University of Illinois Fall 2001 Department of Economics Roger Koenker

Economics 478 Lecture 5 Stopping Times and Local Martingales

We now significantly expand the domain of relevant martingale results by considering local martingales.

Def. A non-negative random variable τ is called a *stopping time* with respect to a filtration $\{\mathcal{F}_t : t \in T\}$ if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$.

Typically we will view τ as the time that an event occurs, and thus τ will be a stopping time (aka Markov time) if the information in \mathcal{F}_t allows us to determine whether the event has occurred by time t.

Def. An increasing (\nearrow) sequence of times τ_n , n = 1, 2, ... is called a *localizing sequence* wrt to \mathcal{F}_t if (i) Each τ_n is a stopping time wrt \mathcal{F}_t (ii) $\lim_{n\to\infty} \tau_n = \infty \ a.s.$

Def. A process $M = \{M(t) : t \in T\}$ is a local martingale (or local submartingale) wrt \mathcal{F}_t if there exists a localizing sequence $\{\tau_n\}$ such that for each n,

$$M_n = \{M(t \wedge \tau_n) : 0 \le t < \infty\}$$

is a \mathcal{F}_t martingale (submartingale). Further, we say that M is a local square integrable martingale if M_n is a square integrable martingale for each n, and M is locally bounded if M_n is bounded for each n.

We can choose the localizing sequence $\tau_n = \sup\{t : \sup_{0 \le s \le t} |X(s)| < n\} \land n, n = 1, 2, \ldots$ and the stopped process $X_n(t) = X(t \land \tau_n)$

Thm (Optional Sampling) Let $\{X(t) : t \in T\}$ be a right continuous process adapted to $\{\mathcal{F}_t : t \in T\}$ $T = [0, \infty)$, and let τ and τ^* be any \mathcal{F}_t stopping times with $P(\tau < \tau^*) = 1$. If X(t) is a martingale (submartingale), then

$$E(X(\tau^*)|\mathcal{F}_{\tau}) = X(\tau) \qquad a.s.$$

$$(\geq)$$

provided there exists T_0 such that $P(\tau^* \leq T_0) = 1$. see Fleming and Harrington for extensions.

Thm (Optional Stopping) Let $\{X(t) : t \in [0, \infty)\}$ be a right continuous \mathcal{F}_t martingale (submartingale) and let τ be a \mathcal{F}_t stopping time. Then $\{X(t \wedge \tau) : t \in [0, \infty)\}$ is a martingale (submartingale).

Pf. we won't bother to show that

- (i) $X(t \wedge \tau)$ is \mathcal{F}_t measurable
- (ii) for $s < t, t, t \land \tau, s \land (t \land \tau)$ are stopping time bounded by t

FIGURE 1. A Martingale and Two Stopped Martingales. The panels depict the martingale $X(t), X_1(t)$, and $X_2(t)$ constructed with the localizing sequence, $\tau_n = \sup\{t : \sup_{0 \le s \le t} |X(s)| < n\} \land n, n = 1, 2, \ldots$

but these are quite easy. By the Optional Sampling theorem for the martingale $\{X(u): 0 \leq u \leq t\}$

$$\begin{split} E|X(t \wedge \tau)| &= E|EX(t)|\mathcal{F}_{t \wedge \tau}| \\ &\leq E|X(t)| \\ &< 0 \end{split}$$
$$EX(t \wedge \tau)|\mathcal{F}_s = X(s \wedge \tau) \quad a.s. \end{split}$$

Write,

$$X(t \wedge \tau) = I_{\{\tau < s\}} X(t \wedge \tau) + I_{\{\tau \ge s\}} X(t \wedge \tau)$$

$$I_{\{\tau < s\}}X(t \wedge \tau) = I_{\{\tau < s\}}X(s \wedge \tau)$$

3

is \mathcal{F}_s measurable, so

$$E\{I_{\{t < s\}}X(t \wedge \tau) | \mathcal{F}_s\} = I_{\{t < s\}}X(s \wedge \tau) \quad a.s.$$

Now, $\tau^* = \tau \lor s$ is a stopping time and

$$I_{\{\tau \ge s\}}X(t \wedge \tau) = I_{\{\tau \ge s\}}X(t \wedge \tau^*).$$

And since $I_{\{\tau > s\}}$ is \mathcal{F}_s measurable,

$$E\{I_{\{\tau \ge s\}}X(t \land \tau^*) | \mathcal{F}_s\} = I_{\{\tau \ge s\}}E\{X(t \land \tau^*) | \mathcal{F}_s\}$$

= $I_{\{\tau \ge s\}}X(s)$ Optional Sampling
= $I_{\{\tau \ge s\}}X(s \land \tau)$ a.s. \Box

Doob-Meyer Decomposition (Extended) Let $X = \{X(t) : t \ge 0\}$ be a nonnegative right continuous \mathcal{F}_t -local submartingale with localizing sequence $\{\tau_n\}$. Then there exists a unique right continuous predictable process A such that A(0) = 0 a.s. $P(A(t) < \infty) = 1$ for all t > 0 and X - Ais a right continuous local martingale. At each t, A(t) may be taken as the a.s. $\lim_{n\to\infty} A_n(t)$ where $A_n(t)$ is the compensator of the stopped submartingale $X(\cdot \wedge \tau_n)$.

Pf. Fleming and Harrington, pp.58-9.

Remark

This result allows us to extend the earlier results which relied on $EN(t) < \infty$, $EM^2(t) < \infty$ and boundedness of A(t) to cases where these properties hold locally for a sequence of stopped processes, $X(\cdot \wedge \tau_n)$ for a sequence of stopping times $\{\tau_n\}$.

For an arbitrary (adapted) counting process N i.e. on satisfying $P\{N(t) < \infty\} = 1$ for all t is locally bounded, hence a local submartingale.

For any nonnegative local submartingale X, there is an increasing right continuous, predictable process A (with $(A(0) = 0 \text{ and } P\{A(t) < \infty\} = 1)$ such that

$$M(t) = X(t) - A(t)$$

is a local martingale. Let $\{I_n\}$ be any localizing sequence for X and A_n be unique compensator for the stopped submartingale $X(\cdot \wedge \tau_n)$. Then take

$$A(t) = A_n(t) \quad \text{for } t \in (\tau_{n-1}, \tau_n]$$

and let $n \to \infty$.

These results also imply that quite generally the martingale associated with the DMD has a unique predictable quadratic variation and covariation

but

$$M^2 - <\!\!M\!>$$

and

$$M_1M_2 - < M_1, M_2 >$$

are local martingales. Provided $EM_i^2(t) < \infty$ for all t these local martingale are also martingales.

Further, if H is a locally bounded predictable process, (recall $\{X(t) : t \geq 0\}$ is locally bounded if for suitable sequence of localizing constants $\{\tau_n\}, X_n = \{X(t \wedge \tau_n) : t \geq 0\}$ is bounded for each n.) and M is a local martingale with $\Delta M(0) = 0$ and locally bounded variation process, then

$$\int H dM$$

is a local (square-integrable) martingale. Then

$$E\int HdM = 0$$

so for M = N - A we have

$$E\int HdN = E\int HdA$$

This usual simplifies computations considerably.

For arbitrary counting processes N_i and locally bounded predictable processes H_i if

$$(*) E \int_0^t H_i^2 d <\!\! M_i\!\!> < \infty$$

which implies $E \int_0^t H_i dM_i = 0$ and that

$$E(\int_0^t H_1 dM_1 \int_0^t H_2 dM_2) = E \int_0^t H_1 H_2 d < M_1, M_2 >$$

So in effect we have replaced the very stringent $EN_i(t) < \infty$, $EM_i(t) < \infty$, and boundedness of H_i with the weaker condition (*).

Accessible formulae for $\langle M_i \rangle$ are available. We have seen that

$$d < M > (s) = E\{dM^2(s)|\mathcal{F}_{s-}\}$$

 since

$$dM^{2}(s) = \{dM(s)\}^{2} + 2M(s - ds)dM(s)$$

and $E\{dM|\mathcal{F}_{s-}\}=0$, we have

$$d < M > = E[\{dM(s)\}^2 | \mathcal{F}_{s-}]$$

= Var $(dM(s)| \mathcal{F}_{s-})$

so the predictable variation $\langle M \rangle$ (t) of M is the sum over (0, t] of the conditional variances of M(s), given \mathcal{F}_{s-} .

In the counting process setup, dN(s) is Bernoulli with

$$E\{dN(s)|\mathcal{F}_{s-}\} = dA(s)$$

and

$$V(d \wedge |(s) - dA(s)|\mathcal{F}_{s-}) = \{1 - dA(s)\}dA(s)$$

So we anticipate,

$$(t) = \int_0^t \{1 - \Delta A(s)\} dA(s)$$

and that

$$\langle M \rangle (t) = A(t)$$

when A is continuous. This is the Poisson result that will prove critical later.

In the multivariate settings we would like to consider, I like to call this Wally's world, we have a multivariate counting process

$$N = (N_1(t), \dots, N_k(t))'$$

whose components are restricted so that no two can jump simultaneously. Then for $M_i = N_i - A_i$ we have

$$\langle M \rangle = A_i$$
 and $\langle M_i, M_j \rangle = 0$

so this is conditionally Poisson-like with rate $dA_i(t)$ and conditionally pairwise uncorrelated. If

$$A(t) = \int_0^t \lambda(s) ds$$

then N behaves locally, given its history as a Poisson process with rate (intensity) function $\lambda(t)$.