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Economics 478
Lecture 6
Time Dependent Covariates
in the Cox Proportional Hazard Model

We have seen how fitting of the Cox model works in simple cases with
“baseline covariates,” i.e., with covariates that are fixed over the study pe-
riod. But there are many applications for which the covariates change over
the duration of the study period. These cases are handled naturally within
the counting process framework. I will try to illustrate practical aspects of
this approach following closely the analysis of the Crowley and Hu (1977)
Stanford Heart Transplant Data provided by Therneau and Grambsch.

In Table 1 we illustrate the format of the original data from Crowley and
Hu (1977). There are 103 patients the table gives the data for the first 10 of
them. There are two types of patients: those who have received a transplant,
and those who were enrolled in the study and therefore expected to receive
a transplant, but never did. In this case treatment itself is a time dependent
covariate. Survival times are measured from the point of enrollment and
response to treatment is expected to be influenced by how promptly the
transplant occurred.

A crucial aspect of the analysis is the transformation of the original data
into a format consistent with the counting process formulation. In Table 2
we illustrate the transformed data for the first 10 patients. The first thing
to note is that the 10 original lines has become 14; each of the patients
receiving a transplant, i.e., patients {3,4,7,10} now have 2 lines rather than
one. Instead of the conventional data structure (y;, d;, x;) giving event times,
censoring indicator and covariate vector we now have ((¢;;—1 — ti;], 0i5, %ij)
where (t;;—1 — t;;] denotes an interval over which the covariate vector z;;
prevailed for patient 4. In the present example, for transplant patients we
have two such records for each patient; one corresponding to the time interval
between enrollment and the transplant, the other to the interval between
the transplant and either death or the point at which the patient is lost to
follow up. In the terminology of Therneau’s survival software we have the
data format

(start, stop], status, covariates

as indicated in Figure 2. In more complicated settings with more frequent
changes in the covariates we would have more multiple lines for each patient.

For patients who did not receive a transplant we have only a single line. In
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Patient Date of Date of Date of Date last Dead=1 Previous

birth acceptance transplant seen Alive=0 surgery
1 1/10/37  11/15/67 1/3/68 1 0
2 3/2/16 1/2/68 1/7/68 1 0
3 9/19/13 1/6/68 1/6/68 1/21/68 1 0
4 12/23/27 3/28/68 5/2/68 5/5/68 1 0
5 7/28/47 5/10/68 5/27/68 1 0
6 11/8/13 6/13/58 6/15/68 1 0
7 8/29/17 7/12/68 8/31/68 5/17/70 1 0
8 3/27/23 8/1/68 9/9/68 1 0
9 6/11/21 8/9/68 11/1/68 1 0
10 2/9/26 8/11/68 8/22/68 10/7/68 1 0

TABLE 1. Original Form of the Stanford Heart Transplant
Data: First 10 patients

start stop event age year surgery transplant
1 0.0 50.0 1 —17.15537303 0.12320329 0 0
2 0.0 6.0 1 3.83572895 0.25462012 0 0
3 0.0 1.0 0 6.29705681 0.26557153 0 0
4 1.0 16.0 1 6.29705681 0.26557153 0 1
o 0.0 36.0 0 —7.73716632 0.49007529 0 0
6 36.0 39.0 1 —7.73716632 0.49007529 0 1
7 0.0 18.0 1 —27.21423682 0.60780287 0 0
8 0.0 3.0 1 6.59548255 0.70088980 0 0
9 0.0 51.0 0 2.86926762 0.78028747 0 0
10 51.0 675.0 1 2.86926762 0.78028747 0 1
11 0.0 40.0 1 —2.65023956 0.83504449 0 0
12 0.0 85.0 1 —0.83778234 0.85694730 0 0
13 0.0 12.0 0 —5.49760438 0.86242300 0 0
14 12.0 58.0 1 —5.49760438 0.86242300 0 1

TABLE 2. Transformed Form of the Stanford Heart Trans-
plant Data: First 10 patients. Note that age is in decimal
years -40 and the event times are in days.

the entire data set there are 69 transplants of 103 total patients so the
transformed data has 2.69 + 44 = 172 lines.

Given the new form of the data we have effectively broken the event times
for each patient into several subintervals over which the model may wish to
assign different hazards. Obviously, if the time varying covariate has a zero
effect, then the estimated model is entitled to say so. The new data structure
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FIGURE 1. Three hypothetical survival functions for the
Stanford Heart Transplant Analysis.

is accommodated by the model fitting software by expanding the usual call
to

Surv (start, stop, status).

So for example we can illustrate the fitting with the following fragment of
code and output from R.

#Extended Example based on Stanford Heart Transplant data

library(survival)

data(heart)

fitl_coxph( Surv(start,stop,event)” (age + surgery)*transplant,

data=heart, method=’breslow’)

#fitl

#summary (fit1l)

#Now try to plot survival curves first for patients who never get a transplant
#Next for patients who don’t have prior surgery and get a transplant immediately
#Note that there are no such patients in the sample so the latter is suspect
#Note that this syntax conflicts slightly with advice of p 51 of Therneau(1999)
fitl.1_survfit(fitl,data.frame(age=50,surgery=0,transplant=0))
fitl.2_survfit(fitl,data.frame(age=50,surgery=0,transplant=1))

#Now consider a more complicated case

#Joe is a hypothetical patient age 50 with prior surgery who gets a transplant
#after 6 months (183 days). Note that the event argument is ignored and the
#result of survfit estimates the survival curve for Joe under above scenario
Joe_data.frame(start=c(0,183),stop=c(183,3%365) ,event=c(1,1),age=c(50,50),
surgery=c(1,1) ,transplant=c(0,1))
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fitl.3_survfit(fitl,Joe,individual=T)

#Now plot all three fits

postscript("figl.ps", horizontal=F,width=7,height=3)
par (mfrow=c(1,3))

plot(fitl.1)

plot(fitl.2)

plot(£fit1.3)

A point that is emphasized in Therneau and Grambsch and also in the
useful technical report that Therneau has written to accompany his software
is the delicate nature of the interpretation of “fitting survival functions”
under time varying covariate schemes. Now the survival function is no longer
conditioned simply on a vector of baseline covariates, but an entire time
path of these covariates. So in order to plot survival curves it is necessary
to specify such time paths, and as usual, it is important to restrict such
hypothetical exercises to regions of covariate space that are within the realm
of possibility given the data. This is particularly problematic in cases where
there is more frequent monitoring of the time varying covariate. This is
all illustrated in the fragment of R code for the Stanford data. The figure
illustrate three survival curves for hypothetical patients. Note in the last
fit1.3 construction we have a survival curve for a more complicated case.

Postscript

After a heated discussion at coffee on the morning following this lecture,
Xuming He made a strong case for questioning the interpretation of the
time-varying covariate version of the Cox model. In particular, when we
estimate a model with only baseline covariate we have a clear prognostic
view of the survival prospects viewed from time zero. In the Cox model
with time varying covariate we have as of time zero, to compute various
survival curves for various sample paths of the covariates and then combine
these in some way to obtain an unconditional result , i.e., conditional only
on baseline covariates, in order to get to a valid prognostic object. From
this perspective I would like to raise the question: Suppose we consider
a quantile regression model — of the sort used in the medfly paper — for
the Stanford Heart Transplant Data. This model will have two pieces that
are completely disconnected (this immediately sounds fishy ...). One piece
would use all the data for those before transplant, obviously the transplant
patient would appear in this data set as censored at the time of transplant.
The other piece would analyze the transplant patients as if time zero was the
time of transplant. My questions are: first, how does this model correspond
to the Cox model discussed earlier, and second, how does it correspond to
an extended version of the Cox model that we didn’t discuss, but probably
should have, in which separate baseline hazards are estimated for treatment
and won treatment observations? What about using the time to transplant
as a covariate in the second model.



