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Lecture 4

Two Examples

1. The Log Rank test

Consider the problem of deciding whether there is a signi�cant di�er-
ence between two survival distributions. One might consider Kolmogorov-
Smirnov type tests based on the Kaplan-Meier estimates of the two survival
distributions. But a more conventional approach involves the so-called log-
rank statistic.

Let Nit and Yit t = t1; : : : ; tT and i = 1; 2 denote the number of observed
events and the number at risk in the groups 1 and 2 at the merged ordered
event times t1; : : : ; tT : Let Nt and Yt denote the corresponding counts in the
combined sample. At each observed time we have a two way table

Failure Group 1 Group 2 Total
Yes N1t N2t Nt

No Y1t �N1t Y2t �N2t Yt �Nt

Total Y1t Y2t Yt

Given Yit, recall that this is the number at risk at t and thus predictable
wrt Ft, the Nit are binomial with sample size Yit and under the null hypoth-
esis of identical survival curves a common failure rate �(t), so approximate
event probability �(t)�t:

A standard way of evaluating whether the two samples have the same proba-
bility is Fisher's \exact" test which is based on conditioning on the marginal
total Nt, then

Eit = ENit =
NtYit
Yt

Vit = V Nit = Nt
Y1tY2t
Y 2
t

�
Yt �Nt

Yt � 1

and the log rank statistic

T =

TX
t=1

(N1t �E1t)=(

TX
t=1

V1t)
1=2

This would be all very reasonable if the terms N1t � E1t were independent
since then standard CLT results (Lindeberg-Feller) would yield approximate
normality. However, this argument isn't really justi�ed here, how should we
proceed?
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2. Digression on linear rank statistics
(for two sample tests of scale)

We have
X1; : : : ;Xm| {z }, Xm+1; : : : ;Xm+n| {z }
Sample 1 Sample 2

We believe that X's come from common distribution, but would like a
test to focus on the H0 that they may di�er in scale. Many tests are based
on ranking full sample then considering ranks of the �rst sample R1; : : : ; Rm

and forming a linear rank statistic

S =

mX
i=1

a(Ri)

Ideally, we should choose a(�) so that

a(i) = E(V(i))

where V(i) is i
th order statistic from the distribution underlying the hypoth-

esis.

Examples

1. Klotz test take F = � and use

S =

mX
i=1

�
��1

�
Ri

m+ n+ 1

��2

Note this has an inherent robustness, to deviations from normality

ES =
m

m+ n

m+nX
i=1

�

�
i

m+ n+ 1

�

V (X) =
mn

(m+ n)(m+ n� 1)

X�
��1

�
i

m+ n+ 1

��4

�
n

m(m+ n� 1)
(ES)2

so

T =
S �E(S)p

V (X)
� N (0; 1)

Savage Test

S =

mX
i=1

0
@ m+nX

j=m+n+1�Ri

1=j

1
A)

Note that

1�
X

1=j � 1 +
X

log(1� 1=j)

= 1 + log

�
m+ n+ 1�Ri

m+ n+ 1

�
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so S is (almost) a sum of log (ranks). Here ES = m and

V (S) =
mn

m+ n+ 1

0
@1� 1

m+ n

m+nX
j=1

1

j

1
A

again
S �E(S)p

V (S)
; N (0; 1)

and optimality holds when F is exponential.

As usual, write (Tij ; Æij) as the event times and censoring indicators for
the two samples j = 1; 2; and set

Nij(t) = IfT ij<t;Æij=1g

Yij(t) = IfT ij�tg

Ni(t) =

niX
j=1

Nij(t) N(t) =
2X

i=1

Ni(t)

Yi(t) =

niX
j=1

Nij(t) Y (t) =
2X

i=1

Yi(t)

Under the hypothesis of a common failure rate,

ST =

TX
t=1

(N1t �E1t) =

TX
t=1

N1t �
TX
t=1

Y1t
Yt

Nt

=

n1X
j=1

Z 1

0
dN1j(s)�

2X
i=1

n1X
j=1

Z 1

0

Y1(s)

Y (s)
dNij(s)

=

n1X
j=1

Z 1

0

Y2(s)

Y (s)
dN1j(s)�

n2X
j=1

Z 1

0

Y1(s)

Y (s)
dN2j(s)

Note 1� Y1(s)
Y (s) =

Y (s)�Y1(s)
Y (s) = Y2(s)

Y (s) :

=

n1X
j=1

Z 1

0

Y1(s)Y2(s)

Y (s)
(Y1(s))

�1(dN1j(s)� Y1j(s)�(s)ds)

�
n2X
i=1

Z 1

0

Y1(s)Y2(s)

Y (s)
(Y2(s))

�1(dN2j(s)� Y2j(s)�(s)ds)

=

2X
i=1

n1X
j=1

Z 1

0
(�1)i�1

Y1(s)Y2(s)

Y (s)
(Yi(s))

�1dMij(s)

=
X
i

X
j

Z 1

0
Hi(s)dMij(s):
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And this provides a rationale for the asymptotic normality of the log rank
statistic by the arguments of the last lecture.

Under the alternative hypothesis the two samples have di�erent hazards
�1 6= �2: In this case from above we have

ST =

n1X
j=1

Z
Y2(s)

Y (s)
dM1j �

n2X
j=1

Z
Y1(s)

Y (s)
dM2j

+

Z
Y1(s)Y2(s)

Y (s)
(�1(s)� �2(s))ds

This provides some insight into the power of tests based on ST to distinguish
�1 and �2: Local alternatives that have non-trivial power would require that

lim
n1!1;n2!1

�
n1n2

n1 + n2

�2

(�1(s)� �s(s)) = k(s)

for some function k(s) that is bounded.

3. The Cox Model

Suppose we have the Cox model

�(tjz) = �0(t)e
z0�

and we have our usual (Yi; Æi; zi) where zi is a predictable covariate pro-
cess, i.e. z(t) is left continuous with right limits (cagjad). The Cox partial
likelihood score process is

U(�) =
nX
i=1

Z 1

0

 
zi(s)�

P
j Yi(s)zi(s)e

z0

j�P
j Yj(s)e

z0

j�

!
dNi(s)

and under the null hypothesis that � = �0 we can write this as,

U(�0) =

nX
i=1

Z 1

0

 
zi(s)�

P
Yj(s)zi(s)e

zj�0P
Yj(s)e

z0

j�0

!
dMi(s)

where Mi(s) = Ni(s)�
R s
0 Yi(u)�0(u) expfzi(s)

0�0gdu.

And this again leads to the conclusion that the score vector is asymptotically
normal.

Ref. Fleming and Harrington (1991).

A simple special case of the Cox Model that relates the developments back
to the log rank statistic involves the case in which zi is just a treatment
control indicator variable. In this case we have the score

U =

nX
i=1

Z 1

0

�
zi �

P
Yj(s)ziP
Yj(s)

�
dNi(s)
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and under H0 Ni(s) can be replaced by

Mi(s) = Ni(s)�

Z s

0
I(Xi�u)�(u)du

Why? Note that
dMi(s) = dNi(s)� �(s)ds

so the claim amounts to saying that
nX
i=1

Z 1

0

�
zi �

P
Yj(s)ziP
Yj(s)

�
�(s)ds = 0

but (obviously) X
i

X
j

ziYj(s) =
X
i

X
j

Yj(s)zj 2


