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1. PREDICTABLE VARIATION IN DISCRETE TIME

Suppose (Xy, F;) is a 0 mean martingale with EX? < oo. Then (X2, F;)
is a submartingale and
Zi=X} - A
is a zero mean martingale adapted to F; with 49 = EX2 = V(Xj) and

t
A = Z E((AX})?|Fe_1) + Ap
k=1

is the conditional variance of the X; process.
Note

A = Z(E(Xlﬂ}-k—l) — Xi_1) + EX§
= > BE(Xg — Xp1)’|Fr—1) + EXG
= > (E(AX})’|Fe 1) + BEXg

We write <X;>=<X, X;>= A;. And
EX} = EA

2. MARTINGALE TRANSFORMS

Suppose H; is a predicatable process wrt Fy, for any process (X;) we
define the H-transform of X, by

¢
(H-X); = Hp(Xg — Xp—1) + HoXo
k=1

Thm. Suppose (X, F;) is a (sub)martingale and (H, F;) is predictable
with 0 < Hy < oo, then {H - X, F;} is a (sub)martingale.

Pf. To gain confidence in computation

E((H - X)1|F) = (H-X)+ E(Hp1 (X1 — Xo)|F)
(H-X)t+ Hp1 E(AX 1| F)
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3. PREDICTABLE VARIATION FOR COUNTING PROCESS M ARTINGALES

In continuous time computing the predictable variation <M > of the mar-
tingale M is somewhat more esoteric, but yields results easily rationalized
by comparison with the discrete case. Consider

d<M>(t) =

E(dM?(t)| F-)

E{M(t—)dM(t) + M(t)dM (t)|F;—}
E{2M (t—)dM (t) + (dM(1))*|F:-}
2M (t=) - 0+ E{(dM (#))*|F;-1}
E{(dM (t))*|F-}

as in discrete case. Now applying this to the counting process example where
M = N — A, we have that the quadratic variation of M

d<M> (t) = B{(dN(t)+ dA(t)*F: }
= E{(dN(t))> - 2dA(t)dN (1) + (dA(1)*|F-}
= E{(dN())*|Fi-} - 2(dA(t))* + (dA(1))?

but for the counting process

(dN(t))? = dN(t), this is just a consequence of

the discrete nature of the process, either it jumps 1 at ¢, or not. So, we have

d<M>

(1) = dA(t) - (dA(t))?
= (1— AA(t))dA()

where AA(t) = A(t) — A(t—) so we may write, finally,

t
<M> (t):/0 (1 — AA(s))dA(s)

Now consider the continuous time version of the Martingale transform,

¢
W(t) = / H(s)dM(s)
0
We have that W (t) is a martingale provided E|W (t)| < oo, since

E(dW (t)|F,) = BH

(H)dM (t)|F, = HOEdM (1)) F = 0

Its predictable variation is

d <W> (t)

and consequently, we infer

£))*|Fi-}
dM (t))?|Fi1}
(dM (8))?|Fo-1}

t
M> (t)

ol
o =
=
N — —~

S8
A

W (1) = /tHZ(s)d <M> (t)
0

This also suggests, provided

that

D(t) = W2(t)— <W> (t)



is a martingale with D(0) = 0, so ED(t) = 0.
This yields the grafito

/ H)dM(t) = W (1)

/ (predictable)d(martingale) = martingale

gambling strategies are predictable, i.e. bets have to be down before the
roulette wheel spins and this yields a martingale return process.

Now suppose that we have a sequence of martingales, M), whose incre-
ments satisfy a Lindeberg condition. From the martingale condition we have
seen that

Cov(M(t) ~ M(s), M(s)) = lim E((My(t) ~ Ma(s))Ma(s))
= lim BEM,(s)B{Mq(t) — My (s) %}
=0

If the limiting process were normal, then this uncorrelated increments con-
dition would imply independent increments. The limiting variance process
of M is

EM?%(t) = LmEM?2(t)
= lmFE <M,> (t)
so if we have a Lindeberg condition on increments and
ImE <M,> (t) = V(t)

with V' (¢) *, right continuous and V(0) = 0, then we can anticipate a
limiting Guassian process. This is (roughly) Robolledo’s CLT.

4. OPTIONAL SAMPLING, STOPPING TIMES, AND XXX

Given a discrete process Xi, Xo,... we often would like to consider a
transformed process derived from the original one by deciding after observing
X1,..., X, whether X, will be the first value of the transformed process.

Def. Let X1, X5, ... be an arbitrary random process, the sequence mi, ms, ...
of integer valued rv’s are called sampling variables if

The process X, = ZTm, 1 called the process derived by optional sampling
from X17X27 ceee

Thm. Suppose X1, Xo, ... is a martingale (submartingale) and my, ms sam-
pling variables and X, the derived process. If

(i) E|X.| < o0 all k
(i) liminf,, <y |[Xy|dP =0  alln
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then X1, X,... is a martingale (submartingale).
An application of the foregoing result given by Breiman () is the following.

Prop. If Xy,..., X, is a submartingale, then for any = > 0,
(1) P(maxlgjgk X] > J?) < %E|X}c|
(ii) P(mini<j<x X; < —z) < L(E[Xy| - EX))

Pf.(i) Define sampling variables

i — first j < k such that X; >z, or
L= k if no such j exits

m, = k n>2
Now the conditions of the previous theorem can be verified since
{mp>N}=¢ for N>k
and

k
E|X,| <Y ElX;| < oo
i=1

5. MARTINGALE CONVERGENCE

Thm. Let X, Xo,... be a submartingale and limsup E|X,,| < oo, then
3 X such that X,, - X and E|X| < oco.
Pf. Use sampling variables to show that for b > a
P(X,<a i0.and X, >b i.0.)=0
more specifically it is shown that
P(U{liminf X,, <a < b <limsup X,,}) =0

where the U is over all rational a,b. Thus, only possible cases are there is
con.v.X

X, =X or | Xn| — o0
but the latter case is ruled out by Fatou’s lemma which says

/liminf|Xn|dP < liminf/ | X |dP
SO
/|X|dP < liminf/ | Xp|dP < 0.

By construction my, can’t exceed k, and the bound in the second line is
trivial since ) E|X;| includes E|X,| as one of the summands. Now, note
that

1
P(max X; > z) = P(X,,, > ) < —/ X, dP
i<k T J{ Xy >a}



and by the prior theorem,

/ X, dP < / X dP < E|Xy|
{Xm1 >z} {Xm1 >}

[Why? 2nd inequality is obvious since z > 0, but first one comes from
submartingale property. Why?]
Under such conditions we typically have

V(t) =limE <M,> (t) = imEM2(t) = EM?(t)

Finally, to come back to the counting process example, suppose we have
N;i(t) i=1,...,n with

M;(t) = Ni(t) — Aq()

<M;> () = /0 (1 — Ady(s))dA;(s)

Consider for F;_ measurable functions ¢;(-)

n
M, (t) = eilt) M;(t)
i=1
Clearly M,, is a martingale, and
d<M,> (t) = E{(dMn(1)*Fr }

= Y FOB{AM;(6)*|Fo} + )Y (OB{(dM; (1)) s}

i#]
= Zc ) <M;> (t)



