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Optimization

Iterative methods of numerical optimization play an important role throughout economics, but are
especially crucial in modern econometrics. In this lecture I would like to sketch some basic principles
and try to convey some notion what is happening “inside the chip” while you are waiting for the
computer to produce a result.

Let’s begin by considering a univariate optimization problem:

min
x∈<

f(x)

for some nice function f : < ⇒ <. We will (gradually) be more specific about what is meant by nice.
If we imagine starting at an arbitrary point x0 and asking: how should move to find a minimum? We
are naturally led to consider the derivative. If

f ′(x0) > 0

the function is increasing so we need to go to the left, if

f ′(x0) < 0

then the function is decreasing and we need to move to the right.

So far everything is quite obvious, but the next question is: how far should we move in the direction
we choose? Imagine for the moment that it is cheap to evaluate f(·), then we could continue in this
direction until f(x) stopped decreasing, this would give us a local min, but it would be useful to have
some better guidance about step lengths.

This suggests using second derivative information about the curvature of the function f . Suppose
we take as a working model for f , the quadratic approximation

f0(x) = f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f ′′(x0)

then given any starting point x0 we could pretend that f0(x) was a reasonable approximation of f
and we could find x1 to minimize f0(x) by solving the first order conditions,

x1 = x0 − (f ′′(x0))
−1f ′(x0).

This is called Newton’s method. Obviously, if f is quadratic, then this method yields the exact
solution in one step. Otherwise it may, or may not, perform well.
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Figure 1: Newton’s First Fiasco: Note that second order conditions are violated at the minimum.

Example 1: Suppose f(x) = −e−|x|, then

f ′(x) = e−x sgn (x)

so it is clear that f ′(x) is increasing for x > 0 and decreasing for x < 0 and thus that f(x) has a
unique minimum at x = 0. But Newton’s method is a disaster. Why? See Figure 1. �

Example 2: Suppose f(x) = x6 − x4 − x3 − 2x2 + 4. Now

f ′(x) = 6x5 − 4x3 − 3x2 − 4x

and now it is no longer obvious what the minimizer is, since there are several roots to the equation
f ′(x). If we take another derivative

f ′′(x) = 30x4 − 12x2 − 6x− 4

then we can compute the Newton steps from any starting point, x0. We have a function that looks
like Figure 1.

If we start near one of the local optima, we converge to it, but this may or not be a global minimum.
For example, starting at x = .5 yields the sequence

x1 = .123
x2 = .012
x3 = .0001
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Figure 2: Newton’s Second Fiasco: The dashed line is the quadratic approximation of the function at
the starting point x = 0.5, and the two quadratic approximations at the next two iterates are almost
indistinguisable. Note that second order conditions for finding a minimum are violated at the point
of convergence– obviously a local maximum.

3



converging rapidly to zero, but note zero isn’t even a local min it is local max! �

In higher dimensions the situation is more challenging, but the principles are quite familiar from
the univariate case. We have two ancient strategies, we discuss both.

Cauchy’s Method (Steepest Descent) Oddly, the simpler of the two approaches was formalized only in
the mid 19th century long after Newton was dead. The idea is based on computing the gradient, or
directional derivative of f and moving in the direction of steepest descent. Recall that, by the chain
rule we can differentiate the expression

ϕ0(t, u) = f(x0 + tu)

with respect to the scalar t in the direction u, to obtain

ϕ′0(t, u) = ∇f(x0 + tu)>u

so that at the point x0 we have
ϕ′0(0, u) = ∇f(x0)

>u.

This is usually called the directional derivative of f at x0 in the direction u. Now we look at all
possible choices of directions u such that ‖ u ‖= 1 and try to find the one that makes the directional
derivative smallest. Note that if we are to find a direction of descent, a direction that makes f smaller
than it is at x0 we need to find a direction for which ϕ′0(0, u) < 0, if ϕ′0(0, u) ≥ 0 for all u, then we are
already at a minimum. As we have seen, this doesn’t insure that we have found a global minimum,
but at least locally we are at a minimum we can’t improve upon x0 by a small move.

Now by the Cauchy-Schwarz inequality1

− ‖ ∇f(x0) ‖ ‖ u ‖≤ ∇f(x0)
>u ≤‖ ∇f(x0) ‖ ‖ u ‖

Recall that ‖ u ‖= 1, so choosing u to make ϕ′0(0, u) as small as possible means choosing it to hit the
lower bound and this occurs when u = −∇f(x0)/ ‖ ∇f(x0) ‖ . To see this, note that the only way
that we can get equality is to choose u so that we get ||∇f || in the middle expression is by letting
u = −∇f and then normalizing it to have length one. This is called the direction of steepest descent

Remark. In the simplex method of linear programming, one follows edges of a polyhedral convex
constraint set and at each vertex one chooses the next edge to travel along as the one that is steepest.
This works well in certain Portuguese hill towns: at each intersection choose the path of steepest
descent. I don’t recommend it for hiking in the Himalayas, or even in the Alps.

A curious and not necessarily obvious property of the Cauchy method is that it results in a sequence
of steps that are sequentially orthogonal. This is illustrated in the following figure. If we follow the
gradient direction we eventually come to a tangency with some level curve and at that point we are
no longer going down, then at that point we want to find a new direction and this new direction is
necessarily orthogonal to the prior one because of this tangency property. So we end up taking a series
of steps each one orthogonal to the previous one.

1In statistical jargon this is sometimes called the correlation inequality since it can be expressed as

Cov(X,Y )2

V (X)V (Y )
≤ 1.

This is a convenient memory device if nothing else.
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Figure 3: Cauchy’s Method: Travel in the direction of steepest descent, or ascent, from the initial
point of each iteration. Travel until the step fails to continue to improve things. This puts you (in
smooth problems at least) on a new point of tangency from which you move normal to the tangent so
successive steps are orthogonal to one another.
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Cauchy’s method has the virtue that it is always pointing us in a direction that decreases the
function. However, it may not always be well-advised to travel as far as the strict version of the
method we have described.

Shor’s Method. An interesting rather recent development that provides a bridge between steepest
decent and Newton’s method is Shor’s r-algorithm. The basic idea is to make a transformation of
coordinates at each iteration that attempts to use some Hessian information generated by the successive
gradient directions. I won’t try to explain the details, which are elaborated in Kappel and Kuntsevich
(2000), but I’ve illustrated an example that can be compared with the previous Cauchy method plot
in the next figure. Shor’s algorithm has been found to be particularly successful in problems with
non-differentiable objective functions whose gradients exist except on a set of measure zero. Shor’s
method has a tuning parameter that when set to zero yields Cauchy’s method and when set to one
yields a version of the conjugate gradient method. In the example we illustrate this parameter has
been set to 0.5.

Newton’s Method. The foregoing discussion and our experience with the univariate case suggests that
we might profit from the curvature information of the function. Again we consider a two term Taylor’s
series expansion of the function,

f0(x) = f(x0) + (x− x0)>∇f(x0) +
1

2
(x− x0)>∇2f(x0)(x− x0).

Again, we hope this is a good approximation and consider the step that would minimize f0(x) as if it
were the real function. This leads to the iteration sequence

x1 = x0 − (∇2f(x0))
−1∇f(x0).

This is really just a matrix analogue of our prior formula. Instead of taking a step in direction −∇f(x0)
as suggested by Cauchy, we are modifying the steepest descent by premultiplying by the inverse of the
Hessian. And rather than having a step of indeterminant length we are provided with a quite explicit
step length.

When the function f is really quadratic, or nearly quadratic, this works quite brilliantly, giving
exactly the global minimizer in the strictly quadratic case. But it can also be badly fooled in situations
where the quadratic approximation is poor. Good algorithms often begin with gradient steps and
gradually adopt Newton steps as confidence in the quadratic model increases. This is sometimes
called the “region of trust” method.

Some Special Methods for Statistical Problems
Statistical optimization problems sometimes exhibit special features that can be exploited by more

specialized methods. I’ll discuss very briefly two of these.

Method of Scoring
Consider a typically maximum likelihood problem

max
θ∈<p

`(θ)

where `(·) denotes the log likelihood. Newton’s method yields

θ1 = θ0 − (∇2`(θ0))
−1∇`(θ0).
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Figure 4: Shor’s Method: This is a modified version of Cauchy’s method, the first step is pure Cauchy,
but subsequent steps use some Hessian like information provided by the successive differences in the
gradients. Note that this means that the steps are no longer orthogonal, and the method has somewhat
quicker convergence behavior.
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Typically, we can write `(θ) as a sum of contributions from n observations

`(θ) =

n∑
i=1

`i(θ)

and consequently we have

∇`(θ) =
n∑
i=1

∇`i(θ).

When evaluated at θ = θ0, and when the model is correctly specified,

E∇`(θ0) = 0

and furthermore
−E∇2`(θ0) = E∇`(θ0)∇`(θ0)>

and this leads to attractive simplifications of the Newton method in which we substitute either this
outer product of the gradient, or the expectation of the Hessian in place of the näıve “observed
Hessian,” an approach called Fisher’s method of scoring.

Gauss-Newton Method: for models with Gaussian likelihoods, but which are nonlinear in parameters,
for example

yi = g(xi, θ) + ui

with ui ∼ N (0, σ2) we also have considerable special structure. The crucial component of the log
likelihood looks like

f(θ) =
n∑
i=1

(yi − g(xi, θ))
2

so
∇f(θ) = ∇g>(y − g)

where ∇g = (∇g(xi, θ)) is a n × p matrix and y − g is the usual residual vector. Another derivative
yields

∇2f(θ) = ∇2g(y − g)−∇g>∇g.
If we now do something a bit strange, in effect neglecting the first term of the Hessian, we obtain the
Newton step:

θ1 = θ0 + (∇g>∇g)−1∇g>(y − g)

so what is happening? If we interpret the step as a regression, then the matrix ∇g is playing the role
of the X matrix, and y − g the role of y. So we are just doing a sequence of least squares regressions
of current residuals on a linear approximation of g.

Linear Programming Many interesting optimization problems can be formulated as linear pro-
grams, that is as problems of maximizing a linear function subject to linear equality and inequality
constraints, for example,

max{c>x |Ax = b, x ≥ 0}.
The classical approach to solving such problems is a variant of Cauchy’s steepest descent (ascent in this
case) method. This was developed more or less simultaneously by Dantzig in the U.S. and Kantorovich
in the U.S.S.R. But the basic idea of their solution method was nicely described by Edgeworth (1888):
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The method may be illustrated thus:–Let C − R (where C is a constant, [and R denotes
the objective function]) represent the height of a surface, which will resemble the roof of
an irregularly built slated house. Get on this roof somewhere near the top, and moving
continually upwards along some one of the edges, or arrétes, climb up to the top. The
highest position will in general consist of a solitary pinnacle. But occasionally there will
be, instead of a single point, a horizontal ridge, or even a flat surface.

If Edgeworth had been able to translate this vivid geometric description into an explicit algorithm,
we would have had linear programming 60 years before Dantzig and Kantorovich. Edgeworth’s de-
scription is quite an accurate representation of the simplex method. The problem consists in finding a
point within a convex polyhedral set that maximizes the linear function c>x. The point will generally
be a vertex of the constraint set {x | Ax = b, x ≥ 0}, but as Edgeworth notes it may be an edge or
even a higher dimensional surface.

The theory of the simplex algorithm is quite arcane, sufficiently complex that it has spawned many
careers. It is remarkably efficient even on very large problems. Indeed, this efficiency was itself an
important research problem in the 1970’s involving many prominent participants including Gerard
Debreu and Steven Smale. But in the early 1980’s a new approach began to emerge; the earliest
work was independently done in the U.S.S.R., by Khachiyan, and in the U.S. somewhat later by
Karmarker. Ironically, again it was eventually discovered that the basic ideas underlying the new
approach had been suggested much earlier by Ragnar Frisch. Frisch’s basic idea was to replace the
inequality constraints of the linear program by a penalty term, somewhat in the spirit of Lagrange. In
the simple case with x ≥ 0, he suggested the penalty

∑
log xi. Starting from any point in the positive

orthant we can solve:
max{c>x | λ>Ax+ µ

∑
log xi}.

Note that as elements of x approach zero the last term imposes a serious cost. But it is clear that
optimization of the original problem requires that many elements of x should be driven to zero. Recall
the famous Stigler Diet problem.2 To reconcile this conflict we need to consider algorithms that allow
µ→ 0. For fixed values of µ solutions to the Frisch barrier problem lie on what is called the “central
path” and as µ→ 0 the central path leads to the optimal vertex solution, or to a point in the convex
set-valued solution.

The beauty of this approach is that optimizing the barrier problem for fixed µ is a relatively simple
convex optimization problem, with the barrier term ensuring that we have well-defined Newton steps.
Combined with a sensible strategy for adjusting µ toward zero, this yields very efficient algorithms
even for very large problems. Figures 4 and 5 illustrate the process for a trivial problem in which we
start in the middle of a polytope and iterate toward the NE vertex.

Accelerated Gradient Descent Irony abounds in the episodic development of methods of con-
vex optimization. In the last decade or two it has become evident that Newton type methods including
the interior point methods described above are impractical in large problems where factorization of

2In 1945, well before the Dantzig work became public, George Stigler published a paper on minimal expenditure
diets. Using 9 nutrient requirements and 77 foods he constructed a diet of only five foods: wheat flour, evaportated
milk, cabbage, spinach and beans satisfying the requirements and costing a mere $39.93 per year. With improved, but
certainly more arduous methods Dantzig and coworkers improved this by a whopping 24 cents somewhat later. In 2005
dollars the cost of Stigler’s diet is roughly $500.
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Figure 5: A Simple Example of Interior Point Methods for Linear Programming: The figure illustrates
a random pentagon of which we would like to find the most northeast vertex. The central path
beginning with an equal weighting of the 5 extreme points of the polygon is shown as the solid curved
line. The dotted line emanating from the this center is the first affine scaling step. The dashed line is
the modified Newton direction computed according to the proposal of Mehrotra. Subsequent iterations
are unfortunately obscured by the scale of the figure.
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Figure 6: Contours of the Log Barrier Objective Function for the Simple Polygonal Linear Program:
The figure illustrates four different contour plots of the log barrier objective function corresponding to
four different choices of µ. In the first panel, µ = 1 and the contours are centered in the polygon. As
µ is reduced the penalized objective function is less influenced by the penalty term and more strongly
influenced by the linear component of the original LP formulation of the problem. Thus, for µ = .1
we find that the unconstrained maximum of the log barrier function occurs quite close to the optimal
vertex of the original LP. The locus of solutions to the log barrier problems for various µ’s is called
the central path, and is illustrated in Figure by the solid curved line.

11



Hessians is slow at best and impossible at worst when memory constraints are binding. So researchers
have returned to gradient descent methods where only linear operations are needed and can be easily
parallelized. Again, drammatic innovations were hidden in plain sight in the Soviet literature. Nes-
terov3 (1983) provided a crucial insight that has led to an outpouring of new work on accelerated
gradient descent (AGD) that is now ubiquitous in machine learning and related fields.

Recall that the fundemental flaw in the classical gradient descent method is its tendency to take
orthogonal steps. Nesterov proposed a modified gradient step that substantially speeds things up.
Classical gradient descent has a convergence rate of O(1/k) after k steps, Nesterov was able to show
that his AGD achieved a rate of O(1/

√
k). Experts seem to agree that the intuition behind this is

rather murky even after more than 30 years. This was evident in Michael Jordan’s talk recent talk
at UIUC in September, 2016, which embedded AGD into a continuous time, differential equations
framework.

I won’t attempt to describe the algorithm any further, although code for the following figure will
be available on the class website. Instead I’ll contrast performance in an extremely simple problem
where gradient descent in its original form already encounters difficulties. In Figure 7 we see contours
of a quadratic function that has a minimum at the origin. Classical gradient descent takes the jagged,
grey path from its initial point (−0.75, 0.15) and after 100 iterations is about 2/3 of the way to its final
objective. In contrast after 42 iterations, AGD has achieved the optimum with almost no perceptible
oscillation. Of course one may say that we could have done this in one step with Mr. Newton’s
method: to which one can only respond, yes, but try that in dimension 108. One might also object
that the earliest versions of AGD only apply to strongly convex functions, and thus not to the typical
nonsmooth problems of modern machine learning, but this too has been extensively considered and
accelerated proximal gradient methods now power many important applications.

Stochastic Approximation For nice functions Newton’s method has good convergence proper-
ties, however we sometimes face more challenging problems in which objective is non-smooth. An
important class of practical problems arises when the objective function involves a stochastic compo-
nent. A simple example of this general class is the monopoly problem of psM. The monopolist faces
an unknown, stochastic demand function, he would like to maximize expected profits by chosing a
sequence of prices, but observed profits is a highly non-smooth function of price. Given a stationary
demand environment, we may posit a smooth expected profit function,

µ0(p) = Eπ(p) ≡ E[pX(p)− C(X(p))].

Kiefer and Wolfowitz (1952), extending the stochastic approximation methods introduced by Robbins
and Monro (1951), proposed finding a maximizer p∗ = argmaxµ0(p), by iterations of the form,

pt+1 = pt + at(π(pt + ct)− π(pt − ct))/ct,

where {at} and {ct} denote deterministic sequences satisfying the conditions, ct → 0, at → 0,
∑
at →

∞ and
∑
a2t /c

2
t < ∞. In the R package monopoly accompanying the problem set, they are set by

default to at = a0n
−1 and ct = c0n

−1/6. As noted by Ruppert (1991), these choices achieve a certain
optimality and yield a limiting normal theory for the sequence {pt}:

n1/3(pt − p∗) N (β(p∗), σ2(p∗))

3Nesterov also made enormous contributions to the early theory behind interior point methods.
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Figure 7: Elliptical contours depict a somewhat ill-conditioned quadratic with minimum at the origin.
The jagged, grey path represents the classical gradient descent after 100 iterations. The heavier (red)
solid line is the path of the AGD iterations after 42 iterations, almost no oscillation and much more
rapid progress toward the objective. Full disclosure: the oscillation of the classical gradient decent
path has been exaggerated somewhat as revealed in the code for the figure on the class website.
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where

β(p) =
−a0c20µ

′′′
0 (p)

3(2µ
′′
0(p)− 2/3)

and

σ(p) =
a20σ

2(p)

2c20(2a0µ
′′
0(p)− 2/3)

.

denote the asymptotic bias and variance of the sequence respectively. More recent developments
have extended the approach to multivariate settings and, under more stringent smoothness conditions
improved the rate of convergence.

A curious feature of all this in the monopoly setting is that even with the original O(n−1/3)
convergence rate to the profit maximizing value, the convergence is too rapid to enable the monopolist
to consistently estimate the parameters of a simple quadratic demand curve. It should be noted
that the usual approach to such problems in economics is to formulate them as dynamic programming
problems with Bayesian updating of the demand parameters in each period, but this is computationally
much more complicated.
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