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Predictable Variation

1. Predictable Variation in Discrete Time

Suppose (Xt;Ft) is a 0 mean martingale with EX2
t <1: Then (X2

t ;Ft)
is a submartingale and

Zt = X2
t �At

is a zero mean martingale adapted to Ft with A0 = EX2
0 = V (X0) and

At =

tX
k=1

E((�Xk)
2jFk�1) +A0

is the conditional variance of the Xt process.
Note

At =
X

(E(X2
k jFk�1)�X2

k�1) +EX2
0

=
X

E((Xk �Xk�1)
2jFk�1) +EX2

0

=
X

(E(�Xk)
2jFk�1) +EX2

0

We write <Xt>�<Xt;Xt>= At: And

EX2
t = EAt

2. Martingale Transforms

Suppose Ht is a predicatable process wrt Ft, for any process (Xt) we
de�ne the H-transform of X, by

(H �X)t �
tX

k=1

Hk(Xk �Xk�1) +H0X0

Thm. Suppose (Xt;Ft) is a (sub)martingale and (Ht;Ft) is predictable
with 0 < Ht <1; then fH �X;Ftg is a (sub)martingale.

Pf. To gain con�dence in computation

E((H �X)t+1jFt) = (H �X)t +E(Ht+1(Xt+1 �Xt)jFt)

= (H �X)t +Ht+1E(�Xt+1jFt)

=
�

(H �X)t

�
martingale
submartingale

�

1
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3. Predictable Variation for Counting Process Martingales

In continuous time computing the predictable variation <M> of the mar-
tingale M is somewhat more esoteric, but yields results easily rationalized
by comparison with the discrete case. Consider

d <M> (t) � E(dM2(t)jFt�)

= EfM(t�)dM(t) +M(t)dM(t)jFt�g

= Ef2M(t�)dM(t) + (dM(t))2jFt�g

= 2M(t�) � 0 +Ef(dM(t))2jFt�1g

= Ef(dM(t))2jFt�g

as in discrete case. Now applying this to the counting process example where
M = N �A, we have that the quadratic variation of M

d <M> (t) = Ef(dN(t) + dA(t))2jFt�g

= Ef(dN(t))2 � 2dA(t)dN(t) + (dA(t))2jFt�g

= Ef(dN(t))2jFt�g � 2(dA(t))2 + (dA(t))2

but for the counting process (dN(t))2 = dN(t), this is just a consequence of
the discrete nature of the process, either it jumps 1 at t, or not. So, we have

d <M> (t) = dA(t)� (dA(t))2

= (1��A(t))dA(t)

where �A(t) = A(t)�A(t�) so we may write, �nally,

<M> (t) =

Z t

0

(1��A(s))dA(s)

Now consider the continuous time version of the Martingale transform,

W (t) =

Z t

0

H(s)dM(s)

We have that W (t) is a martingale provided EjW (t)j <1, since

E(dW (t)jFt) = EH(t)dM(t)jFt = H(t)EdM(t)jFt = 0

Its predictable variation is

d <W> (t) = Ef(dW (t))2jFt�g

= Ef(H(t)dM(t))2jFt�1g

= H2(t)Ef(dM(t))2jFt�1g

= H2(t)d <M> (t)

and consequently, we infer

<W> (t) =

Z t

0

H2(s)d <M> (t)

This also suggests, provided that

D(t) =W 2(t)� <W> (t)
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is a martingale with D(0) = 0, so ED(t) = 0:
This yields the gra�to Z

H(t)dM(t) =W (t)

Z
(predictable)d(martingale) = martingale

gambling strategies are predictable, i.e. bets have to be down before the
roulette wheel spins and this yields a martingale return process.
Now suppose that we have a sequence of martingales, Mn, whose incre-

ments satisfy a Lindeberg condition. From the martingale condition we have
seen that

Cov(M(t)�M(s);M(s)) = lim
n!1

E((Mn(t)�Mn(s))Mn(s))

= lim
n!1

EMn(s)EfMn(t)�Mn(s)jFsg

= 0

If the limiting process were normal, then this uncorrelated increments con-
dition would imply independent increments. The limiting variance process
of M is

EM2(t) = limEM2
n(t)

= limE <Mn> (t)

so if we have a Lindeberg condition on increments and

limE <Mn> (t)! V (t)

with V (t) %, right continuous and V (0) = 0, then we can anticipate a
limiting Guassian process. This is (roughly) Robolledo's CLT.

4. Optional Sampling, Stopping Times, and XXX

Given a discrete process X1;X2; : : : we often would like to consider a
transformed process derived from the original one by deciding after observing

X1; : : : ;Xn whether Xn will be the �rst value of the transformed process.

Def. LetX1;X2; : : : be an arbitrary random process, the sequencem1;m2; : : :

of integer valued rv's are called sampling variables if

(i) 1 � m2 � m2 � : : :

(ii) fmk = jg 2 F(X1; : : : ;Xj)

The process ~Xn = xmn is called the process derived by optional sampling
from X1; X2; : : :.

Thm. SupposeX1;X2; : : : is a martingale (submartingale) andm1;m2 sam-

pling variables and ~Xn the derived process. If

(i) Ej ~Xkj <1 all k
(ii) lim infmn<N jXN jdP = 0 all n
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then ~X1; ~X2; : : : is a martingale (submartingale).
An application of the foregoing result given by Breiman ( ) is the following.

Prop. If X1; : : : ;Xn is a submartingale, then for any x > 0,

(i) P (max1�j�kXj > x) � 1

x
EjXkj

(ii) P (min1�j�kXj < �x) � 1

x
(EjXkj �EX1)

Pf.(i) De�ne sampling variables

m1 =

�
�rst j � k such that Xj > x; or
k if no such j exits

�

mn = k n � 2

Now the conditions of the previous theorem can be veri�ed since

fmn > Ng = � for N � k

and

Ej ~Xnj �

kX
j=1

EjXj j <1

5. Martingale Convergence

Thm. Let X1;X2; : : : be a submartingale and limsupEjXnj < 1, then
9 X such that Xn ! X and EjXj <1:

Pf. Use sampling variables to show that for b > a

P (Xn � a i:o: and Xn � b i:o:) = 0

more speci�cally it is shown that

P (Uflim infXn � a < b � lim supXng) = 0

where the U is over all rational a; b. Thus, only possible cases are there is
con:v:X

Xn ! X or jXnj ! 1

but the latter case is ruled out by Fatou's lemma which saysZ
lim inf jXnjdP � lim inf

Z
jXnjdP

so Z
jXjdP � lim inf

Z
jXnjdP <1:

By construction mn can't exceed k, and the bound in the second line is
trivial since

P
EjXj j includes Ej ~Xnj as one of the summands. Now, note

that

P ( max
1�j�k

Xj > x) = P (Xm1
> x) �

1

x

Z
fXm1

>xg
Xm1

dP
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and by the prior theorem,Z
fXm1

>xg
Xm1

dP �

Z
fXm1

>xg
XkdP � EjXkj

[Why? 2nd inequality is obvious since x > 0, but �rst one comes from
submartingale property. Why?]
Under such conditions we typically have

V (t) = limE <Mn> (t) = limEM2
n(t) = EM

2(t)

Finally, to come back to the counting process example, suppose we have
Ni(t) i = 1; : : : ; n with

Mi(t) = Ni(t)�Ai(t)

<Mi> (t) =

Z t

0

(1��Ai(s))dAi(s)

Consider for Ft� measurable functions ci(�)

Mn(t) �

nX
i=1

ci(t)Mi(t)

Clearly Mn is a martingale, and

d <Mn> (t) = Ef(dMn(t))
2jFt�g

=
X

c2i (t)Ef(dMi(t))
2jFt�g+

XX
i6=j

c2i (t)Ef(dMi(t))
2jFt�g

=
X

c2i (t) <Mi> (t)


