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Binary Treatment Models, Randomization and Errors in
Variables

1. BINARY TREATMENT AND RANDOMIZATION

The simplest experimental treatment model is the following
yi = a+ BD; +u;

where D; is 1 if the subject is “treated”, and 0 if the subject is a control.
In this model the least squares estimator of 3 is,

B=15—1
and
& = Yo
Why? If, as is common, the response y; is really a change in something after
a treatment is completed, then we have instead

Ay,- :oz—l—ﬁDi—i—ui
and S
B = Ay — Ayo
This is the beloved diff-in-diff model.

A Case Study A classical example is the Lanarkshire milk experiment de-
scribed by Student (1931). In an effort to improve nutrition for elementary
school children in a relatively poor region of Scotland an experiment was
undertaken to provide milk in schools. The intention was to randomly select
between 200-400 kids in each of 67 schools, of which half would get milk
each day; the other half would not. Evaluation of the effectiveness of the
“treatment” was exactly the diff-in-diff strategy which would be done as a
t-test. The response, y, was change in weight.

What went wrong? Teachers decided who got the milk and presumably
gave the milk to the poorer, smaller “more deserving” kids. We can check
this by noting with randomization the treated and control kids would have
the same initial weight but they didn’t; treated kids were lighter by approx-
imately 3 months growth, and shorter by 4 months growth in height. Since
the initial weighing occurred in February and the final weighing in June,
and children were weighed with their clothes on, the real weight response
is confounded with the change in the weight of the clothes. Again, if the
randomization were done properly this would not be a problem, a source of
additional variability of course, but not of bias. As it was, it is a serious bias
consideration. Could this be corrected? Not really after the fact. Student
suggests using a smaller trial with only twins, in a future experiment.
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The Wald Estimator

In many instances of the treatment-control experiment, there is random-
ization in what has been called “intention to treat,” but often there cannot
be any way to force people to accept the treatment. So we have to distin-
guish compliance from intent to treat. In the simplest setting this gives rise
to a simple form of the IV estimator. Suppose x; is actual treatment /control
as before and z; is the intent to treat variable, then in our simple original
setup we can use the Wald Estimator. The simplest way to obtain the Wald
estimator is to consider the model

yi = a+ Pr; +u

Suppose Ez;u; = 0 so we have the moment equations, recalling that z; is
binary,

E(yilz = 0) = a+ BE(xi|2 = 0)

now subtract one from the other to obtain.

5 E(ylzi = 1) — E(yi|zi = 0)
 E(zz = 1) — E(xi]2 = 0)

so a natural estimator would replace these population quantities by their
sample analogues. This is the Ur-iv estimator. Angrist calls it the mother of
all IV estimators. In some heuristic sense we “see” the relationship between
y and x “through the looking glass” as reflected by the IV z;. When z;
is binary, say D; to use our prior notation, then E(D;|z; = j) = Pr(D; =
l|z; = j) = m; for j = 0,1, so the denominator is the difference in these
probabilities. Note that, focusing on the denominator, we might expect that
in many situations that the term E(z;|z; = 0) would be zero, since subject
who aren’t “intended to be treated” may find it difficult to be treated. On
the other hand, E(x;|z; = 1) is generally likely to be somewhat less than
one, since some of those randomized into the treatment may decide that
they don’t want to be treated. In the extreme case that the proposed IV z;
doesn’t impact the mean of mean of the z;’s, then we have a classical failure
of the IV strategy and division by zero.

Returning to the pure randomization model for a moment, there is of-
ten, even in well randomized experiments, a temptation to include other
covariates in the model, e.g.

yi:a—l—x;ﬂ+5Di—|—ui

so D; is an randomized treatment indicator and x; denotes a vector of other
variables. Now, the randomization implies that

:EZ'J_DZ'

and this assumption can be checked. (This is usually done by computing
conditional means of the z’s with respect to D.) What is the advantage of
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including the additional covariates? We know that given their orthogonality
with D that they shouldn’t change our B , S0 why bother?

The usual answer to this question, exemplified by Gertler (2004) is that
including x;’s “improves the power of the estimates”. Gertler is analyzing
the effect of PROGRESSA the conditional cash transfer program in Mexico.
In many respects this program is like the Lanarkshire milk experiment except
that cash is distributed directly to households according to a randomized
scheme. But children’s heights and weights are still the principle measures
of program effect. What does “improves the power of the estimates” mean?
Presumably, it means “reduces their standard errors”. Since D 1 x this has
nothing to do with X’X, but only with 2. Clearly if 2’s are effective in
“explaining” vy, then their inclusion will reduce 6% and thereby reduce the
standard error of 6. What’s not to like about this?

The case against including covariates is laid out nicely in Freedman (2009).
He argues that the presumption that the linear specification is a good ap-
proximation can be dangerous. Freedman adopts what he calls the Neymann
(1923) model. It seems to be a precursor of what is now usually called the
Rubin “potential outcomes” model. We have a response variable y and
several treatment levels, individual subjects are assigned, in the simplest
case, to one and only one of the treatment options. Each individual has
a potential outcome associated with each of the treatments, but we only
observe one of these, for the treatment that is actually assigned. We would
like to estimate the “average” treatment effect for each of the treatments,
or alternatively the differential treatment effects, treatment level i’s average
response minus, say the average response under the control treatment. This
is essentially a random coefficient model in which each subject has an indi-
vidualized response to each of the treatments. The structure is quite distinct
from the usual regression model where we tend to automatically assume that
treatment effects are constant across subjects and additive. In Freedman’s
context inclusion of other covariates is potentially dangerous. Depending
upon whether we have additivity and balanced design there are possible
biases introduced by inclusion of covariates. Generally, with treatment ran-
domization these biases can be show to be asymptotically negligible, but
nevertheless they may be significant in particular finite sample settings, and
Freedman recommends that the simpler model-free approach to estimating
treatment effects be considered as a “more robust” alternative.

2. INTRODUCTION TO ERRORS IN VARIABLES

A simple, yet revealing, estimation problem involves the following mea-
surement error model. Assume we have two measurements of differing reli-
ability from normal distributions having the same mean, i.e.

yi=N(p,of) i=1.2
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When the ¢;’s are known the problem can be viewed as a wvery simple re-
gression in which we have,

y=pul+u

where 1 denotes the 2-vector (1,1) and u ~ N (0, ) where
2
_ o 0
2= o)
The mle of p is the GLS estimator
= (07" +037) 7 (o7 "Y1 + 03 "y2).

Substituting this into the likelihood yields the profile likelihood

K —(y1 — y2)?
L = .
(1,02ly) 1oy P { 2(0f +03)

Transforming parameters so that r = o1 /09 and d? = o3 + o3 yields

K r?+1 1
L(r,dly) = = Texp{—@(yg —y1)2}.

If we look carefully at this function, we find that £ has a saddlepoint as
illustrated in Figure 1. For fixed r corresponding to a ray in (o1, 02)-space,
max £ occurs at d?> = (yz — y1)?. But for fixed d, min £ occurs at 72 = 1
with £ — 0o as 2 — 0, or as 12 — oo.

o

$

FI1GUuRE 1. Likelihood surface of the measurement error model

What does this say about maximum likelihood estimation in this problem?
In effect it says that there is no mle, or even more puzzling that the mle
occurs when either o1 or o9 tends to 0. A better interpretation would be
that we require further information about the relative reliability of y; and
12 before we should be willing to use the mle. Note that for any fixed r the
problem is entirely conventional and well specified.
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What does this have to do with regression? As a next step in this direction
consider the following model:

T =z + &

Here we have our first encounter with the important class of latent variable
models. Our interpretation of the model goes as follows: y; depends on z;,
but we don’t observe z; directly, we only observe z; which is z; measured
with error. The likelihood of (z, 3,04,0:) given the observed {y;,z; i =
1,...,n} can be written as

_ 1

LGz Bionocly ) = Koy expl-— lly - 62 |}
O-U
_ 1

o exp(gy e =2 IP)

where || a ||>= 3" a?. Note that as in the simple measurement error model,
L — oo if either,

i T — 280020
(i) :
or

(ii) y — Bzso o’ =0

Corresponding to each of these cases we have an obviously optimal estimator
of 5:
i)  B=(a'z) "2y
i)  B=(yy 'y
The latter estimator is often called the “reverse regression estimator”. The
reader should verify that it is natural for case (ii).
If we look carefully at the likelihood, we see that solving for the maximum

likelihood estimator of 3, for fixed o, 0., amounts to minimizing a weighted
average of horizontal and vertical distances squared to the line

y = Bo+ Pz

from the points(z;,y;). This is illustrated in Figure 2.

The unweighted sum assuming o, = o, is just the squared orthogonal
distance. As in the simple measurement error problem the case o, = o,
corresponds to a saddle point of the likelihood. This estimator has a long
history and is often called orthogonal least squares since it minimizes the
sum of distances orthogonal to the fitted line. If we have some reliable way to
estimate the relative variance o2 /o2, then we can easily adapt the estimate
to this — there is certainly no compelling reason to assume o, = 0. in most
applications.

Suppose we ignore the measurement error in z; and just use x; in lieu of
z;. One often reads in empirical work that an ideal variable z; is unavailable
so the “proxy” variable x; is used instead. What are the consequences? This



F1GURE 2. Orthogonal regression minimizes sum of the Eu-
clidean distances from the observed points to the fitted line.

is easy to analyze in our simple bivariate model. If we substitute for z;, we
obtain,

Yi = Br; +u; — Be;
so that usual OLS estimator is,

B = (do) 'y = (¢/z) 7 e (Bi + ui — Bey)
= B+ (@'z)" 2 (u; — Bey)



Assuming that z; and ¢; are uncorrelated,

En'2'z = En'z+ En! Z g2

u

= aﬁ + %2
Similarly,
nr'u = nTl(z4e)u—0
nla'e = nl(z+¢e)e = o2
SO

B = B-02B/(oF+02)

= foZ/(oF +0?)
And this establishes that B is biased toward zero. At MIT this result, that
in the simple errors in variables model the least squares estimator is biased

toward zero, is called the “iron law of econometrics.” As we would expect

the result also shows that when o2 is small the bias is small. Note that

while it is tempting to extrapolate this result to more general errors in
variables settings, this extrapolation has all the dangers of other exercises
in extrapolation.

On the other hand, the reverse least squares estimator,

B=(yy) "y
can be analyzed in the same way. We have
En~Yy = En'(8%z+du)
= p*?+o2
En~Yax = En Y B’z + 2/ (u— Be))
= B(o% +02) - Bo?
SO
B = (Bo2/(B%0% +ap)

2
:5+

UU
po?

which shows £ is biased away from zero.

A common, and very controversial, class of applications of the foregoing
ideas involves testing for discrimination in labor markets. In the simplest
case we may consider the following model for wages in a Chicago Bank
analyzed by Conway and Roberts (JBES, 1985, 75-85)

Yi =+ B+ 574U

where



y; = log wage of employee ¢

x; = scalar measure of “qualification”

s — { 1 if male

71 0 if female
In this model v may be interpreted as the percentage wage premium paid
to mean. In the bank example 4 = .148 + .072 so we might say that women
were underpaid by 15% or by 7—28%, based on the sample of 274 employees.
However, Conway and Roberts who were hired to defend the bank in court

argued that x; was poorly measured and that s; was positively correlated
with these measurement errors thereby “getting credit” for some of their
effect, thereby resulting in an over estimate of v. Note that this argument is
at odds with the simple errors in variables argument advanced earlier. They
suggest the reverse regression

T; = Yy + 80 + v;

so now (strangely) we purport to explain variability in qualifications by

current wage and gender. In this regression § = .01 4 .04 suggesting that
given wages there is no systematic tendency for women to be more highly
qualified than men.
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