Economics 478
 Topics in Survival Analysis

Lecture 1
 Foundations for Counting Process Formulation of Survival Analysis

1. Instant Measure Theory

Just add water, how
much?
Our first question, which is not strictly necessary, or relevant, but is a useful bit of general education is: What is the difference between Riemann and Lebesgue integral? A straightforward answer may be provided with the aid of a couple of pictures. Riemann integral works by dividing up the domain and approximating via mean value theorem like this

$$
R S_{m}=\sum_{i=1}^{m} f\left(x_{m i}^{*}\right)\left(x_{m i}-x_{m i-1}\right) .
$$

This works well for nonnegative, continuous functions, but fails in the sense that the approximation may fail to converge, i.e., there exist sequences $f_{n} \rightarrow f$ such that

$$
\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x
$$

fails.
The Lebesgue integral proceeds by subdividing the range rather than the domain,

$$
L S_{m}=\sum_{k=1}^{m 2^{m}} \frac{k-1}{2^{m}} \times \mu\left(\left\{x: \frac{k-1}{2^{m}} \leq f(x)<\frac{k}{2^{m}}\right\}\right)
$$

so rather than having fixed-width intervals of the domain and multiplying by heights as in elementary calculus, we have fixed width division of the range and we weight by the width, or length, or measure of the set of x such that $f(x)$ lies in these intervals.
So the Lebesgue approximation is the area below the red curve. To see this start with the top block we get all area below this block. Then we get the two neighboring strips, etc. etc.

Note that we can perturb f at a few isolated points and this doesn't affect the Lebesgue sum, since these heights are multiplied by zero.

FIGURE 1 . Riemann approximation divides the domain into
pieces and computes an approximate area for each piece.
So why does this work better than the Riemann scheme, or when does it
work better? For our function, f, we need to be able to find the length,
measure of the sets
If we can assure ourselves that these sets are $m e a s u r a b l e, ~ t h e n ~ w e ~ a r e ~ s e t . ~$
This leads us to the concept of σ-fields.
Set Theory in Brief
Let \mathcal{A} be a nonempty set of subsets, A, of a nonempty set Ω. Recall,
A^{c}
$A \cup B$
denotes the complement of A
denotes the union of A and B

$$
\begin{aligned}
& \text { Figure 2. Lebesgue approximation divides the range into } \\
& \text { pieces and computes an approximate area for each piece. }
\end{aligned}
$$

Def. If \mathcal{A} is a σ-field and $\mu: \mathcal{A} \rightarrow[0,1]$ is a set function that is countably additive in the sense that for disjoint A_{i}

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right),
$$

then μ is called a measure, or a countably additive measure on (Ω, \mathcal{A}).

Examples:

1) Lebesgue: length of the set A
2.) Counting: $\quad \#(\mathrm{~A})$ cardinality of A, i.e. number of elements of A
3.) Indicator: $\quad \delta_{\omega_{0}}(A)=I_{\omega_{0}}(A)= \begin{cases}1 & \text { if } \omega_{0} \in A \\ 0 & \text { otherwise. }\end{cases}$

Borel Sets

It is convenient to have a minimal σ-field containing a specified class of sets, ξ. We say ξ is the generator of a σ-field and write,

$$
\sigma[\xi] \equiv \bigcap\left\{\mathcal{F}_{\alpha}: \mathcal{F}_{\alpha} \text { is a } \sigma \text {-field of subsets of } \Omega \text { for which } \xi \subset \mathcal{F}_{\alpha}\right\}
$$

Since it is the intersection it has to be minimal.
Suppose $\Omega=\Re$, and ξ consists of all finite disjoint unions of intervals of the form

$$
(a, b],(-\infty, b], \text { and }(a,+\infty)
$$

ξ is a field, but not a σ-field since we can't get (a, b) by finite unions but we can by countable unions: take (a, b_{n}] with $b_{n} \nearrow b$. Then,

$$
\mathcal{B}=\sigma[\xi]
$$

is called the Borel subsets of \Re. And $\mu(A)$ is the countably additive measure assigning the length of the intervals composing A.

This can be extended to general metric spaces. Let (Ω, d) be a metric space and

$$
U=\{\text { all } d \text {-open supsets of } \Omega\}
$$

then $B=\sigma[U]$ are the Borel sets of (Ω, d) or the Borel σ-field of (Ω, d).

Expectations and the Lebesgue Integral

Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and suppose that X, X_{1}, X_{2}, \ldots are measurable functions from $(\Omega, \mathcal{A}, \mu)$ to (\Re, \mathcal{B}). If the sets $\left\{A_{i}: i=1, \ldots, n\right\}$ are disjoint, it is convenient to write

$$
\bigcup_{i=1}^{n} A_{i}=\sum_{i=1}^{n} A_{i}
$$

and if, further, $\sum A_{i}=\Omega$ we say that the A_{i} are a partition of Ω.

We may define the Lebesgue integral in a sequence of steps beginning with the simplest cases and building up from these.
(1) If $X=\sum_{i=1}^{n} x_{i} I_{A_{i}}$, we call it a simple (block) function provided $x_{i} \geq 0$ and the A_{i} 's constitute a partition of Ω. Then

$$
\int X d \mu \equiv \sum x_{i} \mu\left(A_{i}\right) .
$$

This is the simplest version of our original definition with only a finite number of possible values for X.
(2) If $X \geq 0$, then
$\int X d \mu=\sup \left\{\int Y d \mu: Y\right.$ is a simple function such that $\left.0 \leq Y \leq X\right\}$
(3) For general measurable X,

$$
\int X d \mu=\int X^{+} d \mu-\int X^{-} d \mu
$$

provided either $\int X^{+} d \mu$ or $\int X^{-} d \mu$ is finite.
(4) For unmeasurable X, if X equals a measurable function Y on a set A such that $\mu\left(A^{c}\right)=0$, has zero measure, then

$$
\int X d \mu=\int Y d \mu
$$

Properties

(1) Using a simple functions it is easy to show that
(a) $\int(X+Y) d \mu=\int X d \mu+\int Y d \mu$
(b) $\int c X d \mu=c \int X d \mu$
(c) $X \geq 0 \Rightarrow \int X d \mu \geq 0$.
(2) (Monotone Convergence Theorem) Suppose $X_{n} \nearrow X$ a.c. for measurable functions $X_{n} \geq 0$, then

$$
0 \leq \int X_{n} d \mu \nearrow \int X d \mu
$$

(3) (Fatou's Lemma) For measurable $X_{n} \geq 0$ a.e.

$$
\int \liminf X_{n} d \mu \leq \liminf \int X_{n} d \mu
$$

(4) (Dominated Convergence Theorem) Suppose $\left|X_{n}\right| \leq Y$ a.e. for some Y such that $\int|Y| d \mu<\infty$. And assume either (i) $X_{n} \rightarrow X$ a.e., or (ii) $X_{n} \rightarrow_{\mu} X$. Then

$$
\int\left|X_{n}-X\right| d \mu \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Remark. Note that (4) implies that

$$
\int X_{n} d \mu \rightarrow \int X d \mu
$$

6
and that

$$
\sup _{A \in \mathcal{A}}\left|\int_{A} X_{n} d \mu-\int_{A} X d \mu\right| \rightarrow 0
$$

This follows from the observation that

$$
\left|\int X_{n}-\int X\right| \leq \int\left|X_{n}-X_{n}\right|
$$

and thus uniformly for $A \in \mathcal{A}$,

$$
\left|\int_{A} X_{n}-\int_{A} X\right| \leq \int_{A}\left|X_{n}-X\right| \leq \int\left|X_{n}-X\right| \rightarrow 0
$$

Ref. Shorack (2000, Chapter 3).

