
QUANTILE REGRESSION METHODS
FOR

REFERENCE GROWTH CHARTS

YING WEI, ANNELI PERE, ROGER KOENKER, AND XUMING HE

Abstract. Estimation of reference growth curves for children’s height and weight
has traditionally relied on normal theory to construct families of quantile curves
based on moment information from samples of the reference population. More flex-
ible methods based on nonparametric quantile regression are shown to compare
favorably with earlier methods, particularly for longitudinal growth models that
incorporate prior growth history, and other covariates. The new methods are illus-
trated with data used for the modern Finnish reference charts for height.

1. Introduction

Anthropometric methods for constructing reference growth charts were conceived
by Quetelet in the 19th century, and have experienced a vigorous subsequent develop-
ment. Charts describing the dependence of height, weight, head circumference and a
variety of other physical characteristics on age are now in widespread use as screening
tools for disease and as reference standards for group health and economic status. As
in Quetelet’s vivid early example, reproduced as Figure 1.1, the typical growth chart
depicts a family of curves representing a few selected quantiles of the distribution of
some physical characteristic of the reference population as a function of age.

Since Quetelet, reference growth curves have typically been constructed based
on the assumption that heights, and other similar measurements, are normally dis-
tributed. Age specific mean and standard deviation curves, say µ(t) and σ(t), are
estimated and any chosen quantile curve for a τ ∈ [0, 1] can then be constructed as,

Q̂(τ |t) = µ̂(t) + σ̂(t)Φ−1(τ)

where Φ−1(τ) denotes the inverse of the standard normal distribution function. Pro-
vided that the population is normally distributed at each age, these curves should
split the population into two parts with the proportion τ lying below the curve, and
the proportion 1− τ above the curve.

Although adult heights in reasonably homogeneous populations are known to be
quite close to normal, children’s heights can be quite non-normally distributed. Weights
and other physical characteristics are potentially even more problematic. To account
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2 Reference Growth Curves

Figure 1.1. Quetelet’s 1871 Growth Chart

for this, several proposals have been made for age-specific transformations to normal-
ity. The most successful of these proposals has been the LMS, or λµσ, approach of
Cole (1988) based on the power transformation of Box and Cox (1964). Cole proposed
the model,

Q(τ |t) = µ(t)(1 + λ(t)σ(t)Φ−1(τ))1/λ(t),

effectively assuming that after transformation of the measurements, Y (t) to their
standardized values,

Z(t) =
(Y (t)/µ(t))λ(t) − 1

λ(t)σ(t)
,

the Z(t)’s would be normally distributed. The functions {λ(t), µ(t), σ(t)} were as-
sumed to evolve smoothly with age. To impose this smoothness, Green in his dis-
cussion of Cole(1988), proposed estimating the three functions by minimizing the
penalized log likelihood,

`(λ, µ, σ)− νλ

∫
(λ′′(t))2dt− νµ

∫
(µ′′(t))2dt− νσ

∫
(σ′′(t))2dt,

where `(λ, µ, σ) denotes the Box-Cox log-likelihood,

`(λ, µ, σ) =
n∑

i=1

[λ(ti) log(Y (ti)/µ(ti))− log σ(ti)− 1
2
Z2(ti)],
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and the parameters (νλ, νµ, νσ) serve to control the degree of smoothness of the three
functions. A concise description of the fitting procedure, can be found in Carey et.
al. (2004).

Inevitably, doubts may arise about the ability of any one transformation method
to achieve its promised normality over the full range of relevant ages. Facing up to
such doubts, it would seem desirable to consider alternative methods of estimating
quantile reference curves that impose less stringent global hypotheses on the form
of the conditional distributions. In the discussion of Cole (1988), both D.R. Cox
and M.C. Jones suggested that one way to accomplish this objective would be to
estimate a family of conditional quantile functions by solving nonparametric quantile
regression problems of the form,

min
g∈G

n∑
i=1

ρτ (Y (ti)− g(ti)),

subject to a smoothness requirement on the domain of the candidate functions, G.
Here the function ρτ denotes the simple piecewise linear function,

ρτ (u) = u(τ − I(u < 0)) =

{
τu u ≥ 0
(τ − 1)u u < 0

.

This piecewise linear form of the objective function has the effect of enforcing a bal-
ance between the the number of observations lying above and below the fitted curve.
In the simplest instance, when g is required to be a constant function, minimizing this
objective requires that nτ exceeds the number of Yi’s strictly less than the optimal
value ĝ, and that nτ must be less than the number of Yi’s less than or equal to ĝ.
This is precisely the condition that, ĝ must be a τth sample quantile of the Yi’s.

Koenker and Bassett (1978) proposed extending this optimization interpretation of
the ordinary sample quantiles to the estimation of linear parametric models for condi-
tional quantile functions. When we minimize the sum of squared errors

∑n
i=1(Yi−ξ)2

over ξ ∈ R we obtain the sample mean, ξ̂ = Ȳ , as an estimate of the unconditional
mean. Minimizing the sum of squares,

∑n
i=1(Yi − x>i β)2 over β ∈ Rp, yields an esti-

mate of the conditional mean function, g(x) ≡ E(Y |x) = x>β. Similarly, minimizing∑n
i=1 ρτ (Yi − ξ) yields the unconditional τth sample quantile, and minimizing

(1.1)
n∑

i=1

ρτ (Yi − x>i β)

with respect to the p-dimensional parameter β yields an estimate of the τth condi-
tional quantile function of Y given the covariate vector, x.

For reference growth charts it is convenient to parameterize the conditional quantile
functions as linear combinations of a few fixed basis functions. B-splines are particu-
larly convenient for this purpose. Given a choice of knots for the B-splines, estimation
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of the growth curves is a straightforward exercise in parametric linear quantile regres-
sion with xij = ϕj(ti) where ϕj is the jth function in the B-spline basis. Solutions
to such problems are linear programs and can be computed efficiently, even for very
large datasets as described in detail in Koenker (2005).

Recent work on reference growth curves, notably Cole (1994) and Carey et. al.
(2004), has emphasized the value of accounting for other covariates in addition to
age. Growth history is particularly relevant, but parental characteristics and a variety
of other factors may be considered. Another advantage of the quantile regression
approach to estimation of growth curves is that it is relatively easy to incorporate
new covariates. The primary objective of the present paper is to illustrate how this
can be accomplished. Our data, described by Sorva et. al. (1990) and Pere (2000),
provides the basis for the modern Finnish reference growth charts.

Before turning to the longitudinal aspects of our analysis, we will briefly intro-
duce the methods and offer some comparisons of their performance with Cole’s LMS
methods in the context of conventional cross-sectional reference growth charts.

2. Data

Our data consists of longitudinal measurements on height and weight for 2514
Finnish children. Supine length, rather than height, was measured for infants less
than two years of age. As described in greater detail in Pere (2000) the data has been
edited to remove a small proportion of children with low or missing birth weight,
twins or otherwise suspicious records. After editing, there are 1143 boys and 1162
girls, all full term, healthy, singleton births with between 3 and 44 measurements per
child. Infants were measured roughly monthly before the age of two, and annually
or biannanually thereafter. On average about 20 measurements of height and weight
were made between the ages of 0 and 20.

The data was collected retrospectively from health centers and schools. There are
two distinct cohorts: one consisting of 1096 children born between 1954 and 1962
(94% between 1959 and 1961), the other of 1209 children born between 1968 and
1972. The former group was followed until the age of 19, the latter group until age
13. The two cohorts constitute more than 0.5 percent of Finns in the respective
cohorts.

3. Unconditional Growth Curves: A Comparison of Methods

We will distinguish two general types of reference curves. Unconditional growth
curves will refer to curves that depend solely on age; conditional growth curves, or
longitudinal growth curves will connote curves that explicitly account for growth
history, and possibly other covariates. In this section we will concentrate on the
simpler, more classical problem of estimating unconditional growth curves. Having
established a base of comparison in the unconditional setting, we will then turn to the
problem of estimating longitudinal curves in the next section. Although we observe
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multiple measurements {Yi(tj) : j = 1, 2, ..., Ji} on each child, we will ignore the
longitudinal aspect of the data in this section, treating the sample as if we observed
independent measurements on different children.

Our comparison will focus on two methods: the Cole and Green (1992) LMS method
as implemented by Carey (2002) in the R package lmsqreg, and a quantile regression
method as implemented in the R package quantreg, of Koenker (2004) using a linear
(B-spline) representation of the curves. Our comparison complements the recent
investigations of Carey et al (2004) and Gaunnoun et al (2002).

3.1. Criteria for Smoothness. Any nonparametric curve estimation method re-
quires some device to control the degree of smoothness of the fitted functions. For
the LMS method this control is provided by the parameters ν = (νλ, νµ, νσ). Following
recent practice for similar spline smoothing problems, see e.g. Green and Silverman
(1994), it is convenient to represent the degree of smoothness associated with a par-
ticular choice of ν in terms of its “effective degrees of freedom.” This quantity can
be interpreted as the dimensionality of the fitted function and is measured by com-
puting the trace of the pseudo-projection matrix defining the estimator. Thus, when
we report that ν = (7, 10, 7) for a particular fit, it means that the functions λ̂(t),
µ̂(t) and σ̂(t) have, respectively, dimension 7, 10 and 7. In contrast to the classical
linear regression setting where the trace of least squares projection matrix is an in-
teger equal to the rank of the design matrix, in spline smoothing the trace is a real
number so the dimensionality interpretation should be taken with a grain of salt. Our
implementation of the QR method employs the fixed set of B-spline basis functions
illustrated in Figure 3.1. Linear combinations of these functions provide a simple and
quite flexible model for the entire growth curve from birth to adulthood, as we will
see.

3.2. Comparison of Quantile Growth Curves. To provide a visual comparison
of the LMS and QR methods we present in Figures 3.2-5 the results for both methods
distinguishing boys from girls and infants from older children. In each plot the central
region shows three distinct families of curves: the solid black lines are the quantile
regression (QR) curves estimated with the B-spline basis appearing in Figure 3.1.
The solid grey lines represent the LMS estimates with ν = (7, 10, 7), the dashed lines
indicate a higher dimensional LMS fit with ν = (22, 25, 22). The vertical column
of three plots on the right side of the figure shows the fitted λ, µ and σ curves
corresponding to the two LMS fits.

Generally there is reasonable agreement among the three families. However, es-
pecially for infants the more parsimonious LMS curves lack the flexibility of their
competitors. Similarly, in the pubertal growth spurt the lower dimensional LMS
curves appear to smooth over the curvature seen in the other estimates. There is
excellent agreement throughout between the QR curves and the more profligate of
the two LMS estimates.
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Age

0 5 10 15 20

Figure 3.1. Cubic B-Spline Basis functions for the interior knot se-
quence {0.2, 0.5, 1.0, 1.5, 2.0, 5.0, 8.0, 10.0, 11.5, 13.0, 14.5, 16.0}. Spac-
ing of the interior knots is dictated by the need for more flexibility
during infancy and in the pubertal growth spurt period.

Examination of the estimated λ, µ and σ curves for the two LMS fits reveals strong
agreement on µ, but substantial differences about λ and σ. The variability of λ̂(t)

is particularly striking. For infants, λ̂(t) takes values around one at birth, rises to
two at the age of one, and then falls to nearly zero, indicating a log transformation
at age 2.5. For older children λ(t) is also disturbingly unstable. We find it difficult

to interpret the variability in λ̂(t) and σ̂(t) we see in these plots, particularly in the
higher dimensional of the two LMS fits. At the same time it seems evident that the
greater flexibility of the larger LMS model is essential to capture important features
of the data. This point is reenforced by examining the differences the three estimates
of the velocity of growth.

3.3. Comparison of Quantile Velocity Curves. Figure 3.6 illustrates estimated
growth velocity curves for our four groups and for five quantiles. Again the solid gray
curves represent the QR estimates, the dotted curves are the more parsimonious LMS
fits, and the dashed curves are the more profligate LMS fit. In this figure it is even
more apparent that the lower dimensional LMS fit is oversmoothing the infant growth
experience. For older boys the pubertal growth spurt is significantly attenuated by
the lower LMS fit, while the higher LMS and QR estimates match very closely. For
girls the agreement among the three fits is somewhat better, but there is still some
attenuation in puberty. Although there is excellent agreement between the QR and
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and high LMS fits in capturing the general shape and level of velocity, the pronounced
oscillation of the LMS curves seems to be an inevitable consequence of increasing the
effective dimension of the LMS model.

Unconditional Reference Quantiles −− Boys 0−2.5 Years
Box−Cox

Parameter Functions

λ(t)

µ(t)

σ(t)

0 0.5 1 1.5 2 2.5

50

60

70

80

90

100

0.03

0.1

0.25

0.5

0.75

0.9

0.97

Age (years)

H
ei

gh
t (

cm
)

LMS  edf = (7,10,7)

LMS  edf = (22,25,22)

QR  edf = 16

0.5

1

1.5

2

60

70

80

90

0 0.5 1 1.5 2 2.5
Age (years)

0.034
0.036
0.038
0.04
0.042
0.044
0.046

Figure 3.2. Comparison of LMS and QR Growth Curves: The figure
illustrates three families of growth curves, two estimated with the LMS
methods of Cole and Green, and one using quantile regression methods.

3.4. Comparison of Conditional Densities of Height. Having differentiated
with respect to age to obtain the velocity curves, a natural next step is to explore
derivatives with respect to the quantile parameter, τ . For univariate quantile func-
tions,

d

dt
Q(t) =

d

dt
F−1(t) = 1/f(F−1(t)),

that is, the derivative of the quantile function yields the reciprocal of the quantile
density function. Rather than examining the reciprocal of the density function, we
adopt the more conventional strategy of investigating the age-specific density func-
tions implied by our estimated growth models. For the LMS estimates we have a
complete parametric description of the model, so it is straightforward to compute the
implied density functions at each age. For the QR estimates we have a nonparametric
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Unconditional Reference Quantiles −− Boys 2−18 Years
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Figure 3.3. Comparison of LMS and QR Growth Curves: The figure
illustrates three families of growth curves, two estimated with the LMS
methods of Cole and Green, and one using quantile regression methods.

estimate, and we proceed as follows. The QR model is estimated on a more refined
grid of τ ∈ T , and smoothed slightly by regressing the equally space τ ’s on a B-spline
expansion of Q̂(τ |t) to produce a smoothed conditional distribution function at each
age. The estimated density,

f̂Y |t(y|t) = ∆τ̂ /∆Q̂(τ |t)

is then computed, where ∆Q̂(τ |t) =
∑p

j=1 ϕj(t)β̂j. This estimate is then plotted

against Q̂(τ |t) to obtain a conditional density estimate.
Initially, as an exploratory inquiry estimates were computed for ages 1-18, at annual

intervals. For ages greater than two the density estimates produced by the QR and
LMS methods corresponded quite closely, however for one year olds a rather surprising
discrepancy appeared that we would like to describe in more detail. In Figure 3.7 we
illustrate several estimates of the conditional density of height based on the Finnish
reference sample at ages .5, 1, and 1.5. In each case we selected a subsample of
subjects whose measurement occurred with three days of the target age. Since a
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Unconditional Reference Quantiles −− Girls 0−2.5 Years
Box−Cox
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Figure 3.4. Comparison of LMS and QR Growth Curves: The figure
illustrates three families of growth curves, two estimated with the LMS
methods of Cole and Green, and one using quantile regression methods.

large fraction of children in the sample were measured within three days of their first
birthday, the sample size for the one year olds is considerably larger than for the
adjacent ages.

The striking feature of this figure is the pronounced bimodality in heights of one
year olds as revealed by the QR estimates. The LMS estimates assume a unimodal
form for the conditional density, and therefore are capable only to produce such
densities. Is the bimodality of the QR estimates some sort of artifact of the fitting
method? We believe this is not the case. To explore this further, we have estimated
age specific densities using the original sample observations in narrow (± 3 days)
age bands centered at age one. Both histogram estimates and more sophisticated
estimates using the adaptive kernel methods of Silverman (1986, p. 101) are shown.
Sample sizes for these direct estimates are shown at the top of each of plot panels.
For one year olds these estimates still exhibit the same bimodality seen in the QR
estimates. For the adjacent age groups, the smaller sample sizes make it more difficult
to draw firm conclusions, but the evidence suggests that bimodality is confined quite
narrowly to children at age one.
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Unconditional Reference Quantiles −− Girls 2−18 Years
Box−Cox
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Figure 3.5. Comparison of LMS and QR Growth Curves: The figure
illustrates three families of growth curves, two estimated with the LMS
methods of Cole and Green, and one using quantile regression methods.

What might account for such a surprising violation of the conventional presumption
of unimodal distribution of heights? An intriguing feature of the Finnish reference
sample is that roughly half of the sample is drawn from children born in 1960, and
half from children born around 1970. A natural hypothesis for our observation of
bimodality in the full sample is that it may be attributed to this cohort effect. To
explore this hypothesis we display in Figure 3.8 separate density estimates, using the
adaptive kernel method, for the two cohorts, superimposed on the pooled estimate
from the full sample.

For girls the cohort hypothesis is remarkably successful in accounting for the ob-
served bimodality in the full sample. We see that girls born around 1960 have a
unimodal height distribution at age one that coincides very closely with the lower
peak of the pooled estimate, while girls born around 1970 also have a unimodal den-
sity, but shifted to the higher peak of the pooled density. Boys are not quite so
cooperative. For both the 1960 and 1970 cohorts of boys we find bimodality in the
estimated cohort densities. Note,however that the two cohorts exhibit asymmetric
bimodality: the 1960 boys have a larger peak coinciding with the lower of the two
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Growth Velocity Curves
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Figure 3.6. Comparison of LMS and QR Growth Velocity Curves:
The figure illustrates three families of growth curves of the prior figures,
this times representing the estimated velocity of growth.

peaks of the combined sample, while the 1970 boys have a larger peak that coincides
with the higher of the two peaks of the combined sample. Thus, the boys weakly
confirm the cohort interpretation suggested by our findings for girls. For the moment
we are unable to offer any better explanation of these puzzling findings, however we
would like to stress that we would not have noticed this curious bimodality effect had
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Estimated Age Specific Density Functions
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Figure 3.7. Comparison of Conditional Density Estimates: Quantile
regression estimates of the conditional density of heights at ages .5, 1,
and 1.5 years reveals a bimodality in the height distribution of one year
olds. This bimodality is not apparent in the LMS estimates, which are
unimodal by assumption. Histogram estimates based on the raw data
and corresponding adaptive kernel density estimates based on the raw
data confirm the bimodality.

we not considered the quantile regression estimates. Transformation models generally
impose quite stringent conditions on the shape of the conditional densities; in con-
trast the quantile regression approach is considerably more flexible. Estimates of the
conditional quantile functions at each τ are not constrained by an underlying global
model, they are estimated quite independently, consequently they are freer to reflect
unusual underlying features of the data.

4. Conditional Growth Models Based on Longitudinal Data

Unconditional reference growth curves provide a valuable snapshot of the dispersion
of heights at various ages, but for physicians interested in assessing unusual growth,
prior growth history and other covariates can offer crucial additional information. One
of the advantages of the QR approach to estimating reference growth curves is that
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Height Density at Age 1
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Figure 3.8. Cohort Effect in Distribution of Heights of Finnish One
Year Olds: The figure compares adaptive kernel estimates of the height
density of one year olds in the full reference sample with estimates
based on splitting the sample into two cohorts.

it is relatively easy to incorporate such refinements into the modeling and estimation
framework. In this section we will describe some initial steps in this direction using
the Finnish height data, and illustrate the role of longitudinal models in screening for
unusual growth patterns.

A challenging aspect of most longitudinal growth data is the irregular nature of
the time series observations. Suppose we observe measurements, {Yi(ti,j) : j =
1, ..., Ti, i = 1, ..., n} on n individuals. It would be convenient if the measurements
were taken at equally space time points, but this is not the case for our Finnish data,
nor is it common in other in true clinical settings. To address these difficulties, we
adopt a simple first order autoregression model in which the AR(1) parameter is a
linear function of the time gap between successive measurements,

QYi(ti,j)(τ |ti,j, Yi(ti,j−1), xi) = gτ (ti,j)

+ [α(τ) + β(τ)(ti,j − ti,j−1)]Yi(ti,j−1) + x>i γ(τ).(4.1)

The τth conditional quantile function is additively decomposed into a nonparamet-
ric trend component, an AR(1) component and a “partially linear” component in the
covariate vector xi. The linearity of the AR(1) coefficient in the measurement gaps is
a convenient approximation and could obviously be generalized in a variety of ways.
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See Wei (2004) for an alternative approach based on local grouping of the observa-
tions. We will restrict attention in our application to a single additional covariate,
xi, average parental height.

Following the approach of the previous section we will express the nonparametric
growth trend component as a linear expansion in B-splines. This formulation yields a
family of linear quantile regression problems that can be easily estimated by standard
linear programming methods.

Rather than assuming that the model (4.1) holds globally across the entire age
spectrum, we estimate separate versions of the model for infants, ages 0-2, and young
children, ages 6-10. In Tables 4.1 and 4.2 we report estimates of the parametric
components of the model (4.1) for these two groups. Estimated standard errors
of the parametric estimates obtained by B = 500 bootstrap replications reported
in parentheses. Bootstrapping is done by sampling the entire longitudinal record of
randomly selected children from the sample, a strategy that preserves the dependence
structure within individual time-series.

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)
0.03 0.845

(0.020)
0.147
(0.011)

0.024
(0.011)

0.809
(0.024)

0.135
(0.011)

0.042
(0.010)

0.1 0.787
(0.020)

0.159
(0.007)

0.036
(0.007)

0.757
(0.022)

0.153
(0.007)

0.054
(0.009)

0.25 0.725
(0.019)

0.170
(0.006)

0.051
(0.009)

0.685
(0.021)

0.163
(0.006)

0.061
(0.008)

0.5 0.635
(0.025)

0.173
(0.009)

0.060
(0.013)

0.612
(0.027)

0.175
(0.008)

0.070
(0.009)

0.75 0.483
(0.029)

0.187
(0.009)

0.063
(0.017)

0.457
(0.027)

0.183
(0.012)

0.094
(0.015)

0.9 0.422
(0.024)

0.213
(0.016)

0.070
(0.017)

0.411
(0.030)

0.201
(0.015)

0.100
(0.018)

0.97 0.383
(0.024)

0.214
(0.016)

0.077
(0.018)

0.400
(0.038)

0.232
(0.024)

0.086
(0.027)

Table 4.1. Parametric Components of the Infant Conditional Growth
Model: Estimates of the autoregressive parameters α and β, and the
parental height effect, γ are given for the seven indicated quantiles.
Bootstrapped standard errors are given in parentheses.

The estimated autoregression effect for infants reported in Table 4.1 declines quite
dramatically as we move up through the conditional distribution of height. In the
lower tail dependence on prior height is quite strong indicating that infants in the
lower tail of the height distribution have a steeper growth profile, while infants in the
upper tail have a much flatter profile. This is consistent with a “catch-up” hypothesis
for smaller infants, and is clearly inconsistent with conventional AR specifications that
posit iid errors and a constant AR slope effect. The effect of parental height is weaker
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τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)
0.03 0.976

(0.010)
0.036
(0.002)

0.011
(0.013)

0.993
(0.012)

0.033
(0.002)

0.006
(0.015)

0.1 0.980
(0.005)

0.039
(0.001)

0.022
(0.007)

0.989
(0.006)

0.039
(0.001)

0.008
(0.007)

0.25 0.978
(0.006)

0.042
(0.001)

0.021
(0.006)

0.986
(0.005)

0.042
(0.001)

0.019
(0.006)

0.5 0.984
(0.004)

0.045
(0.001)

0.019
(0.004)

0.984
(0.007)

0.045
(0.001)

0.022
(0.006)

0.75 0.990
(0.004)

0.047
(0.001)

0.014
(0.006)

0.985
(0.007)

0.050
(0.001)

0.016
(0.006)

0.9 0.987
(0.009)

0.049
(0.001)

0.012
(0.009)

0.984
(0.008)

0.052
(0.001)

0.002
(0.012)

0.97 0.980
(0.014)

0.050
(0.002)

0.023
(0.015)

0.982
(0.013)

0.053
(0.001)

0.021
(0.018)

Table 4.2. Parametric Components of the Childrens’ Conditional
Growth Model: Estimates of the autoregressive parameters α and β,
and the parental height effect, γ are given for the seven indicated quan-
tiles. Bootstrapped standard errors are given in parentheses.

in the lower tail, but more strongly significant for both boys and girls at the first decile
and above.

For 6 to 10 year olds the results in Table 4.2 exhibit a much more consistent
AR pattern over the quantiles. Both boys and girls have mean AR(1) coefficient,
at mean measurement spacing of about 1 year, of about 1.02, implying growth of
about 2 percent per year. At this age the effect of parental height is weaker, having
presumably been already incorporated into the autoregressive effect of prior height.
Nonetheless, there is a significant effect of parental height between the first and third
quartiles.

5. Screening Individual Growth Paths

To illustrate the diagnostic usefulness of the longitudinal form of the reference
growth curves we consider screening for unusual individual growth experience. As
stressed by Cole (1994) and others, standard reference growth charts are rather un-
satisfactory as a screening device since they fail to account for growth history and
other potentially relevant covariates. As we shall illustrate, screening based on un-
conditional growth curves is prone to both false positive and false negative decisions.

In Figure 5.1 we illustrate the family of unconditional growth curves for boys ages
6 to 10, as estimated by the quantile regression methods described in Section 3. The
curves are identical to those appearing in Figure 3.3, restricted to the age range 6
to 10. Superimposed on the figure are the observed height measurements of two of
the subjects in the Finnish reference sample. Both subjects are male, subject 89
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Figure 5.1. Screening Individual Growth Paths: The figure illustrates
two growth records for individuals between the ages of 6 and 10, super-
imposed on the estimated unconditional growth curves from the quan-
tile regression approach. Subject 89 is consistently taller than most of
his peers and maintains a steady growth pattern over the entire period.
Subject 225 is initially somewhat below median height, but a pause
in growth between ages 8 and 8.5 shifts his trajectory below the first
quartile. The solid points for each subject denote the observation at
which we consider the screening decision.

indicated by the open circles was taller than most of his peers by age 6, and grew
steadily thereafter with increments of about 3 cm every 6 months. Subject 225 was
only slightly below median height at age 6, again growing quite steadily until age 8,
gaining 2.5 to 3 cm between observed measurements at roughly six month intervals.
See Table 5.1 for more precise details on the measurements. At age 8.51 subject 225
is reported to have gained only 0.5 cm since his last measurement at age 7.98. After
this measurement he falls somewhat below the first quartile reference curve. How
unusual are these two cases after consideration of prior growth history and parental
height?

In Figure 5.2 we illustrate the predictive distributions of both the conditional and
unconditional growth models for the two subjects. The grey curves representing the
estimated unconditional distributions for the two subjects at the respective ages of
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Figure 5.2. Conditional vs. Unconditional Screening: The figure il-
lustrates conditional and unconditional predictions of the height distri-
bution for two subjects at roughly age 8.5. Subject 89 is substantially
taller than his peers, but his observed height is not at all unusual given
his prior growth and parental height. In contrast, subject 225 is not
unusual for his age by the standard of the unconditional distribution
of heights, but based on the conditional reference standard his growth
pause, growth of only 0.5 cm over the six month interval between mea-
surements, is extremely unusual.

Measurements Parental
Subject 1 2 3 4 5 6 7 Heights

Age 89 6.73 7.25 7.61 8.24 8.61 9.09 9.32 166
Height 89 132.0 136.0 139.0 143.0 145.0 148.0 152.0 180
Age 225 6.37 7.02 7.42 7.98 8.51 9.01 9.56 165
Height 225 117.0 120.5 123.5 126.0 126.5 129.0 132.0 177

Table 5.1. Measurements of Two Subjects: The table reports ob-
served heights for two subjects between the ages of 6 and 10, as de-
picted in Figure 5.1. Ages are reported in decimal years, heights in
centimeters. Parental heights of the two subjects are given in the last
column.

their next measurement, 8.61 for subject 89, and 8.51 for subject 225, are extremely
dispersed. Conditioning on the prior measurement as well as on parental height dra-
matically reduces the dispersion of the predictive distributions drawn as the solid
black lines in the figure. For subject 89 the observed measurement of 145 cm at
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age 8.61, is extremely unusual with respect to the unconditional growth curve, repre-
senting the 99th percentile of the estimated unconditional distribution. But relative
to the estimated conditional model the 145 cm measurement is not at all unusual,
indeed it is slightly below the median of the conditional distribution. Given this
subjects prior growth experience, it seems reasonable to conclude that although he is
exceptionally tall there is nothing unusual about the measurement made at age 8.61.
By contrast, subject 225 is quite unexceptional by the standard of the unconditional
growth curves. His prior measurement of 126 cm at age 7.98 placed him slightly
below the median height for boys of his age. However, conditional on prior height
and parental height, his observed measurement of 126.5 cm at age 8.5 – only 0.5 cm
taller than his prior measurement six months previously – is extremely unusual, well
below the third percentile of the conditional distribution.

While the steady growth of subject 89 places him well within the range established
by the conditional model, the deceleration in growth experienced by subject 225 is
highly unusual by the same standard, and would therefore be a cause of concern and
call for closer follow up.. The resumption of normal growth of this subject as indicated
in Figure 5.1 by his measurements at ages 9 and 9.5 could be expected. Apparently,
the pause was not sustained, nor was it a mere aberration or measurement error, since
growth resumes along a significantly lower quantile curve.

6. Conclusion

Quantile regression provides a flexible new approach to estimating reference growth
curves. In our comparisons with the well-established LMS method of Cole and
Green (1992) quantile regression estimates based on linear B-spline expansions yielded
growth curves and associated velocity plots that successfully captured the essential
features of the data.

Closer inspection of the quantile regression estimates of the unconditional growth
curves revealed one surprising feature, not observable from the LMS estimates, for
our reference sample of Finnish children. Age specific conditional quantile estimates
based on the QR and LMS methods were quite similar at almost all ages, but the QR
estimates of age specific conditional densities suggested a distinctly bimodal form
for one-year olds. Corresponding LMS estimates were, by assumption, unimodal.
Adaptive kernel density estimation using subsamples of children near the age of one
supported the plausibility of the bimodality. Further investigation suggested that
the bimodality may be attributable to a cohort effect. The full sample is comprised
in roughly equal parts of a group of children born around 1960, and a group born
around 1970. Splitting the sample into these two groups and separately estimating
the density of height for one year olds showed, especially for girls, a larger mode for
the later group and a smaller mode for the earlier group. These findings illustrate
an advantage that the greater flexibility of the quantile regression approach brings to
the reference growth curve problem. This more skeptical attitude toward Gaussian
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assumptions would be healthy in many biomedical statistical applications – even
heights can reveal interesting surprises.

Another compelling motivation for the quantile regression approach to estimating
reference growth curves lies in the ability to extend the conventional unconditional
models depending only on the age of the subjects to models that incorporate prior
growth and other covariates. We have explored one such model, adopting an AR(1)
specification in which the autoregressive coefficient is taken as an affine function of
the spacing between the irregular successive measurements. Parental height is incor-
porated into the model as an additional covariate with a linear effect. By conditioning
on prior growth and parental height we obtain a more refined diagnostic tool; subjects
that are unusual by the standards of the conventional unconditional reference curves
can be reassuringly normal, while subjects that seem quite unexceptional condition-
ing only on age, may appear highly unusual after further conditioning. Estimation of
these longitudinal models is quite straightforward given existing quantile regression
software.
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