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Econometric Models

1. Review of Linear “Seemingly Unrelated Regressions”

The simplest example of simultaneous equation models in econometrics is the model
which Zellner labeled SUR and statisticians usually call just multivariate regression.

yi = Xiβi + ui i = 1, . . . ,m

where
yi ∼ n-vector of observed responses
Xi ∼ n× pi matrix of exogenous variables
ui ∼ n-vector of “errors”

A typical example would be a system of m demand equations in which Xi would be com-
posed of prices and incomes and perhaps other commodity specific exogenous influences
on demands. By exogenous in this preliminary setting we will simply mean that

EX>i uj = 0 i, j = 1, . . . ,m.

which is the natural extension of the orthogonality condition underlying ordinary linear
regression with a single response variable.

It is convenient to write the whole system of equations as

y = Xβ + u

which may be interpreted as y1
...
ym

 =


X1 0 · · · · · · 0
0

. . .

0 Xm


 β1

...
βm

+

 u1
...
um


in which the equations have simply been stacked one on top of another. We will suppose
that the full mn-vector, u, is normal with mean 0, and covariance matrix

Euu> = Ω⊗ In = (ωij In)

and we may then, immediately, write the optimal (unbiased) estimator of the parameter
vector β as,

β̂ = (X>(Ω⊗ I)−1X)−1X>(Ω⊗ I)−1y

where we note that (Ω⊗ I)−1 = Ω−1 ⊗ I. Typically, Ω is unknown, but we may estimate
it by Ω = (ω̂ij), with

ω̂ij = û>i ûj/n
1
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where ûi, i = 1, . . . ,m are the n-vectors of residuals from any initial (consistent) estimate
of the model, typically from an OLS fit to the individual equations.

An important observation is that there is no efficiency gain from the reweighting by
(Ω ⊗ I)−1 if X = (I ⊗ X0). That is, if Xi = X0 for all i as would be the case in some
demand system contexts, we gain nothing from doing the system estimate over what is
accomplished in the equation-by-equation OLS case. To see this write

(Ω−1 ⊗ I)(I ⊗X0) = Ω−1 ⊗X0.

We are solving the equations in the weighted case

X>(Ω⊗ I)−1û = 0

but if X = (I ⊗X0), this is equivalent to

(Ω−1 ⊗X>0 )û

but this is satisfied by assuring that

X>0 ûi = 0 i = 1, . . . ,m

which are just the normal equations for the separate OLS regressions.
A useful introduction to maximum likelihood estimation of systems of equations may

be provided by the SUR model. For this purpose it is convenient to stack the observations
in “the opposite way” that is, to write

yj = Xjβ + uj j = 1, . . . , n

where

Xj =


xj1 0 · · · 0
0 xj2 · · · 0

0 · · · xjm


where xji is a pi row vector. Now stacking the model we have,

y = Xβ + u

and now u ∼ N (0, I ⊗ Ω). Note that, with this formulation

β̂ = (X>(I ⊗ Ω−1)X)−1X ′(I ⊗ Ω−1)y

= (
n∑
j=1

X>j Ω−1Xj)
−1

n∑
j=1

X>j Ω−1yj

The convenient aspect of this formulation is that we can view uj , j = 1, . . . , n as inde-
pendent realizations of an m-variate normal vector and thus the likelihood for the model
may be written as,

L(β,Ω) = (2π)
−mn

2 |Ω|−
n
2 exp{−1

2

n∑
j=1

u>j Ω−1uj}

where implicitly we recognize that the uj ’s are functions of the β vector. As usual it is
more convenient to work with log likelihood,

`(β,Ω) = K − n

2
log |Ω| − 1

2

∑
u>j Ω−1uj
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We have already seen how to estimate β in this model. We now consider two variants on
estimation of Ω.

Case 1. Suppose that Ω is known up to a scalar, i.e., Ω = ωΩ0 with the matrix Ω0

known.
Recall that |ωΩ0| = ωm|Ω0| so

`(β, ω) = K − n

2
(m logω + log |Ω0|) − 1

2ω

∑
u>j Ω−1

0 uj

so
∂l

∂ω
= −nm

2ω
+

1

2ω2

∑
u>j Ω−1

0 uj = 0

implies

ω̂ = (mn)−1
∑

u>j Ω−1
0 uj .

Case 2. If Ω is completely unknown, we simply differentiate with respect to Ω.
Now, from the Appendix,

∇Ω` = −n
2

Ω−1 +
1

2

∑
Ω−1uju

>
j Ω−1

so

Ω̂ = n−1
∑

uju
>
j

which is the same formula suggested earlier in the lecture.
Now, concentrating the log likelihood as in the single equation case we may simplify

the last term,∑
tr (u>j (

∑
uju
>
j )−1uj) =

∑
tr uju

>
j (
∑

uju
>
j )−1 = mn

so for purposes of computing likelihood ratios or SIC numbers we have

`(β̂, Ω̂) = K∗ − n

2
log |Ω̂|

where K∗ is a constant independent of the data. Thus, maximizing the likelihood, or
log-likelihood is the same as minimizing the determinant of Ω̂, which is sometimes called
the generalized variance.

2. Introduction to Vector Autoregressive Models

An important class of models in time-series which draw upon the ideas of SUR models
are the so called VAR models. Consider an m-vector yt observed at time t and a model

yt = µ+A1yt−1 +A2yt−2 + . . .+Apyt−p + ut

Again exploiting the lag operator notation we may write this as

A(L)yt = µ+ ut

where

A(L) = I −A1L−A2L
2 − . . .−ApLp.
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Again, stability is crucial determined by the characteristic equation∗,

|A(z)| = 0.

If the roots of this equation lie outside the unit circle, then all is well, if some roots lie on
the unit circle, then it is useful to reformulate the model in the error correction form

(0) ∆yt = µ+B1∆yt−1 +B2∆yt−2 +Bp−1∆yt−p+1 −Πyt−1 + ut

where we have
Π = A(1) = I −A1 − . . .−Ap

and has rank less than m. Note that this is analogous to the reformulation of the univariate
model leading to ADF test. We then factor Π = AB which is singular into pieces, A and
B that have rank r, the nonsingular part, m− r, the singular part, respectively, and this
leads to the theory of cointegrated time series, a topic which is dealt with in some depth
in our graduate time series course. I’ll provide a somewhat sketchy introduction at the
end of this lecture. The integer r is called the rank of the cointegrating relationship and
denotes the number of linear combinations of the original m variables that are stationary.

3. Impulse Response Functions, Again

Since we have a somewhat different setting than our single equation demand model, it
is worth revisiting the question “what is an IRF for a VAR?” In the VAR context we have
no exogenous variables which might be regarded as candidates for a permanent policy
shock of the type we have already discussed.

However, we can still ask what would be the path of the system if it were in equilibrium
and was then “shocked” by a permanent increase in one of the error realizations. So we
are really asking what happens to the whole system of equations, how does it evolve after
encountering a once and for all increase in one element of the error vector ut. Formally,
we have the same problem except that now we have matrices everywhere we used to have
scalars.

If the model is stable in the sense we have already described, we can “invert” the VAR
representation and put the model in the MA form,

yt = m+A(L)−1ut

where A(L)−1ut is interpretable in much the same way that we interpreted

D(L)xt = A(L)−1B(L)xt

in the earlier, simpler, models. To illustrate, it may be helpful to consider the example,

A(L) = I −AL
In this case the invertible MA representation would have

(I −AL)−1 = I +AL+A2L2 + . . .

Note that as in the simple case we can verify this directly. Obviously we require that
the right hand side converge, for this to make any sense. The MA or impulse response
formulation of the model has some inherent ambiguity in the typical case of correlated
errors. The underlying thought experiment is rather implausible in this case and there

∗Note that this characteristic equation now involves the determinant of a matrix, not simply an ordinary
polynomial, but the principle is the same as before.
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has been considerable discussion about various schemes to orthogonalize the errors, but
these “solutions” introduce new problems having to do with the nonuniqueness of the
orthogonalization.

There are two common procedures for testing for cointegration, one introduced by Engle
and Granger (1987), the other by Johansen (1988). We will describe both very succinctly.
Consider the problem posed in PS3 of testing for the cointegration of two series {xt, yt}.
If we knew the coefficients of the cointegrating relationship, i.e., if we hypothesized, for
example,

zt = yt − α− βxt

was stationary then the situation would be relatively simple we would simply apply the
Dickey-Fuller as the augmented Dickey-Fuller test to the new variable zt. If we reject
the null hypothesis that the series zt has a unit root, having already concluded that the
hypotheses that xt and yt themselves cannot be rejected, then we may conclude that there
is evidence for the cointegration of {xt, yt}

It may seem very implausible that we might “know” α, β, however in some examples
this isn’t so strange. Often theory might suggest that (α, β) = (0, 1) is reasonable. But
what should we do if we don’t have any a priori notion about (α, β)?

Fortunately, the answer to this question, at least from a pragmatic point of view is
quite simple. As a first step we estimate the parameters using the usual least squares
procedure, and then proceed as before using ẑt = yt − α̂ − β̂xt. The only difference is
that some adjustment in the original DF critical values is necessary. For the problem
set, these new critical values are provided in Table B.9 from Hamilton (1994). There are
additional complications due to trends, but I will defer these to the complete treatment
of these matters in 574, our time-series course.

In the case that we have more than two series the situation is a bit more complicated.
An elegant general approach is provided by the canonical correlation methods of Johansen
(1991). Johansen’s approach employs two sets of auxiliary regressions. Returning to the
prior matrix notation, write

∆yt = δ̂0 + δ̂1∆yt−1 + . . .+ δ̂p−1∆yt−p+1 + ût

and

yt−1 = θ̂0 + θ̂1∆yt−1 + . . .+ θ̂p−1∆yt−p+1 + v̂t

These two equations can be viewed as providing the first stage of the partial residual plot
analysis of the error correction model introduced earlier, having estimated them, we can
explore the rank of the Π matrix in that equation. It turns out that the likelihood for the
original VAR with Eutu

′
s = Ω for t = s and = 0 otherwise, is

` = −nm
2

log(2π)− nm

2
− n

2
log |Σ̂uu| −

n

2

r∑
i=1

log(1− λ̂i)

where λ̂i denote ordered eigenvalues λ̂1 > λ2 > . . . > λ̂m of the matrix Σ̂−1
vv Σ̂vuΣ̂−1

uu Σ̂uv,
and r, as above, denotes the rank of the cointegrating relationship, that is the rank of the
matrix Π. An LR test based on this approach and intended to test rank r against rank
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m employs the test statistic,

2(`1 − `0) = −n
m∑

i=r+1

log(1− λ̂i)

For another example, in the simple bivariate example of PS3, our test would correspond to
testing the null hypothesis of r = 0 cointegrating vectors against the alternative of r = 1
cointegrating vectors. Here m = 2 so we have the test statistic

2(`1 − `0) = −n log(1− λ1)

From Table B.10 of Hamilton (1994) we find that the critical value of this test is 3.84 at 5%.
A reasonably complete derivation of these expressions is provided by the semi-historical
discussion in the concluding sections.

Figure 1. Source: Waugh (1942)
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4. Canonical Correlation

Regression generalizes the notion of simple bivariate correlation by finding the linear
combination of a vector of covariates that is most highly correlated with the response
variable, that is it finds the linear combination of x’s that maximizes the correlation of y
and ŷ.

R2 = 1−
σ̂2
y|x

σ̂2
y

= ρ2(y, ŷ).

This is just the squared cosine of the angle between y and ŷ.
Hotelling (1935) generalized this notion further to handle a vector of response vari-

ables. Suppose we have, m y’s and p x’s? Consider two arbitrary linear combinations
α>y and β>x and suppose for convenience α and β could be chosen so that they yield
unit variance. We would like to choose α and β so that they maximized the correlation
between α>y and β>x. How? Let’s write: Cov(α>y, β>x) = α>Σxyβ, V (α>y) = α>Σyyα

and V (β>x) = β>Σxxβ. We want to maximize the Lagrangean expression

α>Σxyβ −
λ1

2
α>Σyyα−

λ2

2
β>Σxxβ

so we have the first order conditions

Σxyβ = λ1Σyyα

Σxyα = λ2Σxxβ

multiplying through by α and β respectively gives λ1 = α>Σxyβ and λ2 = α>Σxyβ, so
λ1 = λ2 = ρ. Now multiply the second equation by ΣxyΣ

−1
xx

ΣxyΣ
−1
xxΣxyα = ρΣxyβ

and multiply the first by ρ
ρ2Σyyα = ρΣxyβ

and subtract to obtain the eigenvalue problem,

ΣxyΣ
−1
xxΣxyα− ρ2Σyyα = 0.

The usual eigenvalue problem (A−λI)x = 0 implies Ax = λx so the vector x is unaltered
in direction by the transformation A except in length. Our problem can be reformulated
in this way by writing

(Σ−1
yy ΣxyΣ

−1
xxΣxy − ρ2I)α = 0.

Now of course there is more than one eigenvalue – there are m of them, where m is the
dimension of the response y. They can be ordered and for this problem they are called
the canonical correlations and the corresponding eigenvectors are called the canonical
variables. The latter are constructed in the following way: Given a pair (ρ2, α) satisfying
(3) we can find an associated β by simply regressing α>y on x, thereby constructing all
of the triples, (ρ2, α, β).

To illustrate this we can revisit an example introduced by Waugh (1942). Yes, that
Waugh. He writes: “Professor Hotelling’s paper, should be widely known and his method
used by practical statisticians. Yet, few practical statisticians seem to know of the paper,
and perhaps those few are inclined to regard it as a mathematical curiosity rather than
an important and useful method of analyzing concrete problems.” The second of Waugh’s
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examples concerns the quality of wheat and how it influences the quality of flour it pro-
duces. He uses data from 136 export shipments of hard spring wheat. The correlation
matrix of the data is shown in the following table. There are five variables for wheat qual-
ity, and four for quality of the flour. In 1942 it involved a non-trivial amount of effort to
compute the canonical correlations and Waugh adopts some clever iterative tricks to get
an approximation, but it is trivial to do so now in R. Applying the machinery introduced
above, we get: ρ = c(0.910, 0.650, 0.269, 0.169).

5. Reduced Rank Regression

Canonical correlation is intimately connected to several important maximum likelihood
problems in classical econometrics. The most basic version of these problems is represented
by the reduced rank regression procedure of Anderson (1951). Consider the model,

Yt = AB>Xt +DZt + ut

where u ∼ N (0,Ω). The log likelihood is given by

`(A,B,D,Ω) = K − n

2
log |Ω| − 1

2

∑
u>t Ω−1ut.

As usual we can concentrate the likelihood,

`(A,B,Ω) = −n
2

log |Ω| − 1

2
Σũ>t Ω−1ũt

where ũt = Ỹt − AB>x̃t, Ỹ = (I − PZ)Y, X̃t = (I − PZ)X. For fixed B we can easily
estimate A in this reduced model

Ỹt = AB>X̃t + ũt

and would obtain,

Â(B) = (B>X̃>X̃B)−1B>X̃>Ỹ

and

Ω̂(B) = ΣỸ Ỹ − ΣX̃ỸB(B>Σ−1
X̃X̃

B)−1B>ΣX̃Ỹ = ΣỸ Ỹ − Â(B)(B>Σ−1
X̃X̃

B)−1Â(B)

where ΣỸ Ỹ = Ỹ >Ỹ /n, etc. As usual the likelihood after substitution looks like this:

`(Â, B̂, Ω̂) = K − n

2
log |Ω̂|

where K is independent of the data. So we are simply trying to minimize the generalized
variance represented by the determinant of Ω.

Now we need some trickery involving determinants of partitioned matrices. We start,
following Johansen, with the identity∣∣∣∣ Σ00 Σ01

Σ10 Σ11

∣∣∣∣ = |Σ00| |Σ11 − Σ10Σ−1
00 Σ01| = |Σ11| |Σ00 − Σ01Σ−1

11 Σ10|.

Thus, ∣∣∣∣ Σ00 Σ01B
B>Σ10 B>Σ11B

∣∣∣∣ = |Σ00| |B>(Σ11 − Σ10Σ−1
00 Σ01)B|

= |B>Σ11B| |Σ00 − Σ01B(B>Σ−1
11 B)B>Σ01|,
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and therefore,

|Σ00 − Σ01B(B>(Σ−1
11 B)−1B>Σ01| = |Σ00| |B>(Σ11 − Σ10Σ−1

00 Σ01)B| / |B>Σ11B|.

Translating this expression back into our likelihood notation we have

(∗) |Ω̂| = |ΣỸ Ỹ | |B
>(ΣX̃X̃ − ΣX̃Ỹ Σ−1

Ỹ Ỹ
ΣX̃Ỹ )B| / |B>ΣX̃X̃B|.

Recall that we are still trying to maximize − log |Ω̂| with respect to B. How do this?

Consider a simpler version of a similar problem. Suppose A is a symmetric positive
semi-definite matrix and we want to solve:

max
x

x>Ax

x>x

We can write A = P>ΛP = Σλipip
>
i where λ1 > λ2 > · · · > λn are the eigenvalues of A

and P is the matrix of corresponding eigenvectors. P constitutes a basis for the space Rn
so any x can be written as

x = Pα

so our problem becomes,

max
α

∑
λiα

2
i /
∑

α2
i

which is accomplished by letting α = (1, 0, · · · , 0) giving λ1 as the maximum.

Generalizing slightly, consider for A symmetric positive semi-definite and B symmetric
positive definite

max
x

x>Ax/x>Bx.

Write B = C>C as the Cholesky decomposition (matrix square root) of B, set y = Cx to
get

max
y

y>C−1AC−1y/y>y

so the solution is found by choosing the largest eigenvalue of the matrix C−1AC−1. This
generalized eigenvalue problem can be posed as finding roots of

|λA−B| = 0.

This all generalizes to finding multiple roots and multiple eigenvectors. Let X be an n×p
matrix and consider

max
X
|X>AX|/|X>BX|.

Similar arguments lead to choosing X to represent to the matrix of eigenvectors corre-
sponding to the p largest eigenvalues of C−1AC−1 where again B = C>C, by solving

|λA−B|.

Now, finally, we are ready to get back to the problem of maximizing −|Ω̂|. This requires
solving the eigenvalue problem

|ρΣX̃X̃ − (ΣX̃X̃ − ΣỸ X̃Σ−1
Ỹ Ỹ

ΣỸ X̃ | = 0.

or setting ρ = (1− λ)

|λΣX̃X̃ − ΣỸ X̃Σ−1
Ỹ Ỹ

ΣỸ X̃ | = 0.
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And thus the likelihood can be expressed as

`(A,B,Ω) = K − n

2
log |ΣX̃X̃ | −

n

2
log Σr

i=1 log(1− λ̂i).

Appendix On Matrix Differentiation

Three basic results on matrix differentiation may be recalled here.

(i)
∂ log |A|
∂A

= (A′)−1 if |A| > 0

(ii)
∂x′Ax

∂A
= xx′

(iii)
∂y′A−1y

∂A
= −A−1yy′A−1

It is perhaps useful first to verify that these formulae work in the “A scalar” case. We
provide sketchy arguments for each of the general results below.

(i): This follows from the fact that the determinant can be expanded as

|A| =
n∑
i=1

aijAij

where aij is the ijth element of A and (−1)i+jAij is the ijth cofactor of A, that

is the determinant of the matrix A with the ith row and jth column deleted.
Thus, the derivative of |A| with respect to aij is just Aij which is |A| times the

jith element of A−1. Thus ∂|A|/∂A = |A|(A−1)′, and thus by the chain rule, we
have (i). Note (A′)−1 = (A−1)′, and the transpose is usually irrelevant since A is
symmetric in (most) applications.

(ii): Write x′Ax =
∑
aijxixj , so

∂x′Ax

∂A
=

(
∂x′Ax

∂aij

)
= (xixj)

(iii): To see this write
∂x′A−1x

∂A
= x′

∂A−1

∂A
x

and differentiate the identity AA−1 = I to obtain,

0 =
∂A

∂aij
A−1 +A

∂A−1

∂aij
so

∂A−1

∂aij
= −A−1 ∂A

∂aij
A−1

where ∂A/∂aij = eie
′
j is a matrix with ijth element 1 and the rest zeros. Thus

∂x′A−1x

∂aij
= −x′A−1eie

′
jA
−1x = −e′iA−1xx′A−1ej

and (iii) follows by arranging the elements in matrix form.


