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1. Stochastic Processes

Let (
;F ; P ) be a probability space and T = [0;1): The family

X = (�t) t 2 T

of r.v.'s �t(!) is called a (real) stochastic process in continuous time t 2 T .
If we restrict t 2 N = f0; 1; : : :g, then we have a discrete time stochastic
process. For �xed ! 2 
; �t(!) is called a trajectory, or realization.

The �-algebras F�
t = �[�s : s � t] are minimal wrt the r.v.'s �s : s � t,

and may be viewed as representing the history of the process up to and
including time t.

A stochastic process X = (�t) is called measurable if for all Borel sets
B 2 B of R

f(!; t) : �t(!) 2 Bg 2 F � B(T )

where B(T ) is �[T ].

Thm. (Fubini) Let X = (�t) t 2 T be a measurable random process. Then
(i) Almost all trajectories are measurable (relative to B(T )):
(ii) If E�t exists for all t 2 T , then mt = E�t is a measurable function of

t 2 T:

(iii) If S is a measurable set in T and
R
S
Ej�tjdt <1, then

Z
S

j�tjdt <1 (P � a:s)

and Z
S

E�tdt = E

Z
S

�tdt:

Def. Let F = (Ft) t 2 T be %, we say, X = (�t) t 2 T is adapted to F if
for any t 2 T the r.v.'s �t are Ft measurable.

Remark Sometimes this is abbreviated F-adapted, or called nonanticipa-
tive.
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2. Two Classes of Random Processes

(1) Stationary Processes. A process X = (�t) t 2 T = [0;1) is station-
ary if for any � > 0, and points t1; : : : ; tn 2 T ,

P (�t 2 A1; : : : ; �tn 2 An) = P (�t1+� 2 A1; : : : ; �tn+� 2 An):

This implies a weaker form of stationarity requiring only that E�2t <
1, and

E�t = E�t+�

E�t�s = E�t+��s+�:

(2) Markov Processes. A process X = (�t;Ft) t 2 T on (
;F ; P ) is
Markov if

(�) P (A \Bj�t) = P (Aj�t)P (Bj�t) P � a:s:

for any t 2 T;A 2 Ft and B 2 F�

(t;1) = �(�s : s > t).

Remark Note A \occurs" before t and B after and the force of (�) is to
say that for any feature of Ft { the prior history represented by A, the
conditional probabilities multiply meaning that everything about the past
needed to judge the likelihood of future events B is congealed in �t. A
criterion for recognizing a Markov process is given by the following result.

Thm. X 2 (�t) t 2 T is Markov i� for any measurable function f(x)
such that sup jf(x)j < 1 and any collection fti : i = 1; : : : ; ng such that
0 � t1 � : : : ;� tn � t

E(f(�t)j�t1 ; : : : ; �tn) = E(f(�t)j�tn)

A special class of Markov processes where the foregoing conditions are quite
apparent are processes with independent increments, such that for ordered
ti

�t2 � �t1 ; : : : ; �tn � �tn�1 are ??

Def. A random process X = (�t;Ft) t 2 T is called a martingale if Ej�tj <
1 t 2 T; and for t > s,

E(�tjFs) = �s (P � a:s:)

If

E(�tjFs) � �s (P � a:s:)

we call �t a submartingale and if

E(�tjFs) � �s (P � a:s:)

a supermartingale. Sometimes it is useful to reverse the direction of time
and then one can speak about reversed martingale's and submartingales.

Thm. SupposeX = (�t;Ft) t 2 T is a martingale, and ' : R! R is convex
with Ej'(�t)j <1 for t 2 T then ('(�s);Ft) is a submartingale.
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Proof By Jensen's inequality

E('(�t)jFs) � '(Ej�tjFs) = '(�s)

Examples For (�t;Ft) a martingale
(i) (j�tj

r;Ft) is a submartingale provided r > 1 and Ej�tj
r <1:

(ii) (��t ;Ft) is a submartingale
(iii) (�+t ;Ft) is a submartingale

More Examples

(i) Let X1; : : : ;Xn be iid with EXi = 0 so EjXij < 1 and let Sn =Pn
i=1Xi and Fn � �[S1; : : : ; Sn]. Then EjSnj �

P
EjXij <1 and (Sn;Fn)

is a martingale.
(ii) As in (i), but also assume EX2

i � �2 <1. Set Yn = S2n � n�2; then
(Yn;Fn) is a martingale, Sn is a submartingale and we have the decomposi-
tion,

S2n = S2n � n�2| {z } + n�2|{z}
submartingale Martingale increasing process

This may be viewed as our �rst baby step toward the Doob-Meyer de-
composition.


