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Lecture 5

Stopping Times and Local Martingales

We now signi�cantly expand the domain of relevant martingale results by
considering local martingales.

Def. A non-negative random variable � is called a stopping time with respect
to a �ltration fFt : t 2 Tg if f� � tg 2 Ft for all t � 0:

Typically we will view � as the time that an event occurs, and thus � will
be a stopping time (aka Markov time) if the information in Ft allows us to
determine whether the event has occurred by time t.

Def. An increasing (%) sequence of times �n; n = 1; 2; : : : is called a
localizing sequence wrt to Ft if (i) Each �n is a stopping time wrt Ft (ii)
limn!1 �n =1 a:s:

Def. A process M = fM(t) : t 2 Tg is a local martingale (or local sub-
martingale) wrt Ft if there exists a localizing sequence f�ng such that for
each n,

Mn = fM(t ^ �n) : 0 � t <1g

is a Ft martingale (submartingale). Further, we say thatM is a local square
integrable martingale ifMn is a square integrable martingale for each n, and
M is locally bounded if Mn is bounded for each n.

We can choose the localizing sequence �n = supft : sup0�s�t jX(s)j <
ng ^ n; n = 1; 2; : : : and the stopped process Xn(t) = X(t ^ �n)

Thm (Optional Sampling) Let fX(t) : t 2 Tg be a right continuous process
adapted to fFt : t 2 Tg T = [0;1), and let � and �� be any Ft stopping
times with P (� < ��) = 1: If X(t) is a martingale (submartingale), then

E(X(��)jF� ) =
(�)

X(�) a:s:

provided there exists T0 such that P (�� � T0) = 1: see Fleming and Har-
rington for extensions.

Thm (Optional Stopping) Let fX(t) : t 2 [0;1)g be a right continuous Ft

martingale (submartingale) and let � be a Ft stopping time. Then fX(t^�) :
t 2 [0;1)g is a martingale (submartingale).

Pf. we won't bother to show that
(i) X(t ^ �) is Ft measurable
(ii) for s < t; t; t ^ �; s ^ (t ^ �) are stopping time bounded by t
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Figure 1. A Martingale and Two Stopped Martingales.
The panels depict the martingale X(t); X1(t), and X2(t)
constructed with the localizing sequence, �n = supft :
sup0�s�t jX(s)j < ng ^ n; n = 1; 2; : : :
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but these are quite easy. By the Optional Sampling theorem for the mar-
tingale fX(u) : 0 � u � tg

EjX(t ^ �)j = EjEX(t)jFt^� j
� EjX(t)j
< 0

EX(t ^ �)jFs = X(s ^ �) a:s:

Write,

X(t ^ �) = If�<sgX(t ^ �) + If��sgX(t ^ �)
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but

If�<sgX(t ^ �) = If�<sgX(s ^ �)

is Fs measurable, so

EfIft<sgX(t ^ �)jFsg = Ift<sgX(s ^ �) a:s:

Now, �� = � _ s is a stopping time and

If��sgX(t ^ �) = If��sgX(t ^ ��):

And since If��sg is Fs measurable,

EfIf��sgX(t ^ ��)jFsg = If��sgEfX(t ^ ��)jFsg

= If��sgX(s) Optional Sampling

= If��sgX(s ^ �) a:s: 2

Doob-Meyer Decomposition (Extended) Let X = fX(t) : t � 0g be
a nonnegative right continuous Ft-local submartingale with localizing se-
quence f�ng. Then there exists a unique right continuous predictable pro-
cess A such that A(0) = 0 a:s: P (A(t) < 1) = 1 for all t > 0 and X � A

is a right continuous local martingale. At each t; A(t) may be taken as
the a:s: limn!1An(t) where An(t) is the compensator of the stopped sub-
martingale X(� ^ �n):

Pf. Fleming and Harrington, pp.58-9.

Remark

This result allows us to extend the earlier results which relied on EN(t) <
1, EM2(t) < 1 and boundedness of A(t) to cases where these properties
hold locally for a sequence of stopped processes, X(� ^ �n) for a sequence of
stopping times f�ng.

For an arbitrary (adapted) counting process N i.e. on satisfying PfN(t) <
1g = 1 for all t is locally bounded, hence a local submartingale.

For any nonnegative local submartingale X, there is an increasing right
continuous, predictable process A (with (A(0) = 0 and PfA(t) < 1g = 1)
such that

M(t) = X(t)�A(t)

is a local martingale. Let fIng be any localizing sequence for X and An be
unique compensator for the stopped submartingale X(� ^ �n). Then take

A(t) = An(t) for t 2 (�n�1; �n]

and let n!1.

These results also imply that quite generally the martingale associated
with the DMD has a unique predictable quadratic variation and covariation
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so

M2� <M>

and

M1M2� <M1;M2>

are local martingales. Provided EM2

i (t) <1 for all t these local martingale
are also martingales.
Further, if H is a locally bounded predictable process, (recall fX(t) :

t � 0g is locally bounded if for suitable sequence of localizing constants
f�ng;Xn = fX(t ^ �n) : t � 0g is bounded for each n:) and M is a local
martingale with �M(0) = 0 and locally bounded variation process, thenZ

HdM

is a local (square-integrable) martingale. Then

E

Z
HdM = 0

so for M = N �A we have

E

Z
HdN = E

Z
HdA

This usual simpli�es computations considerably.

For arbitrary counting processes Ni and locally bounded predictable pro-
cesses Hi if

(�) E

Z t

0

H2

i d <Mi> <1

which implies E
R t

0
HidMi = 0 and that

E(

Z t

0

H1dM1

Z t

0

H2dM2) = E

Z t

0

H1H2d <M1;M2>

So in e�ect we have replaced the very stringent ENi(t) <1; EMi(t) <1;

and boundedness of Hi with the weaker condition (�).
Accessible formulae for <Mi> are available. We have seen that

d <M> (s) = EfdM2(s)jFs�g

since
dM2(s) = fdM(s)g2 + 2M(s� ds)dM(s)

and EfdM jFs�g = 0; we have

d <M> = E[fdM(s)g2jFs�]

= Var (dM(s)jFs�)

so the predictable variation <M> (t) of M is the sum over (0; t] of the
conditional variances of M(s); given Fs�.
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In the counting process setup, dN(s) is Bernoulli with

EfdN(s)jFs�g = dA(s)

and

V (d ^ j(s)� dA(s)jFs�) = f1� dA(s)gdA(s)

So we anticipate,

<M> (t) =

Z t

0

f1��A(s)gdA(s)

and that
<M> (t) = A(t)

when A is continuous. This is the Poisson result that will prove critical
later.

In the multivariate settings we would like to consider, I like to call this
Wally's world, we have a multivariate counting process

N = (N1(t); : : : ; Nk(t))
0

whose components are restricted so that no two can jump simultaneously.
Then for Mi = Ni �Ai we have

<M>= Ai and <Mi;Mj>= 0

so this is conditionally Poisson-like with rate dAi(t) and conditionally pair-
wise uncorrelated. If

A(t) =

Z t

0

�(s)ds

then N behaves locally, given its history as a Poisson process with rate
(intensity) function �(t).


