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Residuals for the Cox Model

The martingale formulation of counting processes leads to a natural notion
of residuals for the Cox model. Recall we have

M;(t) = Ni(t) — Ai(?)

where
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So it is natural to define the residual process
M) = Ni(#) — Aict)
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Here
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Note that if 5 = 0, then Ag(t) is the Nelson-Aalen estimator.

and we may take

In the simplest (typical) case where we don’t have time varying covariates
we have A
M; = N; — e"# Ao (t;)
and is just the difference between observed and expected evaluated at the
even time for each observation. Like ordinary regression residuals K M; = 0
and this condition is imposed by fitting so ) M; = 0. Due to this there is a

slight negative correlation induced across residuals despite the fact that we
assume EM;M; = 0.

As we have seen it is possible to consider Martingale transforms

R = / ha(t)dM(t)
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where h;(-) denotes a left continuous predictable process. This can be done
for martingale residuals so we have

Ri(o) = [ ha(s)avi(s)
and we have .
Var(R;) :/0 Y;(s)hi(s)hi(s) dA;(s)

The usual martingale residual is just the special case h;(s) = 1. Barlow and
Prentice suggest three other choices: h;(t) = ¢, corresponding to a linear
time trend; h;(¢) = z;(¢)'8 which corresponds to some misspecification of
covariate effect; the third is h;(t) = z;(t) — Z(¢, B) where

o S Yi(s)em ) Pay(s)
z(t, p) = ZYi(s)ewi(s)B

This is a weighted mean up to time ¢ of the covariate process with weights
> Yi(s)em .

When there are time varying covariates we have multiple martingale resid-
uals per subject but because they are defined as integrals we can sum them
to obtain a martingale residual for each subject, if we wish.

The obvious hope is that M-residuals will be helpful in diagnosing mis-
specification. For some purposes this hope is not very realistic. For example,
as noted by T&G in Section 4.2.3, the distributional properties are not read-
ily tested, we might add that the usual regression checks are not really very
good on this point either. But misspecification of covariate effects offers a
bit more optimistic view point.

Consider the decomposition
(1) Mi(t) = Ni(t) — Ai(t) + Aq(t) — Ai(t)
= Mi(t) + (Ai(t) — 4;(1))

where the second term represents the error in estimating the compensator
term of the process. Following the discussion in T&G, let’s consider the
case of a single covariate: we specify the effect of the covariate as linear, but
really the model should be

Ai(t) = Ao(t)el @)

In settings like this we have a pseudo-true value of the parameter, 8, say 5%,
that minimizes the KL divergence between the parametric model and the
true process. (In classical least squares regression this minimizes

B* = arg rrgnEw(xéﬁ — f(z:))?

where FE, denotes expectation with respect to the marginal distribution of



Let
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denote the ratio of the mean risk scores at time ¢, for the true and pseudo
true models. Then
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To “justify” this approximation, note that
N >dN;
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Now write our initial decomposition (1
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(3) MMth+e“/Y Jhos
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since 8 — (*. Combining (2) and (3) we have, evaluating all processes at a
common point, say, the termination date ¢ of the experiment,

t t
E(M|z) = e!@ / 7(z, 8)Aods — P / m(z,s)p(s)Ao(s)ds,
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where 7(z,s) = E(Y;(s)|X = z) is the probability of being at risk at time s
given that you have covariate value z.

From (2)
BAt) = [ aas)ol)o()ds

so the ratio . o)
EM(tlz) el
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where

fo 7(z,s)ds

T,
o) = fo x,s)ds
and should be “nearly” 1L of z. Why?




Thus, a diagnostic plot of
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e.g. G(X)+ 2/ vs z should reveal some missed nonlinearity.

To respond to the “why?” above. T&G suggest that this holds when the
null model holds and censoring doesn’t depend on z.

All of this can be done easily in R. The default version of the resid(-)
function gives the Martingale residuals and they can then be plotted versus
covariates. To explore nonlinearity lowess or other smoothed fits to the
resulting scatter plots may be useful.



