || it > max.it) break
h.out <- seq(along = g)[g == ming]
sigma <- ifelse(h.out <= p, 1, -1)
if(sigma < 0) h.out <- h.out - p
d <- sigma * Xhinv[, h.out]

#find step length by one-dimensional wquantile minimization
xh <- x %*% d
step <- wquantile(xh, rh, tau)
h.in <- step$k
h <- c(h[ - h.out], h.in)

}
if(it > max.it) warning("non-optimal solution: max.it exceeded")
return(bh)

}
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Linear Programming Duality
Primal: minx{c>x|Ax - b 2 T, x 2 S}
Dual: maxy{b>y|c - A>y 2 S⇤, y 2 T⇤}

The sets S and T are closed convex cones, with dual cones S⇤ and T⇤.
A cone K⇤ is dual to K if:

K⇤ = {y 2 |Rn
|x>y > 0 if x 2 K}

Note that for any feasible point (x, y)

b>y 6 y>Ax 6 c>x

while optimality implies that

b>y = c>x.
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Quantile Regression Primal and Dual

Splitting the QR “residual” into positive and negative parts, yields the
primal linear program,

min

(b,u,v)
{⌧1

>u + (1 - ⌧)1>v | Xb + u - v - y 2 {0}, (b, u, v) 2 |Rp ⇥ |R2n
+ }.

with dual program:

max

d
{y>d | X>d 2 {0}, ⌧1 - d 2 |Rn

+, (1 - ⌧)1 + d 2 |Rn
+},

max

d
{y>d | X>d = 0, d 2 [⌧- 1, ⌧]n},

max

a
{y>a | X>a = (1 - ⌧)X>

1, a 2 [0, 1]n}
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Quantile Regression Dual

The dual problem for quantile regression may be formulated as:

max

a
{y>a|X>a = (1 - ⌧)X>

1, a 2 [0, 1]n}

What do these âi(⌧)’s mean statistically?
They are regression rank scores (Gutenbrunner and Jurečková
(1992)):

âi(⌧) 2

8
<

:

{1} if yi > x>i �̂(⌧)
(0, 1) if yi = x>i �̂(⌧)
{0} if yi < x>i �̂(⌧)

The integral
R

âi(⌧)d⌧ is something like the rank of the ith observation.
It answers the question: On what quantile does the ith observation lie?
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Linear Programming: The Inside Story

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from
vertex to vertex on the outside of the constraint set until it finds an
optimum.
Interior point methods (Frisch/Karmarker/et al) take Newton type steps
toward the optimal vertex from inside the constraint set.
A toy problem: Given a polygon inscribed in a circle, find the point on
the polygon that maximizes the sum of its coordinates:

max{e>u|A>x = u, e>x = 1, x > 0}

were e is vector of ones, and A has rows representing the n vertices.
Eliminating u, setting c = Ae, we can reformulate the problem as:

max{c>x|e>x = 1, x > 0},
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Toy Story: From the Inside
Simplex goes around the outside of the polygon; interior point methods
tunnel from the inside, solving a sequence of problems of the form:

max{c>x + µ
nX

i=1

log xi|e>x = 1}
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Toy Story: From the Inside
By letting µ! 0 we get a sequence of smooth problems whose
solutions approach the solution of the LP:

max{c>x + µ
nX

i=1

log xi|e>x = 1}
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Implementation: Meketon’s Affine Scaling Algorithm

meketon <- function (x, y, eps = 1e-04, beta = 0.97) {
f <- lm.fit(x,y)
n <- length(y)
w <- rep(0, n)
d <- rep(1, n)
its <- 0
while(sum(abs(f$resid)) - crossprod(y, w) > eps) {

its <- its + 1
s <- f$resid * d
alpha <- max(pmax(s/(1 - w), -s/(1 + w)))
w <- w + (beta/alpha) * s
d <- pmin(1 - w, 1 + w)^2
f <- lm.wfit(x,y,d)
}

list(coef = f$coef, iterations = its)
}
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Mehrotra Primal-Dual Predictor-Corrector Algorithm

The algorithms implemented in quantreg for R are based on
Mehrotra’s Predictor-Corrector approach. Although somewhat more
complicated than Meketon this has several advantages:

Better numerical stability and efficiency due to better central path
following,
Easily generalized to incorporate linear inequality constraints.
Easily generalized to exploit sparsity of the design matrix.

These features are all incorporated into various versions of the
algorithm in quantreg, and coded in Fortran.
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Back to Basics

Which is easier to compute: the median or the mean?

> x <- rnorm(100000000) # n = 10^8
> system.time(mean(x))

user system elapsed
10.277 0.035 10.320

> system.time(kuantile(x,.5))
user system elapsed
5.372 3.342 8.756

kuantile is a quantreg implementation of the Floyd-Rivest (1975) algorithm. For
the median it requires 1.5n + O((n log n)1/2) comparisons.

Portnoy and Koenker (1997) propose a similar strategy for “preprocessing” quantile
regression problems to improve efficiency for large problems.
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Globbing for Median Regression

Rather than solving min

P
|yi - xib| consider:

1 Preliminary estimation using random m = n2/3 subset,
2 Construct confidence band x>i �̂± kV̂1/2xik.
3 Find JL = {i|yi below band }, and JH = {i|yi above band },
4 Glob observations together to form pseudo observations:

(xL, yL) = (
X

i2JL

xi,-1), (xH, yH) = (
X

i2JH

xi,+1)

5 Solve the problem (with m+2 observations)

min

X
|yi - xib|+ |yL - xLb|+ |yH - xHb|

6 Verify that globbed observations have the correct predicted signs.
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The Laplacian Tortoise and the Gaussian Hare

Retouched 18th century woodblock photo-print
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Appendix 2
Quantile Autoregression

Based on joint work with Zhijie Xiao, Boston College.
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A Motivating Example
The QAR Model
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Forecasting with QAR Models
Surgeon General’s Warning
Conclusions
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Introduction

In classical regression and autoregression models

yi = h(xi, ✓) + ui,
yt = ↵yt-1

+ ut

conditioning covariates influence only the location of the conditional
distribution of the response:

Response = Signal + IID Noise.

But why should noise always be so well-behaved?
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A Motivating Example
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Daily Temperature in Melbourne: An AR(1) Scatterplot
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Estimated Conditional Quantiles of Daily Temperature
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Daily Temperature in Melbourne: A Nonlinear QAR(1) Model
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Conditional Densities of Melbourne Daily Temperature
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When today is hot, tomorrow’s temperature is bimodal!
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Linear AR(1) and QAR(1) Models

The classical linear AR(1) model

yt = ↵
0

+ ↵
1

yt-1

+ ut,

with iid errors, ut : t = 1, · · · , T, implies

E(yt|Ft-1

) = ↵
0

+ ↵
1

yt-1

and conditional quantile functions are all parallel:

Qyt(⌧|Ft-1

) = ↵
0

(⌧) + ↵
1

yt-1

with ↵
0

(⌧) = F-1

u (⌧) just the quantile function of the ut’s.
But isn’t this rather boring? What if we let ↵

1

depend on ⌧ too?
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A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

Qyt(⌧|Ft-1

) = ↵
0

(⌧) + ↵
1

(⌧)yt-1

then we can generate responses from the model by replacing ⌧ by
uniform random variables:

yt = ↵
0

(ut) + ↵1

(ut)yt-1

ut ⇠ iid U[0, 1].

This is a very special form of random coefficient autoregressive
(RCAR) model with comonotonic coefficients.
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On Comonotonicity

Definition: Two random variables X, Y : ⌦! |R are comonotonic if
there exists a third random variable Z : ⌦! |R and increasing
functions f and g such that X = f (Z) and Y = g(Z).

If X and Y are comonotonic they have rank correlation one.
From our point of view the crucial property of comonotonic
random variables is the behavior of quantile functions of their
sums, X, Y comonotonic implies:

F-1

X+Y(⌧) = F-1

X (⌧) + F-1

Y (⌧)

X and Y are driven by the same random (uniform) variable.
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The QAR(p) Model

Consider a p-th order QAR process,

Qyt(⌧|Ft-1

) = ↵
0

(⌧) + ↵
1

(⌧)yt-1

+ ... + ↵p(⌧)yt-p

Equivalently, we have random coefficient model,

yt = ↵
0

(ut) + ↵1

(ut)yt-1

+ · · ·+ ↵p(ut)yt-p

⌘ x>t ↵(ut).

Now, all p + 1 random coefficients are comonotonic, functionally
dependent on the same uniform random variable.
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Vector QAR(1) representation of the QAR(p) Model

Yt = µ+ AtYt-1

+ Vt

where

µ =


µ

0

0p-1

�
, At =


at ↵p(ut)

Ip-1

0p-1

�
, Vt =


vt

0p-1

�

at = [↵
1

(ut), . . . ,↵p-1

(ut)],

Yt = [yt, · · · , yt-p+1

]>,

vt = ↵
0

(ut)- µ
0

.

It all looks rather complex and multivariate, but it is really still nicely
univariate and very tractable.
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Slouching Toward Asymptopia

We maintain the following regularity conditions:
A.1 {vt} are iid with mean 0 and variance �2 < 1. The CDF of

vt, F, has a continuous density f with f (v) > 0 on
V = {v : 0 < F(v) < 1}.

A.2 Eigenvalues of ⌦A = E(At ⌦ At) have moduli less than
unity.

A.3 Denote the conditional CDF Pr[yt < y|Ft-1

] as Ft-1

(y) and
its derivative as ft-1

(y), ft-1

is uniformly integrable on V.
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Stationarity

Theorem 1: Under assumptions A.1 and A.2, the QAR(p) process yt is
covariance stationary and satisfies a central limit theorem

1p
n

nX

t=1

�
yt - µy

�
) N

�
0,!2

y
�

,

with

µy =
µ

0

1 -
Pp

j=1

µp
,

µj = E(↵j(ut)), j = 0, ..., p,

!2

y = lim

1

n
E[

nX

t=1

(yt - µy)]
2.

Appendix 2. Quantile Autoregression 267 / 349

Example: The QAR(1) Model
For the QAR(1) model,

Qyt(⌧|yt-1

) = ↵
0

(⌧) + ↵
1

(⌧)yt-1

,

or with ut iid U[0, 1].

yt = ↵
0

(ut) + ↵1

(ut)yt-1

,

if !2 = E(↵2

1

(ut)) < 1, then yt is covariance stationary and

1p
n

nX

t=1

(yt - µy)) N
�
0,!2

y
�

,

where µ
0

= E↵
0

(ut), µ1

= E(↵
1

(ut), �2 = V(↵
0

(ut)), and

µy =
µ

0

(1 - µ
1

)
, !2

y =
(1 + µ

1

)�2

(1 - µ
1

)(1 -!2)
,
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Qualitative Behavior of QAR(p) Processes

The model can exhibit unit-root-like tendencies, even temporarily
explosive behavior, but episodes of mean reversion are sufficient
to insure stationarity.
Under certain conditions,the QAR(p) process is a semi-strong
ARCH(p) process in the sense of Drost and Nijman (1993).
The impulse response of yt+s to a shock ut is stochastic but
converges (to zero) in mean square as s!1.
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Estimated QAR(1) v. AR(1) Models of U.S. Interest
Rates
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Data: Seasonally adjusted monthly: April, 1971 to June, 2002.
Do 3-month T-bills really have a unit root?
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Estimation of the QAR model

Estimation of the QAR models involves solving,

↵̂(⌧) = argmin↵

nX

t=1

⇢⌧(yt - x>t ↵),

where ⇢⌧(u) = u(⌧- I(u < 0)), the
p

-function.
Fitted conditional quantile functions of yt, are given by,

Q̂t(⌧|xt) = x>t ↵̂(⌧),

and conditional densities by the difference quotients,

f̂t(⌧|xt-1

) =
2h

Q̂t(⌧+ h|xt-1

)- Q̂t(⌧- h|xt-1

)
,
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The QAR Process

Theorem 2: Under our regularity conditions,
p

n⌦-1/2(↵̂(⌧)- ↵(⌧))) Bp+1

(⌧),

a (p + 1)-dimensional standard Brownian Bridge, with

⌦ = ⌦-1

1

⌦
0

⌦-1

1

.

⌦
0

= E(xtx>t ) = lim n-1

nX

t=1

xtx>t ,

⌦
1

= lim n-1

nX

t=1

ft-1

(F-1

t-1

(⌧))xtx>t .
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Inference for QAR models

For fixed ⌧ = ⌧
0

we can test the hypothesis:

H
0

: R↵(⌧) = r

using the Wald statistic,

Wn(⌧) =
n(R↵̂(⌧)- r)>[R⌦̂-1

1

⌦̂
0

⌦̂-1

1

R>]-1(R↵̂(⌧)- r)
⌧(1 - ⌧)

This approach can be extended to testing on general index sets ⌧ 2 T

with the corresponding Wald process.
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Asymptotic Inference

Theorem: Under H
0

, Wn(⌧)) Q2

m(⌧), where Qm(⌧) is a Bessel process
of order m = rank(R). For fixed ⌧, Q2

m(⌧) ⇠ �
2

m.

Kolmogorov-Smirov or Cramer-von-Mises statistics based on
Wn(⌧) can be used to implement the tests.
For known R and r this leads to a very nice theory – estimated R
and/or r testing raises new questions.
The situation is quite analogous to goodness-of-fit testing with
estimated parameters.
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Example: Unit Root Testing

Consider the augmented Dickey-Fuller model

yt = �
0

+ �
1

yt-1

+
pX

j=2

�j�yt-j + ut.

We would like to test this constant coefficients version of the model
against the more general QAR(p) version:

Qyt(⌧|xt) = �
0

(⌧) + �
1

(⌧)yt-1

+
pX

j=2

�j(⌧)�yt-j

The hypothesis: H
0

: �
1

(⌧) = �̄
1

= 1, for ⌧ 2 T = [⌧
0

, 1 - ⌧
0

], is
considered in Koenker and Xiao (JASA, 2004).
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Example: Two Tests

When �̄
1

< 1 is known we have the candidate process,

Vn(⌧) =
p

n(�̂
1

(⌧)- �̄
1

)/!̂
11

.

where !̂2

11

is the appropriate element from ⌦̂-1

1

⌦̂
0

⌦̂-1

1

.
Fluctuations in Vn(⌧) can be evaluated with the
Kolmogorov-Smirnov statistic,

sup

⌧2T

Vn(⌧)) sup

⌧2T

B(⌧).

When �̄
1

is unknown we may replace it with an estimate, but this
disrupts the convenient asymptotic behavior. Now,

V̂n(⌧) =
p

n((�̂
1

(⌧)- �̄
1

)- (�̂
1

- �̄
1

))/!̂
11
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Martingale Transformation of V̂n(⌧)

Khmaladze (1981) suggested a general approach to the
transformation of parametric empirical processes like V̂n(⌧) :

eVn(⌧) = V̂n(⌧)-

Z⌧

0


ġn(s)>C-1

n (s)
Z

1

s
ġn(r)dV̂n(r)

�
ds

where ġn(s) and Cn(s) are estimators of

ġ(r) = (1, (ḟ/f )(F-1(r)))>; C(s) =
Z

1

s
ġ(r)ġ(r)>dr.

This is a generalization of the classical Doob-Meyer decomposition.
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Restoration of the ADF property

Theorem Under H
0

, Ṽn(⌧)) W(⌧) and therefore

sup

⌧2T

kṼn(⌧)k ) sup

⌧2T

kW(⌧)k,

with W(r) a standard Brownian motion.

The martingale transformation of Khmaladze annihilates the
contribution of the estimated parameters to the asymptotic
behavior of the V̂n(⌧) process, thereby restoring the asymptotically
distribution free (ADF) character of the test.
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Three Month T-Bills Again

0.0 0.2 0.4 0.6 0.8 1.0

6.
0

7.
0

8.
0

Centercept

o

o
o
o
ooo

oooo
ooo

oooo
oooooooo

ooooo
oooo

oooo
ooo

oo
o
o
o
o
o

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

0.
9

1.
0

1.
1

1.
2

Lag(y)

o

o
oo
oooo

ooo
ooo

ooo
ooooooo

ooo
ooooo

oooo
oooo

ooo
oo
o
oo

o

A test of the “location-shift” hypothesis yields a test statistic of 2.76
which has a p-value of roughly 0.01, contradicting the conclusion of the
conventional Dickey-Fuller test.
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QAR Models for Longitudinal Data

In estimating growth curves it is often valuable to condition not
only on age, but also on prior growth and possibly on other
covariates.
Autoregressive models are natural, but complicated due to the
irregular spacing of typical longitudinal measurements.
Finnish Height Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . , n.}
Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:

QYi(ti,j)(⌧ | ti,j, Yi(ti,j-1

), xi) = g⌧(ti,j)

+ [↵(⌧) + �(⌧)(ti,j - ti,j-1

)]Yi(ti,j-1

) + x>i �(⌧).
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Parametric Components of the Conditional Growth
Model

⌧ Boys Girls
↵̂(⌧) �̂(⌧) �̂(⌧) ↵̂(⌧) �̂(⌧) �̂(⌧)

0.03 0.845

(0.020)
0.147

(0.011)
0.024

(0.011)
0.809

(0.024)
0.135

(0.011)
0.042

(0.010)

0.1 0.787

(0.020)
0.159

(0.007)
0.036

(0.007)
0.757

(0.022)
0.153

(0.007)
0.054

(0.009)

0.25 0.725

(0.019)
0.170

(0.006)
0.051

(0.009)
0.685

(0.021)
0.163

(0.006)
0.061

(0.008)

0.5 0.635

(0.025)
0.173

(0.009)
0.060

(0.013)
0.612

(0.027)
0.175

(0.008)
0.070

(0.009)

0.75 0.483

(0.029)
0.187

(0.009)
0.063

(0.017)
0.457

(0.027)
0.183

(0.012)
0.094

(0.015)

0.9 0.422

(0.024)
0.213

(0.016)
0.070

(0.017)
0.411

(0.030)
0.201

(0.015)
0.100

(0.018)

0.97 0.383

(0.024)
0.214

(0.016)
0.077

(0.018)
0.400

(0.038)
0.232

(0.024)
0.086

(0.027)

Estimates of the QAR(1) parameters, ↵(⌧) and �(⌧) and the mid-parental
height effect, �(⌧), for Finnish children ages 0 to 2 years.
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Forecasting with QAR Models

Given an estimated QAR model,

Q̂yt(⌧|Ft-1

) = x>t ↵̂(⌧)

based on data: yt : t = 1, 2, · · · , T, we can forecast

ŷT+s = x̃>T+s↵̂(Us), s = 1, · · · , S,

where x̃T+s = [1, ỹT+s-1

, · · · , ỹT+s-p]>, Us ⇠ U[0, 1], and

ỹt =

�
yt if t 6 T,
ŷt if t > T.

Conditional density forecasts can be made based on an ensemble of
such forecast paths.
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Linear QAR Models May Pose Statistical Health Risks

Lines with distinct slopes eventually intersect. [Euclid: P5]
Quantile functions, QY(⌧|x) should be monotone in ⌧ for all x,
intersections imply point masses – or even worse.
What is to be done?

I Constrained QAR: Quantiles can be estimated simultaneously
subject to linear inequality restrictions.

I Nonlinear QAR: Abandon linearity in the lagged yt’s, as in the
Melbourne temperature example, both parametric and
nonparametric options are available.
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Nonlinear QAR Models via Copulas
An interesting class of stationary, Markovian models can be expressed
in terms of their copula functions:

G(yt, yt-1

, · · · , yy-p) = C(F(yt), F(yt-1

), · · · , F(yy-p))

where G is the joint df and F the common marginal df.
Differentiating, C(u, v), with respect to u, gives the conditional df,

H(yt|yt-1

) =
@

@u
C(u, v)|(u=F(yt),v=F(yt-1

))

Inverting we have the conditional quantile functions,

Qyt(⌧|yt-1

) = h(yt-1

, ✓(⌧))
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Example 1 (Fan and Fan)
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Example 2 (Near Unit Root)
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Conclusions

QAR models are an attempt to expand the scope of classical
linear time-series models permitting lagged covariates to influence
scale and shape as well as location of conditional densities.
Efficient estimation via familiar linear programming methods.
Random coefficient interpretation nests many conventional
models including ARCH.
Wald-type inference is feasible for a large class of hypotheses;
rank based inference is also an attractive option.
Forecasting conditional densities is potentially valuable.
Many new and challenging open problems. . . .
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Is there IV for QR?

Amemiya (1982) and Powell (1983) consider analogues of 2SLS
for median regression models
Chen and Portnoy (1986) consider extensions to quantile
regression
Abadie, Angrist and Imbens (2002) consider models with binary
endogonous treatment
Chernozhukov and Hansen (2003) propose “inverse” quantile
regression
Chesher (2003) considers triangular models with continuous
endogonous variables.
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Chernozhukov and Hansen QRIV

Motivation: Yet another way to view two stage least squares.

Model: y = X�+ Z↵+ u, W ?? u

Estimator:
↵̂ = argmin↵k�̂(↵)k2

A=W>MXW

�̂(↵) = argmin�ky - X�- Z↵- W�k2

Thm ↵̂ = (Z>PMXWZ)-1Z>PMXWy, the 2SLS estimator.

Heuristic: ↵̂ is chosen to make k�̂(↵)k as small as possible to satisfy
(approximately) the exclusion restriction/assumption.

Generalization: The quantile regression version simply replaces k · k2

in the definition of �̂ by the corresponding QR norm.
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A Linear Location Shift Recursive Model

Y = S↵
1

+ x>↵
2

+ ✏+ �⌫ (13)
S = z�

1

+ x>�
2

+ ⌫ (14)

Suppose: ✏ ?? ⌫ and (✏,⌫) ?? (z, x). Substituting for ⌫ from (2) into (1),

QY(⌧1

|S, x, z) = S(↵
1

+ �) + x>(↵
2

- ��
2

) + z(-��
1

) + F-1

✏ (⌧
1

)

QS(⌧2

|z, x) = z�
1

+ x>�
2

+ F-1

⌫ (⌧
2

)

⇡
1

(⌧
1

, ⌧
2

) = rSiQYi |Si=QSi
+
rziQYi |Si=QSi

rziQSi

= (↵
1

+ �) + (-��
1

)/�
1

= ↵
1
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A Linear Location-Scale Shift Model

Y = S↵
1

+ x>↵
2

+ S(✏+ �⌫)
S = z�

1

+ x>�
2

+ ⌫

⇡
1

(⌧
1

, ⌧
2

) = ↵
1

+ F-1

✏ (⌧
1

) + �F-1

⌫ (⌧
2

)

QY(⌧1

|S, x, z) = S✓
1

(⌧
1

) + x>✓
2

+ S2✓
3

+ Sz✓
4

+ Sx>✓
5

QS(⌧2

|z, x) = z�
1

+ x>�
2

+ F-1

⌫ (⌧
2

)

⇡̂
1

(⌧
1

, ⌧
2

) =
nX

i=1

wi

⌦
✓̂

1

(⌧
1

)+2Q̂Si ✓̂3

(⌧
1

)+zi✓̂4

(⌧
1

)+x>i ✓̂5

(⌧
1

)+
Q̂Si ✓̂4

(⌧
1

)

�̂
1

(⌧
2

)

↵

a weighted average derivative estimator with Q̂Si = Q̂S(⌧2

|zi, xi).
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The General Recursive Model

Y = '
1

(S, x, ✏,⌫; ↵)
S = '

2

(z, x,⌫; �)

Suppose: ✏ ?? ⌫ and (✏,⌫) ?? (z, x). Solving for ⌫ and substituting we
have the conditional quantile functions,

QY(⌧1

|S, x, z) = h
1

(S, x, z, ✓(⌧
1

))

QS(⌧2

|z, x) = h
2

(z, x,�(⌧
2

))

Extensions to more than two endogonous variables are
”straightforward.”
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The (Chesher) Weighted Average Derivative Estimator

✓̂(⌧
1

) = argmin✓

nX

i=1

⇢⌧
1

(Yi - h
1

(S, x, z, ✓(⌧
1

)))

�̂(⌧
2

) = argmin�

nX

i=1

⇢⌧
2

(Si - h
2

(z, x,�(⌧
2

)))

where ⇢⌧(u) = u(⌧- I(u < 0)), giving structural estimators:

⇡̂
1

(⌧
1

, ⌧
2

) =
nX

i=1

wi

⌦
rSĥ

1i|Si=ĥ
2i
+
rzĥ1i|Si=ĥ

2i

rzĥ2i

↵
,

⇡̂
2

(⌧
1

, ⌧
2

) =
nX

i=1

wi

⌦
rxĥ

1i|Si=ĥ
2i
-
rzĥ1i|Si=ĥ

2i

rzĥ2i
rxĥ

2i

↵
,
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2SLS as a Control Variate Estimator

Y = S↵
1

+ X
1

↵
2

+ u ⌘ Z↵+ u

S = X�+ V, where X = [X
1

...X
2

]

Set V̂ = S - Ŝ ⌘ MXY
1

, and consider the least squares estimator of the
model,

Y = Z↵+ V̂�+ w

Claim: ↵̂CV ⌘ (Z>MV̂Z)-1Z>MV̂Y = (Z>PXZ)-1Z>PXY ⌘ ↵̂
2SLS.
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Proof of Control Variate Equivalence

MV̂ = MMXS = I - MXS(S>MXS)-1S>MX

S>MV̂ = S> - S>MX = S>PX

X>
1

MV̂ = X>
1

- X>
1

MX = X>
1

= X>
1

PX

Reward for information leading to a reference prior to Dhrymes (1970).
Recent work on the control variate approach by Blundell, Powell,
Smith, Newey and others.
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Quantile Regression Control Variate Estimation I
Location scale shift model:

Y = S(↵
1

+ ✏+ �⌫) + x>↵
2

S = z�
1

+ x>�
2

+ ⌫.

Using ⌫̂(⌧
2

) = S - Q̂S(⌧2

|z, x) as a control variate,

Y = w>↵(⌧
1

, ⌧
2

) + �S(Q̂S - QS) + S(✏- F-1

✏ (⌧
1

)),
where w> = (S, x>, S⌫̂(⌧

2

))

↵(⌧
1

, ⌧
2

) = (↵
1

(⌧
1

, ⌧
2

),↵
2

, �)>

↵
1

(⌧
1

, ⌧
2

) = ↵
1

+ F-1

✏ (⌧
1

) + �F-1

⌫ (⌧
2

).

↵̂(⌧
1

, ⌧
2

) = argmina

nX

i=1

⇢⌧
1

(Yi - w>
i a).
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Quantile Regression Control Variate Estimation II

Y = '
1

(S, x, ✏,⌫; ↵)
S = '

2

(z, x,⌫; �)

Regarding ⌫(⌧
2

) = ⌫- F-1

⌫ (⌧
2

) as a control variate, we have

QY(⌧1

|S, x,⌫(⌧
2

)) = g
1

(S, x,⌫(⌧
2

),↵(⌧
1

, ⌧
2

))

QS(⌧2

|z, x) = g
2

(z, x,�(⌧
2

))

⌫̂(⌧
2

) = '-1

2

(S, z, x, �̂)-'-1

2

(Q̂s, z, x, �̂)

↵̂(⌧
1

, ⌧
2

) = argmina

nX

i=1

⇢⌧
1

(Yi - g
1

(S, x, ⌫̂(⌧
2

), a)).
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Asymptopia

Theorem: Under regularity conditions, the weighted average
derivative and control variate estimators of the Chesher structural
effect have an asymptotic linear (Bahadur) representation, and after
efficient reweighting of both estimators, the control variate estimator
has smaller covariance matrix than the weighted average derivative
estimator.

Remark: The control variate estimator imposes more stringent
restrictions on the estimation of the hybrid structural equation and
should thus be expected to perform better when the specification is
correct. The advantages of the control variate approach are magnified
in situations of overidentification.
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Asymptotics for WAD
Theorem
The ⇡̂n(⌧1

, ⌧
2

) has the asymptotic linear (Bahadur) representation,

p
n(⇡̂n(⌧1

, ⌧
2

)- ⇡(⌧
1

, ⌧
2

)) = W
1

J̄-1

1

1p
n

nX

i=1

�i1ḣi1 ⌧
1

(Yi1 - ⇠i1)

+ W
2

J̄-1

2

1p
n

nX

i=1

�i2ḣi2 ⌧
2

(Yi2 - ⇠i2)

=) N(0, !
11

W
1

J̄-1

1

J
1

J̄-1

1

W>
1

+!
22

W
2

J̄-1

2

J
2

J̄-1

2

W>
2

)

Jj = lim

n!1

1

n

X
�2

ijḣijḣ>ij , J̄j = lim

n!1

1

n

X
�ijfij(⇠ij)ḣijḣ>ij ,

W
1

= r✓⇡(⌧1

, ⌧
2

), W
2

= r�⇡(⌧1

, ⌧
2

),
ḣi1 = r✓hi1, ḣi2 = r�hi2, !jj = ⌧j(1 - ⌧j).
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Asymptotics for CV
Theorem
The ↵̂n(⌧1

, ⌧
2

) has the Bahadur representation,

p
n(↵̂n(⌧1

, ⌧
2

)- ↵(⌧
1

, ⌧
2

)) = D̄-1

1

1p
n

nX

i=1

�i1ġi1 ⌧
1

(Yi1 - ⇠i1)

+ D̄-1

1

D̄
12
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2
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1

D
1
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1

+!
22

D̄-1

1
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12

D̄-1

2

D
2

D̄-1

2
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12

D̄-1

1

)

Dj = lim

n!1
n-1

X
�2

ijġijġ>ij , D̄j = lim

n!1
n-1

X
�ijfij(⇠ij)ġijġ>

ij ,

D̄
12

= lim

n!1
n-1

X
�i1fi1⌘iġi1ġ>

i2 ,

ġi1 = r↵gi1, ġi2 = r�gi2, ⌘i = (@g
1i/@⌫i2(⌧2

))(r⌫i2'i2)
-1.

Appendix 3. Endogoneity and All That 301 / 349

ARE of WAD and CV

Efficient weights: �ij = fij(⇠ij)
p

n(⇡̂n(⌧1

, ⌧
2

)- ⇡(⌧
1

, ⌧
2

))) N(0,!
11

W
1

J-1

1

W>
1

+!
22

W
2

J-1

2

W>
2

)
p

n(↵̂n(⌧1

, ⌧
2

)- ↵(⌧
1

, ⌧
2

))) N(0,!
11

D-1

1

+!
22

D-1

1

D
12

D-1

2

D>
12

D-1

1

).

The mapping: ⇡̃n = L↵̂n, L↵ = ⇡.

W
1

J-1

1

W>
1

> LD-1

1

L>

W
2

J-1

2

W>
2

> LD-1

1

D
12

D-1

2

D>
12

D-1

1

L>.

Theorem
Under efficient reweighting of both estimators,

Avar(
p

n⇡̃n) 6 Avar(
p

n⇡̂n).
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Conclusions

Triangular structural models facilitate causal analysis via recursive
conditioning, directed acyclic graph representation.
Recursive conditional quantile models yield interpretable
heterogeneous structural effects.
Control variate methods offer computationally and statistically
efficient strategies for estimating heterogeneous structural effects.
Weighted average derivative methods offer a less restrictive
strategy for estimation that offers potential for model diagnostics
and testing.
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Appendix 4
Risk, Choquet Portfolios and Quantile Regression

Joint work with Gib Bassett (UIC) and Gregory Kordas (Athens)
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Outline

Is there a useful role for pessimism in decision theory?
A pessimistic theory of risk
How to be pessimistic?
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St. Petersburg Paradox
What would you be willing to pay to play the game:

G = {pay: p, win: 2

n with probability 2

-n, n = 1, 2, ...}

Daniel Bernoulli (⇠ 1728) observed that even though the expected payoff was
infinite, the gambler who maximized logarithmic utility would pay only a finite
value to play. For example, given initial wealth 100,000 Roubles, our gambler
would be willing to pay only 17 Roubles and 55 kopecks. If initial wealth were
only 1000 Roubles, then the value of the game is only about 11 Roubles.
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Expected Utility

To decide between two real valued gambles

X ⇠ F and Y ⇠ G

we choose X over Y if

Eu(X) =
Z

u(x)dF(x) >
Z

u(y)dG(y) = Eu(Y)
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On Axiomatics

Suppose we have acts P, Q, R, ... in a space P, which admits enough
convex structure to allow us to consider mixtures,

↵P + (1 - ↵)Q 2 P ↵ 2 (0, 1)

Think of P, Q, R as probability measures on some underlying
outcome/event space, X.
Or better, view P, Q, R as acts mapping a space S of
soon-to-be-revealed “states of nature” to the space of probability
measures on the outcome space, X.
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The Expected Utility Theorem

Theorem(von-Neumann-Morgenstern) Suppose we have a preference
relation {⌫,�, ⇠} on P satisfying the axioms:

(A.1) (weak order) For all P, Q, R 2 P, P ⌫ Q or Q ⌫ P, and P ⌫ Q and
Q ⌫ R) P ⌫ R,

(A.2) (independence) For all P, Q, R 2 P and ↵ 2 (0, 1), then
P � Q) ↵P + (1 - ↵)R � ↵Q + (1 - ↵)R,

(A.3) (continuity) For all P, Q, R 2 P, if P � Q and Q � R, then there exist
↵ and � 2 (0, 1), such that, ↵P + (1 - ↵)R � �Q(1 - �)R.

Then there exists a linear function u on P such that for all P, Q 2 P,
P � Q if and only if u(P) > u(Q).
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Weakening the Independence Axiom

The independence axiom seems quite innocuous, but it is extremely
powerful. We will consider a weaker form of independence due to
Schmeidler (1989).

(A.2’) (comonotonic independence) For all pairwise comonotonic
P, Q, R 2 P and ↵ 2 (0, 1) P � Q) ↵P+ (1-↵)R � ↵Q+ (1-↵)R,

Definition Two acts P and Q in P are comonotonic, or similarly
ordered, if for no s and t in S,

P({t}) � P({s}) and Q({s}) � Q({t}).

“If P is better in state t than state s, then Q is also better in t than s.”
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On Comonotonicity

Definition The two functions X, Y : ⌦! |R are comonotonic if there
exists a third function Z : ⌦! < and increasing functions f and g such
that X = f (Z) and Y = g(Z).

From our point of view the crucial property of comonotonic random
variables is the behavior of quantile functions of their sums. For
comonotonic random variables X, Y, we have

F-1

X+Y(u) = F-1

X (u) + F-1

Y (u)

By comonotonicity we have a U ⇠ U[0, 1] such that
Z = g(U) = F-1

X (U) + F-1

Y (U) where g is left continuous and
increasing, so by monotone invariance, F-1

g(U) = g � F-1

U = F-1

X + F-1

Y .
Comonotonic random variables are maximally dependent a la Fréchet
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Choquet Expected Utility

Among the many proposals offered to extend expected utility theory
the most attractive (to us) replaces

EFu(X) =
Z

1

0

u(F-1(t))dt >
Z

1

0

u(G-1(t))dt = EGu(Y)

with

E⌫,Fu(X) =
Z

1

0

u(F-1(t))d⌫(t) >
Z

1

0

u(G-1(t))d⌫(t) = E⌫,Gu(Y)

The measure ⌫ permits distortion of the probability assessments after
ordering the outcomes. This rank dependent form of expected utility
has been pioneered by Quiggin (1981), Yaari (1987), Schmeidler
(1989), Wakker (1989) and Dennenberg (1990).
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Pessimism

By relaxing the independence axiom we obtain a larger class
of preferences representable as Choquet capacities and introducing
pessimism. The simplest form of Choquet expected utility is based on

the “distortion”
⌫↵(t) = min{t/↵, 1}

so
E⌫↵,Fu(X) = ↵-1

Z↵

0

u(F-1(t))dt

This exaggerates the probability of the proportion ↵ of least favorable
events, and totally discounts the probability of the 1 - ↵ most favorable
events.

Expect the worst – and you won’t be disappointed.
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A Smoother example

A simple, yet intriguing, one-parameter family of pessimistic Choquet
distortions is the measure:

⌫✓(t) = 1 - (1 - t)✓ ✓ > 1

Note that, changing variables, t! FX(u), we have,

E⌫✓X =

Z
1

0

F-1

X (t)d⌫(t) =
Z1

-1
ud(1 - (1 - FX(u))✓)

The pessimist imagines that he gets not a single draw from X but ✓
draws, and from these he always gets the worst. The parameter ✓ is a
natural “measure of pessimism,” and need not be an integer.
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Savage on Pessimism

I have, at least once heard it objected against the
personalistic view of probability that, according to that view,
two people might be of different opinions, according as one is
pessimistic and the other optimistic. I am not sure what
position I would take in abstract discussion of whether that
alleged property of personalistic views would be
objectionable, but I think it is clear from the formal definition of
qualitative probability that the particular personalistic view
sponsored here does not leave room for optimism and
pessimism, however these traits may be interpreted, to play
any role in the person’s judgement of probabilities.
(Savage(1954), p. 68)
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Pessimistic Medical Decision Making?
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Survival Functions for a hypothetical medical treatment: The Lehmann
quantile treatment effect (QTE) is the horizontal distance between the
survival curves. In this example consideration of the mean treatment effect
would slightly favor the (dotted) treatment curve, but the pessimistic patient
might favor the (solid) placebo curve. Only the luckiest 15% actually do better
under the treatment.
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Risk as Pessimism?

In expected utility theory risk is entirely an attribute of the utility
function:

Risk Neutrality ) u(x) ⇠ affine
Risk Aversion ) u(x) ⇠ concave
Risk Attraction ) u(x) ⇠ convex

Locally, the risk premium, i.e. the amount one is willing to pay to
accept a zero mean risk, X, is

⇡(w, X) = 1

2

A(w)V(X)

where A(w) = -u 00(w)/u 0(w) is the Arrow-Pratt coefficient of absolute
risk aversion and V(X) is the variance of X. Why is variance a
reasonable measure of risk?
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A Little Risk Aversion is a Dangerous Thing

Would you accept the gamble:

G
1

50 - 50

⌧
win $110

lose $100

Suppose you say “no”, then what about the gamble:

G
2

50 - 50

⌧
win $700, 000

lose $1, 000

If you say “no” to G
1

for any initial wealth up to $300,000, then you
must also say “no” to G

2

.
Moral: A little local risk aversion over small gambles implies
implausibly large risk aversion over large gambles. Reference: Rabin
(2000)
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Are Swiss Bicycle Messengers Risk Averse?

When Veloblitz and Flash bicycle messengers from Zurich were
confronted with the bet:

50 - 50

⌧
win 8 CHF
lose 5 CHF

More than half (54%) rejected the bet.
Reference: Fehr and Götte (2002)
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Coherent Risk

Definition (Artzner, Delbaen, Eber and Heath (1999)) For real valued
random variables X 2 X on (⌦,A) a mapping ⇢ : X! R is called a coherent
risk measure if,

1 Monotone: X, Y 2 X, with X 6 Y ) ⇢(X) > ⇢(Y).
2 Subadditive: X, Y, X + Y 2 X,) ⇢(X + Y) 6 ⇢(X) + ⇢(Y).
3 Linearly Homogeneous: For all � > 0 and X 2 X, ⇢(�X) = �⇢(X).
4 Translation Invariant: For all � 2 R and X 2 X, ⇢(�+ X) = ⇢(X)- �.

Many conventional measures of risks including those based on standard
deviation are ruled out by these requirements. So are quantile based
measures like “value at risk.”
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Choquet ↵-Risk

The leading example of a coherent risk measure is

⇢⌫↵(X) = -↵-1

Z↵

0

F-1(t)dt

Variants of this risk measure have been introduced under several
names

Expected shortfall (Acerbi and Tasche (2002))
Conditional VaR (Rockafellar and Uryasev (2000))
Tail conditional expectation (Artzner, et al (1999)).

Note that ⇢⌫↵(X) = -E⌫↵,F(X), so Choquet ↵-risk is just negative
Choquet expected utility with the distortion function ⌫↵.
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Pessimistic Risk Measures

Definition A risk measure ⇢ will be called pessimistic if, for some
probability measure ' on [0, 1]

⇢(X) =
Z

1

0

⇢⌫↵(X)d'(↵)

By Fubini

⇢(X) = -

Z
1

0

↵-1

Z↵

0

F-1(t)dtd'(↵)

= -

Z
1

0

F-1(t)
Z

1

t
↵-1d'(↵)dt

⌘ -

Z
1

0

F-1(t)d⌫(t)
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Approximating General Pessimistic Risk Measures

We can approximate any pessimistic risk measure by taking

d'(t) =
X

'i�⌧i(t)

where �⌧ denotes (Dirac) point mass 1 at ⌧. Then

⇢(X) = -'
0

F-1(0)-

Z
1

0

F-1(t)�(t)dt

where �(t) =
P
'i⌧

-1

i I(t < ⌧i) and 'i > 0, with
P
'i = 1.
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An Example
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A Theorem

Theorem (Kusuoka (2001)) A regular risk measure is coherent in
the sense of Artzner et. al. if and only if it is pessimistic.

Pessimistic Choquet risk measures correspond to concave ⌫, i.e.,
monotone decreasing d⌫.
Probability assessments are distorted to accentuate the
probability of the least favorable events.
The crucial coherence requirement is subadditivity, or
submodularity, or 2-alternatingness in the terminology of Choquet
capacities.
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An Example

Samuelson (1963) describes asking a colleague at lunch whether he
would be willing to make a

50 - 50 bet
⌧

win 200

lose 100

The colleague (later revealed to be E. Cary Brown) responded
“no, but I would be willing to make 100 such bets.”

This response has been interpreted not only as reflecting a basic
confusion about how to maximize expected utility but also as a
fundamental misunderstanding of the law of large numbers.

Appendix 4. Risk, Choquet Portfolios and Quantile Regression 326 / 349

Payoff Density of 100 Samuelson trials
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Odds of losing money on the 100 trial bet is 1 chance in 2300.
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Was Brown really irrational?

Suppose, for the sake of simplicity that

d'(t) = 1

2

�
1/2

(t) + 1

2

�
1

(t)

so for one Samuelson coin flip we have the unfavorable evaluation,

E⌫,F(X) = 1

2

(-100) + 1

2

(50) = -25

but for S =
P

100

i=1

Xi ⇠ Bin(.5, 100) we have the favorable evaluation,

E⌫,F(S) = 1

2

2

Z
1/2

0

F-1

S (t)dt + 1

2

(5000)

= 1704.11 + 2500

= 4204.11
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How to be Pessimistic

Theorem Let X be a real-valued random variable with EX = µ < 1,
and ⇢↵(u) = u(↵- I(u < 0)). Then

min

⇠2R
E⇢↵(X - ⇠) = ↵µ+ ⇢⌫↵(X)

So ↵ risk can be estimated by the sample analogue

⇢̂⌫↵(x) = (n↵)-1

min

⇠

X
⇢↵(xi - ⇠)- µ̂n

I knew it! Eventually everything looks like quantile regression to
this guy!
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Pessimistic Portfolios

Now let X = (X
1

, . . . , Xp) denote a vector of potential portfolio asset
returns and Y = X>⇡, the returns on the portfolio with weights ⇡.
Consider

min

⇡
⇢⌫↵(Y)- �µ(Y)

Minimize ↵-risk subject to a constraint on mean return.
This problem can be formulated as a linear quantile regression
problem

min

(�,⇠)2Rp

nX

i=1

⇢↵(xi1 -
pX

j=2

(xi1 - xij)�j - ⇠) s.t. x̄>⇡(�) = µ
0

,

where ⇡(�) = (1 -
Pp

j=2

�j,�>)>.
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An Example
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Two asset return densities with identical mean and variance.
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An Example
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Two more asset return densities with identical mean and variance.
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An Example
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Two pairs of asset return densities with identical mean and variance.
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Optimal Choquet and Markowitz Portfolio Returns
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Markowitz portfolio minimizes the standard deviation of returns subject to
mean return µ = .07. The Choquet portfolio minimizes Choquet risk (for
↵ = .10) subject to earning the same mean return. The Choquet portfolio has
better performance in both tails than mean-variance Markowitz portfolio.
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Optimal Choquet and Markowitz Portfolio Returns
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Now, the Markowitz portfolio minimizes the standard deviation of returns
subject to mean return µ = .07. The Choquet portfolio maximizes expected
return subject to achieving the same Choquet risk (for ↵ = .10) as the
Markowitz portfolio. Choquet portfolio has expected return µ = .08 a full
percentage point higher than the Markowitz portfolio.
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A Unified Theory of Pessimism

Any pessimistic risk measure may be approximated by

⇢⌫(X) =
mX

k=1

'k⇢⌫↵k
(X)

where 'k > 0 for k = 1, 2, ..., m and
P
'k = 1.

Portfolio weights can be estimated for these risk measures by solving
linear programs that are weighted sums of quantile regression
problems:

min

(�,⇠)2Rp

mX

k=1

nX

i=1

⌫k⇢↵k(xi1 -
pX

j=2

(xi1 - xij)�j - ⇠k) s.t. x̄>⇡(�) = µ
0

,

Software in R is available on from my web pages.

Appendix 4. Risk, Choquet Portfolios and Quantile Regression 336 / 349



Conclusions

Expected Utility is unsatisfactory both as a positive, i.e.,
descriptive, theory of behavior and as a normative guide to
behavior.
Choquet (non-additive, rank dependent) expected utility provides
a simple, tractable alternative.
Mean-variance Portfolio allocation is also unsatisfactory since it
relies on unpalatable assumptions of Gaussian returns, or
quadratic utility.
Choquet portfolio optimization can be formulated as a quantile
regression problem thus providing an attractive practical
alternative to the dominant mean-variance approach of Markowitz
(1952).
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Appendix 5: Yet Another R FAQ, or
How I Learned to Stop Worrying and Love

Computing

More official R FAQs are available from the CRAN website. A FAQ for
the quantile regression package quantreg can be found by the
invoking the command FAQ() from within R after loading the package.
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“It was a splendid mind. For if thought is like the keyboard of
a piano, divided into so many notes, or like the alphabet is
ranged in twenty-six letters all in order, then his splendid mind
had no sort of difficulty in running over those letters one by
one, firmly and accurately, until it had reached the letter Q. He
reached Q. Very few people in the whole of England reach
the letter Q.... But after Q? What comes next?... Still, if he
could reach R it would be something. Here at least was Q. He
dug his heels in at Q. Q he was sure of. Q he could
demonstrate. If Q then is Q–R–.... Then R... He braced
himself. He clenched himself.... In that flash of darkness he
heard people saying–he was a failure–that R was beyond
him. He would never reach R. On to R, once more. R—....
...He had not genius; he had no claim to that: but he had, or
he might have had, the power to repeat every letter of the
alphabet from A to Z accurately in order. Meanwhile, he stuck
at Q. On then, on to R.”

Virginia Woolf (To the Lighthouse)
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R FAQ

1 How to get it? Google CRAN, click on your OS, and download.
Buy a case of wine with what you’ve saved.

2 How to start? Click on the R icon if you are mousey, type R in a
terminal window if you are penguinesque.

3 What next? At the prompt, > type 2 + 2

4 What next? At the prompt, > type 1:9/10

5 What next? At the prompt, > type x <- 1:99/100

6 What next? At the prompt, > type plot(x,sin(1/x))

7 What next? At the prompt, > type lines(x,sin(1/x),col =
"red")

8 How to stop? Click on the Stop sign if you are mousey, type q() if
you are penguinesque.
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R FAQ

9 Isn’t there more to R? Yes, try downloading some packages: using
the menu in the GUI if you are mousey, or typing
install.packages("pname") if you are penguinesque.

10 What’s a package? A package is a collection of R software that
augments in some way the basic functionality of R, that is it is a
way of going “beyond R.” For example, the quantreg package is a
collection of functions to do quantile regression. There were 2992
packages on CRAN as of July 9, 2014.

11 How to use a package? Downloading and installing a package
isn’t enough, you need to tell R that you would like to use it, for this
you can either type: require(pname) or library(pname).
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R FAQ

12 How to read data files? For simple files with values separated by
white space you can use read.table, or read.csv for data
separated by commas, or some other mark. For more exotic files,
there is scan. And for data files from other statistical
environments, there is the package foreign which facilitates the
reading of Stata, SAS and other data. There are also very useful
packages to read html and other files from the web, but this takes
us beyond our introductory objective.

13 What is a data.frame? A data.frame is a collection of related
variables; in the simplest case it is simply a data matrix with each
row indexing an observation. However, unlike conventional
matrices, the columns of a data.frame can be non-numeric, e.g.
logical or character or in R parlance, “factors.” In many R functions
one can specify a data = "dframe" argument that specifies
where to find the variables mentioned elsewhere in the call.
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R FAQ
14 How to get help? If you know what command you want to use, but

need further details about how to use it, you can get help by typing
?fname, if you don’t know the function name, then you might try
apropos("concept"). If this fails then a good strategy is to
search http://finzi.psych.upenn.edu/search.html
with some relevant keywords; here you can specify that you would
like to search through the R-help newsgroup, which is a rich
source of advice about all things R.

15 Are there manuals? Yes, of course there are manuals, but only to
be read as a last resort, but when things get desparate you can
always RTFM. The left side of the CRAN website has links to
manuals , FAQs and contributed documentation. Some of the
latter category is quite good, and is also available in a variety of
natural languages. There is also an extensive shelf of published
material about R, but indulging in this tends to put a crimp in one’s
wine budget.
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16 What about illustrative examples? A strength of R is the fact that
most of the documentation files for R functions have example
code that can be easily executed. Thus, for example if you would
like to see an example of how to use the command rq in the
quantreg package, you can type example(rq) and you will see
some examples of its use. Alternatively, you can cut and paste bits
of the documentation into the R window; in the OSX GUI you can
simply highlight code in a help document, or other window and
then press Command-Enter to execute. Similarly, many packages
have demo files that act as auxiliary documentation. To see what
demos are available for currently loaded packages, just try
demos(). Finally, many packages have vignettes, short overviews
of various aspects of the functionality of the package usually with
explicit examples of how to do things. For example, the quantreg
package has three vignettes: one basic, one about survival
modeling, and one about additive nonparametric models.
Vignettes can be accessed from R by simply typing
vignette(“vname”). The names of the various package
vignettes can be found by typing vignette().
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R FAQ

17 What’s in a name? Objects in R can be of various types called
classes. You can create objects by assignment, typically as above
with a command like f <- function(x,y,z). A list of the
objects currently in your private environment can be viewed with
ls(), objects in lower level environments like those of the
packages that you have loaded can be viewed with ls(k) where
k designates the number of the environment. A list of these
environments can be seen with search(). Objects can be
viewed by simply typing their name, but sometimes objects can be
very complicated so a useful abbreviated summary can be
obtained with str(object).
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R FAQ

18 What about my beloved least squares? Fitting linear models in R
is like taking a breath of fresh air after inhaling the smog of other
industrial environments. To do so, you specify a model formula
like this: lm(y ˜ x1 + x2 + x3, data = "dframe"), if one
or more of the x’s are factor variables, that is take discrete,
qualitative values, then they are automatically exanded into
several indicator variables. Interactions plus main effects can be
specified by replacing the “+” in the formula by “*”. Generalized
linear models can be specified in much the same way, as can
quantile regression models using the quantreg package.
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R FAQ

19 What about class conflict? Class analysis can get complicated,
but you can generally expect that classes behave themselves in
accordance with their material conditions. Thus, for example,
suppose you have fitted a linear regression model by least
squares using the command f <- lm(y ˜ x1 + x2 + x3),
thereby assigning the fitted object to the symbol f. The object f
will have class lm, and when you invoke the command
summary(f), R will try to find a summary method appropriate to
objects of class lm. In the simplest case this will entail finding the
command summary.lm which will produce a conventional table of
coefficients, standard errors, t-statistics, p-values and other
descriptive statistics. Invoking summary on a different type of
object, say a data.frame, will produce a different type of summary
object. Methods for prediction, testing, plotting and other
functionalities are also provided on a class specific basis.
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20 What about graphics? R has a very extensive graphics capability.
Interactive graphics of the type illustrated already above is quite
simple and easy to use. For publication quality graphics, there are
device drivers for various graphical formats, generally I find that
pdf is satisfactory. Dynamic and 3D graphics can be accessed
from the package rgl.

21 Latex tables? The packages Hmisc and xtable have very
convenient functions to convert R matrices into latex tables.

22 Random numbers? There is an extensive capability for generating
pseudo random numbers from R. Reproducibility of random
sequences is ensured by using the set.seed command. Various
distributions are accessible with families of functions using the
prefixes pdqr, thus for example pnorm, dnorm, qnorm and rnorm
can be used to evaluate the distribution function, density function,
quantile function, or to generate random normals, respectively.
See ?Distributions for a complete list of standard distributions
available in base R in this form. Special packages provide
additional scope, although it is sometimes tricky to find them.
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R FAQ
23 Programming and simulation? The usual language constructs for

looping, switching and data management are available, as are
recent developments for exploiting multicore parallel processing.
Particularly convenient are the family of apply functions that
facilitate summarizing matrix and list objects. A good way to learn
the R language is to look at the code for existing functions. Most
of this code is easily accessible from the R command line. If you
simply type the name of an R function, you will usually be able to
see its code on the screen. Sometimes of course, this code will
involve calls to lower level languages, and this code would have to
be examined in the source files of the system. But everything is
eventually accessible. If you don’t like the way a function works
you can define a modified version of it for your private use. If you
are inspired to write lower level code this is also easily
incorporated into the language as explained in the manual called
“Writing R Extensions.”
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