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Introduction to Dynamic Simultaneous Equation Models

1. STRUCTURAL EQUATION MODELS — AN OVERVIEW

The classical problem in economics, and therefore in econometrics, is iconified in the so called supply
and demand diagram.
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Suppose we consider a commodity like oil, both demand and supply functions are subject to various
shocks that shift the two curves around. What we see —at best— is a set of intersections. In the absence
of any further information the problem of uncovering separate S and D curves is hopeless. This point
was made in the classic (1928) paper of E. J. Working — “What do Statistical Demand Curves Show?”

Now suppose we consider, again classically, the demand for an agricultural commodity like wheat.
Henry Schultz (1938) argued that for most of these commodities we could consider demand to be quite
stable and supply to be shifting with weather condition, etc., so the locus of S-D intersections traced
out (roughly) a demand curve. Likewise if supply were stable and demand very variable, we would be
able to "see” supply.

Now consider something a little more modern, & la Heckman (2000),
QD — QD(PD, 7D
QS = QS(PS) ZS)
QD — QS pD — pS
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Suppose we know, or at least believe, that ZZ-D influences QP, but not Q°, we can write with impunity,
0Q% B oQ% opPS
ozpP - oPS ozp

and using the equilibrium conditions and assuming that the effect of ZiD on P is really non-negligible
we have

0Q° _0QJozP

oPS — oP/oZP
In the simplest case where we assume these effects are constant (linearity of the reduced form model)
this could be estimated by taking the ratio of two reduced form coefficient estimates:

Qi a+BZ;+u
P, = v+ 5ZZ' +v
. Y(Zi— 2)(Qi — Q) : 9Q
B = Z(ZZ — Z)2 estimates 07
5 = 22— Z)(B — P) estimates
Y (Zi — Z)? 9Z;
SO S
0= B/S estimates ggs
This is the IV estimator, o
T2
S 7P,

where ~’s denote variables in deviations from sample means. Likewise if we have ZiS we can recover
0QP /OPP. This can be greatly elaborated even under the restrictive linearity assumption and leads
to the classical Cowles Commission theory of identifications in SEM’s.

2. CAUSAL MODELS AND THE DAG

A basic question — one that children like to ask all the time is why?' To properly answer this
question we need more than a theory of statistical correlation, or association. This leads us into the
depths of philosophy, but it also forces us to think more clearly about problems and to try to avoid
the naive post hoc ergo propter hoc fallacy. (This before that, therefore that because of this).

A tool for better understanding the structure of causal models is the path diagram introduced by
the geneticist Sewell Wright in 1921. The modern version of this approach is the DAG championed
by Judea Pearl.

Def: A graph is a set, V, of nodes and a set E of edges, or links. Edges can be directed, marked
by a directed arrow, or undirected. If all edges are directed, then the graph is directed. A path
is any sequence of edges, a directed path is any path that travels in accordance with the directed
edges. Directed graphs may contain cycles, i.e., directed paths that returns to their originating node.
Directed graphs that do not contain cycles are acyclic, i.e., DAG’s. DAG’s can be used to represent
causal models.

Note that the S-D example is not a DAG since it has the cycle @ < P.

1See C. Tilly, 2006, Why? Princeton University Press.



Another crucial example is estimation of treatment effects with imperfect compliance, Pearl (Test,
Fg. 5)

Assume Z, X,Y are observed, W, V,U are not, Z is randomized treatment assignment, X is actual
treatment, Y is response. Dependence between V' and U indicates that compliance may be influenced
by some of the same factors that determine the response Y.

The objective is to estimate the effect of treatment on response abstracting from, that is to say
adjusting for, non-compliance. In Pearl’s notation this is

P(yldo(X = z))

Note that this can be quite different from the familiar conditional distribution function P(y|x).
The classical example of this type in economics is the Roy model of occupational choice revived by
Heckman and Honore (1990). Suppose

Yi =D;Y1; + (1 — D;)Yy

where



Y1; ~ earnings of ¢ if Hunter
Yp; ~ earnings of ¢ if Fisherman

We would like to estimate the effect of X on earnings
AMTE(z) = B(A = Y1 = Yo|X = )
but this average treatment effect is too difficult, so we try instead to estimate:
AT™(z)=FEA|X =z,D =1)
How? Suppose we have covariates Z that effectively predict the “propensity score”
P(z)=P(D=1|Z ==2)
Then we can define the local ATE
APATE (1 P(2), P(z 4+ A.))
_ BE(Y|X=2,P(Z)=P(z)) - E(Y|X =2,P(Z) = P( + A,))

N P(z) — P(z+ A,)
OE(Y|X =xz,P(Z) = P(2))

OP(z) '

This also has a nice IV interpretation.

3. CLASSICAL DYNAMIC SIMULTANEOUS EQUATION MODELS

In this part of the lecture we will introduce some simple dynamic simultaneous equation models.
Problem Set 3 will deal with two classical examples of this class of models which are typically used
in studying partial equilibrium models of a single market. Let’s begin by considering a rather general
class of models of this form,

(1) I'yy = A(L)ys—1 + B(L)xy + uy

where we will refer to y; as a m-vector of endogenous variables, x; as a g-vector of exogenous variables,
and A(L) and B(L) denote matrix polynomials in the lag operator L, as usual. We will assume that
given vectors y;_1, and x, a realization of the vector u; determines a unique realization of the response
vector y;, given the exogenous variables x; and the past. This uniqueness requires that the matrix I'
be invertible. We may then “solve” the structural form of the model, (1), to obtain the reduced form,

(2) Y = V(L)y—1 + I(L)x + vy

where W(L) = T"YA(L),TI(L) = T"'B(L) and v; = I'"'u;. We can think of the structural form as
representing an idealized version of how the model “really works”, while the reduced form is a cruder
version of the model which could be used for forecasting, for example.

It is helpful at this stage to have a more concrete example so let’s consider the cobweb model from
part one of PS 3.

Qi = og+oPi 1 +a3z+u
(3)
P = B1+4 B2Qi + Baw + vt



To connect this model with the notation of (1) we may write,

endogenous variables

Ty = ) exogenous variables
Y¢ = >

r-(%QQ),zum—(S %) r- (5;?)7 “”‘(8 £%>

a; az 0 ay ag 0
(L) (51 0 53)’ (L) (alﬂ2+51 B2f3 53)
Now consider solving the model for an equilibrium form. This would yield, in the general case
(4) ye = (I —¥(1))"'I(1)z.

In the specific model (3) form, we would have

I-0(1) = (é 1_3252>

- = (170 R ) )
In this case we must check to be sure that
(I—0) ' =T4+0 0%+
converges in order to assure stability.
Having derived the equilibrium form of the model it is now an opportune moment to discuss fore-

casting. This is again conveniently done using the reduced form. The one-step ahead forecast in the
simple case where W(L) and II(L) are matrices independent of L, yields

SO

@n+1 = Yy, + H$n+1

and thus two-steps ahead,

Unt2 = ‘I/(‘I/yn + Hwn+1) + Iy 2
= \IJQyn + Wiz, + Hrpgo

and thus for s steps ahead,
s—1
Unts = \Psyn + Z \Iﬂnxn—i-s—i
i=0
Note that, although it might not be immediately obvious, this is completely consistent with the
previous discussion of equilibrium. Suppose x,; = x, for all ¢ > 0, then presuming that ¥* — 0 as
is obviously required for stability, we have

oo
Jnis = (O Uz, = (I - ¥) 'z,

as previously discussed.



4. ESTIMATION OF DYNAMIC SIMULTANEOUS EQUATION MODELS

Estimation of simultaneous equation models pose some new problems which we will now gradually
introduce. It is convenient to begin with the simple case of recursive models which bring us just to
the edge of simultaneity, without quite plunging into it.

Definition ~ Model (1) is recursive if the following conditions hold, or if the endogenous variables
can be reordered so that these conditions are met: (i) The matrix I" is lower triangular, and (ii) The
covariance matrix ) = Fuyu; is diagonal, and {u;} is iid over time.

We hasten to point out that condition (i) is satisfied by the cobweb model (3), so provided we assume,
in addition, in that model that Eu,vy = 0 so that it satisfies (ii),we can say that it is in recursive
form. What is so special above recursive models? Closer examination reveals that recursivity implies
an explicit causal ordering in the model. In our cobweb model (3) this is illustrated in the following
diagram.

price

quantity

FIGURE 1. A simple linear cobweb model of supply and demand

Given an initial price pg, supply determines the next periods quantity, ;. Demand in period
one then determines a price that will clear the market and this, then, triggers a supply response for
period two and the model continues to operate. In the figure we see that for fixed supply and demand
functions (recall that in the constantly model as specified in (3), these functions are shifting around
due both to changes in the exogenous variables z; and w; as well the random effects u; and v;), this
leads to convergence to an equilibrium (P}, Q) pair that looks a little like a spider web as it oscillates
around the equilibrium point. At this point you might explore what happens if the demand curve is
quite steep, i.e., inelastic, and supply is quite flat, i.e., elastic. Explain how this connects with the
algebraic formulation of the model and the stability of equilibrium.

The crucial observation about causal ordering and estimation of recursive models concerns the
orthogonality of the errors and explanatory variables in models of this form. Note that in model (3)
pi—1 is clearly orthogonal to u; provided the {u;} are iid, and in the demand equation @Q; is orthogonal
to vy provided that v; and u; are orthogonal. Clearly, Q); depends upon wu;, so if u; and v; were
correlated, then this orthogonality (i.e., EQv; = 0) would fail and ordinary least squares estimation
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would be biased. Obviously, the conditions for recursivity are rather delicate. We need, not only that
the matrix I' be triangular, a condition which itself is rather questionable, but we also rely on strong
assumptions about the unobservable error effects in the system of equations. An illustration of how
delicate things really are is provided by the effect of autocorrelation in u; in the first equation of model
(3). Note that if we perturb the model slightly and consider the possibility that

U = PUt—1 + €¢

with {e;} iid, now w;_; clearly influences u;, but it also helps to determine @1, thus p;_i, so
Eugpy—1 = 0 fails in this case and we need a more general estimation strategy that is capable of
dealing with these failures of orthogonality. We will introduce a test for this kind of effect in the next
lecture.

It is worth taking a few moments to try to clarify how this model differs from those models discussed
earlier under the rubric “seemingly unrelated regressions.” It may appear at first sight that a typical
SUR application, like estimating a system of demand equations, is also a case of “simultaneous equa-
tions.” After all, isn’t the consumer simultaneously choosing his optimal consumption bundle based
on the prices, income and the other factors he encounters? Why have we insisted that in this case we
estimate a reduced form model of the SUR type while in the case of our supply and demand model
we have posited a structural model which explicitly reflects the dependence of endogenous variable on
one another?

A crucial distinction that is useful in unraveling this mystery involves asking the simple question: Is
there a plausible thought experiment that would render the structural model meaningful. In the supply
and demand model the answer is clearly “yes” — we can imagine putting various quantities “on the
market” and observing the price that cleared the market. This thought experiment essentially reveals
the demand equation. Here supply and demand processes are autonomous. In contrast, for the demand
system example we would have to imagine that one was asked to optimize subject to fixed quantities of
some subvector of commodities and this stretches credulity considerably. In the former case it may be
quite important to know how demand and supply respond separately; whereas in the demand system
example one agent in making a unified choice and there is no sense in compartmentalizing it. In both
cases it is sensible to speak of endogenous variables, that is variables determined within the model, and
of exogenous variables determined outside the model. However, in order that a meaningful structural
interpretation of the model be possible we need to have some sort of equilibrium interpretation in
which the structural equations reflect an autonomous behavioral relationship. This discussion leads
naturally into the fundamental problem of identification in structural models. When can we infer
knowledge of structural parameters from knowledge of the reduced form parameters? In keeping with
the pragmatic, applied nature of the course we will focus exclusively on the elementary rule: we must
have at least as many valid instrumental variables as included endogenous variables. This theme will
be elaborated as we develop the simultaneous equation model.

5. INSTRUMENTAL VARIABLES AND TWO STAGE LEAST SQUARES

If correlation (read: lack of orthogonality) between X and w is a potential problem lurking in the
shadows of recursive models, it is fully armed and dangerous in the classical simultaneous equations
model. For general I' in (1), the model is truly simultaneous in that the realization of the error vector
uy jointly determines all of the endogenous variables and therefore, any contemporaneous endogenous
variable appearing on the right hand side of an equation is bound to be correlated with the error term
in that equation.



The remedy for this, fortunately, is rather simple. We must find, as we have already seen in dis-
cussion of estimating models with lagged dependent variables and autocorrelated errors, instrumental
variables, z;, that satisfy the conditions that (i) they are (asymptotically) uncorrelated with the errors
in the equation of interest, and (ii) they are (asymptotically) correlated with the included endogenous
variables in the equation.

Consider the problem of estimating one of a system of simultaneous equations, say the first one,
which we might write as,

(3) n = Yim+Xip+w

= 7101 +u1.

To connect this with our apparently more general class of models (1) take the first row of the matrix

I'in (1) to be I';. = (1, —/,0") where the 0 corresponds to all of the endogenous variables that do

not appear in the first equation. Let’s begin by considering the simplest case in which (5) is exactly
identified.

Partition the full set of exogenous variables as X = (X;:X;) where X is the set of included
exogenous variables for equation one and X; and the excluded exogenous variables. In this case we
may view X as immediately available IV’s for the Y3’s, since we have exactly, the same number of
Xi's as Y7's.

Consider two apparently different instrumental variable estimators:

o = (Z12)"" Zin
that we will call the two stage least squares estimator, and

01 = (Z121)"" Zap
which is usually called the “indirect least squares” estimator, where Zl =Px7Z = X(X'X )*1X "7y,
and Z; = (lef(l) = X. We will show that &, = 4;.

We may write the claim more explicitly as
(Z\Px 7)) Z| Pxy = (X'Z)) "1 X"y
Now note that by assumption X’Z; is invertible so we can rewrite the lhs as
(Z1PxZ1) ' ZiPxyn = (X' Z20) 7' X'X(Z21X) ' 21X (X'X) 7 Xy
= (X'Z) X'y,

To explore the general case in which we have “more than enough” instrumental variables we consider

the two stage least squares estimator in a bit more detail. Consider the model

y=Yiv+Xif+u =26+ u;.

and define instrumental variables Z = X A. Then it is easy to show that the instrumental variables
estimator

6= (Z2'2)"'Z"y
has the asymptotic linear representation
V(6 —68) = (nTAX' Z) " \n T2 A X y
and therefore,
V(s —8) B N(0,02(A'MD) " AMA(A'MD)™)



where 02 = Bu?, M = limn ' X'X, D = [;:¥,], X¥; = Xy, and II; is the Y partition of the matrix
of reduced form coefficients. The following result shows that among all possible choices of the matrix
A, the two stage least squares choice has a claim to optimality.

Theorem.: The two stage least squares choice, § with A = (X'X)~1X'Z; is optimal, i.e., V(S) <

V(9) for all A.
Proof:: Note A — D since, (X'X)7'1X'Y; = I Lt II; and (X'X)"'X’'X; = ¥;. Thus,
avar(d) = lim V (y/n(0 — 6)) = 0?(D'MD)~1. We would like to show that for all « € RP1+@

A

o'(V(6) — V() < 0. Tt is equivalent, and slightly easier, to argue that for all « € RP1T?

o (V(0)™t = V(6) Y > 0. Factor M = NN’(Cholesky decomposition) and set & = NDa as
h'h =o' D'M Da and

V(0 ta=a'DMAAMA)*AMDa = WG(G'G)'G'h
where G = N A, so we may write
V=V Ha=hI-GGEG)'G)h>0

as required, since the matrix in parentheses is a projection and therefore positive semidefinite.

5.1. Control Variate Interpretation of 2SLS. A somewhat less conventional interpretation of two-
stage least-squares estimation reveals that the “endogeneity bias,” the bias exhibited by the ordinary
least-squares estimator of 7y, can also be viewed as an omitted variable bias. Let

R=Y,—-Y =Y, — PyY; = MyY;

denote the residuals from the least-squares regression of Y7 on X, and consider the least squares
estimator of « in the model

y1 = Z10 + R + ¢,
that is,
dov = (2] MpZ1) ™1 2 Mpy:.

Here Mgp = I — R(RTR)"'R" and CV stands for “control variate.” Adding the columns of the
matrix R to the structural form of the first equation “corrects” the ordinary least-squares estimator
in precisely the same manner that the two-stage least-squares estimator does, that is,

dcv = 025Ls-

To see this it suffices to show that ZITMR = ZlTPX. But since Mp = I — Pr = I — Pp,v,, we have
X, Mr = X] = X] Px. This is clear from the fact that Pp = Pyy, = MxY1(Y, MxY1)" Vi My
SO XFPR = 0. Also note that YITMR = YIT(I —Mx) = YITPX. Note that Y7 may be multivariate in
this formulation. After discussing this result, Blundell and Powell (2001), citing Dhrymes’ 1974 text,
comment that “it has been difficult to locate a definitive early reference to the control function version
of two stage least squares.” It seems plausible, however, that it is part of a quite ancient oral tradition
in econometrics. Only relatively recently has it been widely recognized as a fruitful approach to more
general models of endogeneity.



10

5.2. Visual Instrumental Variables. As a final installment in this rather loosely organized lecture,

I’d like to try to describe a technique for visualizing the IV estimator in a scatter plot. What follows

is my attempt to formalize somewhat the discussion in Section 4.1.3 of Angrist and Pischke (2009).
Consider the following simple model

y=o+z8+u.

Suppose that z should be considered endogenous and for simplicity assume it is scalar. Supppose
too that we have another variable, say f, that we would like to act like an instrumental variable. In R
terminology f is a “factor,” i.e., it takes discrete values f € {1,...,J}. From f we can create a matrix
F of indicator (dummy) variables Fj; = 1 if f; = j, and F;; = 0 otherwise. For example, f might
be an occupational indicator, or in Angrist’s context it might some grouped version of individual ’s
draft lottery number.

We have the following “reduced form” estimated equations

y = Iy
(= F$
so we have two J-vectors 4 and 6. Note that these estimates are simply the group means for y and z
respectively determined by the F' groups. That is, 4; is just the mean of the n; observations y; that
have fy=jforj=1,---J.
We now plot the J points §y =4 vs z = § and overplot some sort of least squares line obtained from
the regression,

(%) i = a + bo; + v;
The question is what sort of least squares line would deliver an slope estimate equivalent to the 2SLS
estimator? Suppose we consider OLS as a naive first thought:
|15 —a—z0|* = [(FTF) "' Fly—a— (FTF)" F 2|
This is rather a mess, but if we modify it slightly, to do the GLS version,
15— a— 22 gy = [(FTF) " F Ty —a— (FT )T 2b) 2 ) = lly — a — 2b]f%,

which is indeed the 2SLS estimator. This argument can be generalized somewhat to replace the
intercept in our simple model with a vector of coefficients associated with some exogonous covariates
and then apply the always useful Frisch-Waugh result to reduce the situation back to our simple case.

Obviously, the case that the IVs are just a set of discrete covariates is somewhat special, but it is a
useful case to illustrate somewhat more geometrically how IV estimation works. By binning continuous
covariates one can construct approximations to more general cases as well.
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