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Economics 478
Lecture 5
Stopping Times and Local Martingales

We now significantly expand the domain of relevant martingale results by
considering local martingales.

Def. A non-negative random variable 7 is called a stopping time with respect
to a filtration {F; : t € T} if {7 <t} € F; for all t > 0.

Typically we will view 7 as the time that an event occurs, and thus 7 will
be a stopping time (aka Markov time) if the information in F; allows us to
determine whether the event has occurred by time t.

Def. An increasing () sequence of times 7,,, n = 1,2,... is called a
localizing sequence wrt to F if (i) Each 7, is a stopping time wrt F; (ii)
limy, o0 7 = 00 a.S.

Def. A process M = {M(t) : t € T} is a local martingale (or local sub-
martingale) wrt F; if there exists a localizing sequence {7} such that for
each n,

My, ={M{@AT,):0<1t< o0}

is a Fy martingale (submartingale). Further, we say that M is a local square
integrable martingale if M, is a square integrable martingale for each n, and
M is locally bounded if M, is bounded for each n.

We can choose the localizing sequence 7, = sup{t : supyc,<;|X(s)| <
n} An, n=1,2,... and the stopped process X, (t) = X (t A 1y)

Thm (Optional Sampling) Let {X (¢) : t € T'} be a right continuous process
adapted to {F; : t € T} T = [0,00), and let 7 and 7" be any F; stopping
times with P(7 < 7*) = 1. If X (¢) is a martingale (submartingale), then

EX(t)|Fr) = X(7) a.s.

provided there exists T such that P(7* < Ty) = 1. see Fleming and Har-
rington for extensions.

Thm (Optional Stopping) Let {X (¢) : £ € [0,00)} be a right continuous F;
martingale (submartingale) and let 7 be a F; stopping time. Then {X (tAT) :
t € [0,00)} is a martingale (submartingale).

Pf. we won’t bother to show that
(i) X(t A7) is F; measurable
(ii) for s < t,t,t A 7,8 A (t A T) are stopping time bounded by ¢
1



FiGURE 1. A Martingale and Two Stopped Martingales.
The panels depict the martingale X(¢), X1(t), and Xa(t)
constructed with the localizing sequence, 7, = sup{t
SUPp<s<t |X(8)| < ’YL} /\’I’L, n = 132a e
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but these are quite easy. By the Optional Sampling theorem for the mar-
tingale {X(u) : 0 <wu < t}

EIX(tAT)| = E|EX(t)|Finrl
< B|X(#)]
<0
EX(tAT)Fs=X(sAT) a.s.
Write,
X(AAT) =Ly X(EAT) + Lz X (EAT)



but
Iy X(EAT) =Ty X(s A T)
is Fs measurable, so
E{I{t<s}X(t/\T)|.7:s} :I{t<s}X(8/\T) a.s.
Now, 7" = 7V s is a stopping time and
I{TZS}X(t A 7') = I{TZS}X(t AN T*).
And since I;>, is Fs measurable,

E{I{TZS}X(t/\T*HFs} = I{TZS}E{X(t/\T*”FS}
I X (5) Optional Sampling
= I>nX(sAT) as. O

Doob-Meyer Decomposition (Extended) Let X = {X(¢) : ¢ > 0} be
a nonnegative right continuous Fi-local submartingale with localizing se-
quence {7,}. Then there exists a unique right continuous predictable pro-
cess A such that A(0) =0 a.s. P(A(t) < oo)=1forallt>0and X — A
is a right continuous local martingale. At each ¢, A(f) may be taken as
the a.s. lim,_, A, (t) where A, (t) is the compensator of the stopped sub-
martingale X (- A 7).

Pf. Fleming and Harrington, pp.58-9.

Remark

This result allows us to extend the earlier results which relied on EN (t) <
00, EM?(t) < oo and boundedness of A(t) to cases where these properties
hold locally for a sequence of stopped processes, X (- A 7,,) for a sequence of
stopping times {7, }.

For an arbitrary (adapted) counting process N i.e. on satisfying P{N (t) <
oo} =1 for all ¢ is locally bounded, hence a local submartingale.

For any nonnegative local submartingale X, there is an increasing right
continuous, predictable process A (with (A(0) = 0 and P{A(t) < oo} = 1)
such that

M(t) = X () — A(t)

is a local martingale. Let {I,,} be any localizing sequence for X and A, be
unique compensator for the stopped submartingale X (- A 73,). Then take

A(t) = An(t) for t € (T 1,7
and let n — oo.

These results also imply that quite generally the martingale associated
with the DM D has a unique predictable quadratic variation and covariation



SO
M?— <M>

and
M My— <My, Ms>

are local martingales. Provided EM?2(t) < oo for all ¢ these local martingale
are also martingales.

Further, if H is a locally bounded predictable process, (recall {X(¢) :
t > 0} is locally bounded if for suitable sequence of localizing constants
{m}, X = {X({t A7) :t >0} is bounded for each n.) and M is a local
martingale with AM (0) = 0 and locally bounded variation process, then

/HdM

is a local (square-integrable) martingale. Then
E / HdM =0
so for M = N — A we have
E / HIN =F / HdA
This usual simplifies computations considerably.

For arbitrary counting processes N; and locally bounded predictable pro-
cesses H; if

t
(%) E/ HZd <M> < oo
0
which implies E [, H;dM; = 0 and that

t t t
E(/ HldMl/ Hngg) = E/ H{Hod <My, My>
0 0 0

So in effect we have replaced the very stringent EN;(t) < oo, EM;(t) < oo,
and boundedness of H; with the weaker condition (x).
Accessible formulae for <M;> are available. We have seen that

d <M> (s) = E{dM?(s)|Fs_}

since
dM?(s) = {dM(s)}* + 2M (s — ds)dM (s)

and E{dM|Fs_} = 0, we have

d<M> = E[{dM(s)}*|Fs_]

= Var (dM(s)|Fs—)

so the predictable variation <M > (t) of M is the sum over (0,¢] of the
conditional variances of M (s), given F,_.



In the counting process setup, dN (s) is Bernoulli with
B{dN(s)|F,_} = dA(s)
and
V(dN|(s) — dA(s)|Fs—) = {1 — dA(s)}dA(s)
So we anticipate,
t
<M> (t) = / {1 —AA(s)}dA(s)
0
and that
< M> (t) = A(t)
when A is continuous. This is the Poisson result that will prove critical
later.
In the multivariate settings we would like to consider, I like to call this
Wally’s world, we have a multivariate counting process
N = (Ni(t),...,Ny(t))'

whose components are restricted so that no two can jump simultaneously.
Then for M; = N; — A; we have

<M>=A; and <M; M;>=0

so this is conditionally Poisson-like with rate dA;(t) and conditionally pair-
wise uncorrelated. If

t
A(t) :/0 A(s)ds

then N behaves locally, given its history as a Poisson process with rate
(intensity) function A(t).



