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1. STOCHASTIC PROCESSES

Let (2, F, P) be a probability space and T = [0, 00). The family
X=(¢) teT

of r.v.’s & (w) is called a (real) stochastic process in continuous time ¢ € T'.
If we restrict t € N = {0,1,...}, then we have a discrete time stochastic
process. For fixed w € Q, & (w) is called a trajectory, or realization.

The o-algebras ]:f = 0[5 : s < t] are minimal wrt the r.v.’s & : s < ¢,
and may be viewed as representing the history of the process up to and
including time ¢.

A stochastic process X = (&) is called measurable if for all Borel sets
B e Bof R

{(w,?) : &(w) € B} € F x B(T)
where B(T) is o[T].
Thm. (Fubini) Let X = (§;) ¢t € T be a measurable random process. Then
(i) Almost all trajectories are measurable (relative to B(T)).
(ii) If E¢&; exists for all ¢ € T, then m; = [E¢; is a measurable function of

teT.
(iii) If S is a measurable set in T and [ |E|&|dt < oo, then

/ |€c]dt < o0 (P —a.s)

/S E¢dt = /S ¢,dt.

Def. Let F = (F;) t € T be 7, we say, X = (&) t € T is adapted to F if
for any t € T the r.v.’s & are F; measurable.

and

Remark Sometimes this is abbreviated F-adapted, or called nonanticipa-
tive.
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2. Two CLASSES OF RANDOM PROCESSES

(1) Stationary Processes. A process X = (&) t € T = [0,00) is station-
ary if for any A > 0, and points £q,...,t, € T,

P(& € Ay, &, € An) = P(&y4a € A1, Gty ta € Ap).
This implies a weaker form of stationarity requiring only that E£? <
0o, and
E& = E&ita
E&i€s = B alsta-

(2) Markov Processes. A process X = (§,F) t € T on (Q,F,P) is

Markov if
() P(ANBlG) = P(AI)P(BI&)  P—as.

forany t e T,A e F andBE]:ftoo) =o0(&:s>t).

Remark Note A “occurs” before ¢ and B after and the force of (x) is to
say that for any feature of F; — the prior history represented by A, the
conditional probabilities multiply meaning that everything about the past
needed to judge the likelihood of future events B is congealed in &. A
criterion for recognizing a Markov process is given by the following result.

Thm. X € (&) t € T is Markov iff for any measurable function f(x)
such that sup|f(z)| < oo and any collection {t; : ¢ = 1,...,n} such that
0<t; <...,<tp <t

E(f(ft”ftn cee ,ftn) = E(f(ft)|ftn)

A special class of Markov processes where the foregoing conditions are quite
apparent are processes with independent increments, such that for ordered
t;
o — &ty €ty — &ty are AL

Def. A random process X = (&, F;) t € T is called a martingale if E|&;| <
oo t €T, and for t > s,

E(&|F) =& (P —as.)
If

E(&tu_—s) > 55 (P - a.s.)
we call & a submartingale and if

E(&tu_—s) < 55 (P - a.s.)
a supermartingale. Sometimes it is useful to reverse the direction of time

and then one can speak about reversed martingale’s and submartingales.

Thm. Suppose X = (§,F;) t € T is a martingale, and ¢ : R — R is convex
with E|p(&;)| < oo for t € T then (p(&5), Ft) is a submartingale.



Proof By Jensen’s inequality
E(p (&)1 Fs) = o(E|&|Fs) = o(&s)

Examples For (¢, F;) a martingale
(1) (|&]",Fr) is a submartingale provided r > 1 and E|&|" < oo.
(ii) (&, ,F¢) is a submartingale
(iii) (&, F) is a submartingale

More Examples

(i) Let Xi,...,X, be iid with EX; = 0 so E|X;| < oo and let S, =
Yoy Xi and F, = 0[Sh,...,S,]. Then E|S,| < > E|X;| < oo and (S, Fy)
is a martingale.

(ii) As in (i), but also assume EX? = 02 < co. Set Y;, = S2 — no?, then
(Y, Fp) is a martingale, .S,, is a submartingale and we have the decomposi-
tion,

2 _ 2 2 2
Sy = S,—no" + no
submartingale Martingale increasing process

This may be viewed as our first baby step toward the Doob-Meyer de-
composition.



