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Specification Tests in Simultaneous Equations Models

In this lecture we will consider the problem of testing the validity of
certain hypotheses concerning the exogeneity of variables in simultaneous
equation models. These tests are often referred to as “Hausman” tests be-
cause they were reconsidered in a systematic way by Hausman (1978).

Consider the single equation model,

y = Y γ +X1β1 +X2β2 + u

= Zδ + u

where we will refer to the variables Y as “included endogenous,” X1 as
“included exogenous,” and X2 as “dubious exogenous.” Under the null
hypothesis we maintain that X2 is exogenous, while under the alternative
hypothesis we regard X2 as endogenous. We can express this concisely as,

H0 : X2 ⊥ u vs H1 : X2 ⊥/u

Under the null hypothesis we have the estimator

δ̂ = argmin û>PX û = (Z>PXZ)−1Z>PXy

where PX = X(X>X)−1X and X = [X1
...X2

...X3] denotes the full set of ex-
ogenous variables, under H0. Under H1, the columns of X2 are no longer
valid instrumental variables so we have the restricted set of exogenous vari-

ables X̃ = [X1
...X3], and the corresponding estimator

δ̃ = argmin û>PX̃ û = (Z>PX̃Z)−1Z>PX̃y

The only difference between the two estimators is that they use different
sets of instrumental variables in the first stage of two stage least squares.

How are we to test H0 vs. H1? The basic idea of the Hausman test is
quite simple. If H0 is true both δ̂ and δ̃ are consistent estimators of δ, that is
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they both converge almost surely to δ. However, under H1, δ̂ is biased while
δ̃ is still consistent. Thus, if we could determine the distribution of

∆ = δ̂ − δ̃

under H0 we could exploit the fact that it should have mean zero (in large
samples) under H0 and nonzero mean under H1. We now fill in some details
of this argument.

Under H0, we have

(δ̂ − δ) ; N (0, σ2(Z>PXZ)−1)

while
(δ̃ − δ) ; N (0, σ2(Z>PX̃Z)−1).

Now, what about the distribution of ∆? We would expect that δ̂, δ̃ would
be (asymptotically) jointly normal and we would have

Var (δ̂ − δ̃) = Var (δ̂) + Var (δ̃)− 2 Cov (δ̂, δ̃)

where the first terms on the right hand side are given above. What about
the Covariance term? We now make a rather surprising claim. We will
provide two different proofs of this result since it is (a.) quite easy, and (b.)
quite fundamental.

Lemma: Under H0, Var (δ̂ − δ̃) = Var (δ̃)− Var (δ̂).

Proof 1: This proof is quite general and is a “proof by contradiction.” It
may be thought of as an asymptotic version of Basu’s (1955) theorem which
is discussed further in 574. By the theorem on the optimality of two stage
least squares in the previous lecture we know that Var (δ̂) is as small as
possible among linear estimators. Consider

Var (δ̌) = Var((1− λ)δ̂ + λδ̃) = V (δ̂ + λ(δ̃ − δ̂))
= V (δ̂) + λ2V (δ̃ − δ̂) + 2λCov(δ̃ − δ̂, δ̂).

Note that for λ sufficiently small the covariance term is larger than the
λ2V (δ̃ − δ̂) term, hence for λ sufficiently small, the variance of δ̌ could be
made smaller than Var(δ̂) if Cov(δ̂− δ̃, δ̂) were non-zero. (Note that λ could
be negative in the case that the covariance term were positive.) But this
would contradict the efficiency of δ̂, so it follows that

Cov(δ̃ − δ̂, δ̂) = 0
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and this immediately implies

Cov(δ̃, δ̂) = Var(δ̂)

which yields the result stated in the Lemma.

Proof 2: A more direct proof goes like this:

∆ = [(Z>PXZ)−1X>PX − (Z>PX̃Z)−1Z>PX̃ ]u ≡ (H −G)u

so E∆∆> = σ2[HH>+GG>−HG>−G>H] where HH> = (Z>PXZ)−1 , GG> =
(Z>PX̃Z)−1 and

HG> = (Z>PXZ)−1Z>PXPX̃Z(Z>PX̃Z)−1.

But PXPX̃ = PX̃ (explain why?) so E∆∆> = GG>−HH> which completes
the proof.

A worthwhile exercise: Explain why the matrix GG>−HH> is positive
semi-definite?

Implementation of the Test
We have shown that, under H0,

∆̂ ; N (0,Var(δ̃)−Var(δ̂))

while under H1, ∆̂ has a nonzero mean and the some covariance matrix.
Thus a natural test statistic for H0, would seem to be

T = ∆̂>(Var(δ̃)−Var(δ̂))−1∆̂.

This appears to be quite easy to implement since the two covariance matrixes
are typically returned as a by-product of estimating δ̂ and δ̃. Unfortunately,
the situation is not quite so simple. The major potential problem, at least
in some practical settings is that the matrix

Ω = Var(δ̃)−Var(δ̂)

is singular and therefore the inverse required for computing T doesn’t exist.
What is to be done in this case? Fortunately, this problem has a relatively
simple solution: we need to replace Ω−1 by its generalized inverse. The
degree of freedom of the statistic T in this case is simply the rank of the
matrix Ω. We illustrate this approach in the following example.
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Consider the simple supply and demand model of part 2 of Problem Set
4 ,

Qt = α0 + α1pt + α2pt−1 + α3zt + ut

pt = β0 + β1Qt + β2wt + vt

and suppose we wish to test the legitimacy of treating pt−1 as exogenous in
the first equation. We will maintain the exogeneity ofW1 = [zt, wt, zt−1, wt−1]

and ask whether expanding the set of instruments to W0 = [W1
...pt−1] is fine

or foolish.
We begin by estimating the first equation by 2SLS for both W0 and W1

and forming, q̂ = 0.024,−0.032, 0.035,−0.00151). We then compute D>D =
(W>P1W )−1 − (W>P0W )−1 which we find has one non-zero eigenvalue of
λ = .002603 and corresponding eigenvector v = (0.451, 0.594,−0.664, 0.028).
Note that these numbers come from an earlier version of the data, so results
may be expected to differ for the new data. Using the second result from the
next section we may compute q̂>(D>D)−1q̂ = .112359, which upon dividing
by the estimate of σ2 from 2SLS under H0 of 2.06325 yields a test statistic of
.0544, which is a suspiciously small value for a χ2 on one degree freedom, but
must be interpreted as supporting our hypothesis that pt−1 can be treated
as exogenous. It is interesting to note, see Hausman and Taylor(1981), that
repeating the computation, but using only the coefficients of pt and pt−1
would yield identical results. It would not, however, allow us to escape the
computation of the g-inverse. The required g-inverse would now be rank 2
rather than 4.

A Note on G-inverses
This is a large topic, a good introduction, and to all topics on linear

algebra related to statistics, is Rao(1973).

Definition. Let A be a n × p matrix of rank r. A g-inverse of A is a p × n
matrix A−, such that x = A−y is a solution to Ax = y for any y in the space
spanned by the columns of A. A fundamental property of g-inverses is the
following:

AA−A = A.

There are many such g-inverses and their distinctions need not concern us
since all are equivalent for the purposes of this lecture. We will illustrate
the computation of g-inverses in two very special cases. Case (2.) is used in
the computation reported above. Case (1) should look familiar.
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1. If A is a n×p real matrix with rank(A) = p ≤ n, then A− = (A>A)−1A>

is a g-inverse of A.

2. If A is a n × p real matrix with rank(A) = r ≤ p ≤ n, with non-
zero eigenvalues λ1, . . . , λr and corresponding eigenvectors v1, . . . , vr
of A>A, then A− = λ−11 v1v

>
1 + . . .+ λ−1r vrv

>
r is a g-inverse of A>A.
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