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Lecture 10
“Maximum Likelihood Asymptotics under Non-standard Conditions:

A Heuristic Introduction to Sandwiches”

Ref: Huber, 5th Berkeley Symp, 1967.
White, Econometrica, 1982, & 1994 monograph
Gourieroux & Monfort §8.4 and §24.

It is frequently the case that we would like like to investigate the limiting behavior of an
M-estimator when the strict conditions of mle do not apply. For example, how does the LS
estimator behavior when the errors are Student not Normal.

The general framework is the following: we observe an iid sequence {Yi, . . . , Yn} from G
with a density g. Next we specify a model F (y, θ) for θ ∈ Θ ∈ <p compact and consider the
quasi-MLE, or QMLE, θ̂, which maximizes

l(θ) =
n∑
i=1

log f(yi, θ)

Now we can (or should) ask what does θ̂ estimate? The answer is provided by the Kullback
Leibler Information Criterion (KLIC)

K(g, fθ) =

∫
log(g(y)/f(y, θ))dG(y)

=

∫
log g(y)dG−

∫
log f(y, θ)dG

Note that the first term is independent of θ so minimizing K wrt to θ is the same as maximizing
expected log likelihood. It should be emphasized that the KLIC minimizer may or may not
correspond to something close to what we anticipated interpreting as θ when we wrote down
the original likelihood. In some simple cases interpretation carries forward nicely, but in others
the minimizer may be some only some distorted shadow of its former self.

There is a large literature on the suitablity of K as a measure of discrepancy between
distributions. We will assume that K(g, fθ) has a unique minimum wrt to θ, and denote this
minimizing value by θ∗. This may be regarded as a (fairly) harmless identifiability condition.
We also need the fact that EG log f(Y, θ) < M <∞ for all θ ∈ Θ.

Theorem 1: Under the foregoing conditions, θ̂ → θ∗ a.s.

Proof: Modified Wald proof. See Huber (1967) for a beautiful treatment under the weakest
possible conditions.
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The next question to arise is asymptotic normality. For this we need to define the following:

Hn(θ) = n−1
n∑
i=1

∇2 log f(Yi, θ)

Jn(θ) = n−1
∑
∇ log f(Yi, θ) · ∇ log f(Yi, θ)

′

The latter matrix is usual called the outer product of the gradient and the former, the
Hessian of the likelihood. They are both p× p matrices, and we need these limits:

H0(θ) = EG∇2 log f(Y, θ)

J0(θ) = EG∇ log f∇ log f ′

Under the crucial proviso that the latter quantities exist, the KSLLN implies that Hn(θ)→
H0(θ) and Jn(θ)→ J0(θ). Now by the mean value theorem we have,

sn(θ∗) ≡ n−1
∑
∇ log f(Yi, θ

∗)

= sn(θ̂n) + (θ∗ − θ̂n)′∇sn(θ̃n)

= sn(θ̂n) + (θ∗ − θ̂n)′Hn(θ̃n)

but sn(θ̂n) = 0 [or at least → 0] and Hn(θ̃n)→ H0(θ
∗) since θ̂n → θ∗, so

√
n(θ∗ − θ̂n) = −

√
n[H0(θ

∗)]−1sn(θ∗) + op(1).

Recall that θ∗ minimizes EG log f(Y, θn) so

L(
√
nsn(θ∗)) ; N (0, J0(θ

∗))

so it follows immediately that

L(
√
n(θ̂n − θ∗)) ; N (0, [H0(θ

∗)]−1J(θ∗)[H0(θ
∗)]−1)

This is our first encounter with the Huber sandwich. Recall that in the special case that F = G,
we would have −H0 = J0 and the sandwich would collapse to I(θ0)

−1.

Examples and Remarks

(1) Linear Model with Heteroscedasticity of unknown form,

yi = xiβ0 + ui

ui ∼ N (0, σ2i )
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We mistakenly assume Euu′ = σ2I i.e., σ2i ≡ σ2. So the QMLE is β̂ = (X ′X)−1X ′y and
β∗ = β0 and there is no bias due to misspecification. Further, ignoring a constant,

ln(β) = (y −Xβ)′(y −Xβ)

so ∇ln(β) = X ′(y −Xβ)

E∇ln∇l′n = X ′ΩX

∇2ln(β) = −X ′X

so we have applying the theorem,

(β̂ − β) ; N (0, (X ′X)−1X ′ΩX(X ′X)−1)

which is the well known Eicker-White heteroscedasticity-consistent covariance matrix re-
sult.

(2) There are innumerable other examples; perhaps the most famous is the case of robust
estimation of location in which,

ρ(y − θ) = − log f(y − θ)

sn(θ) = n−1
n∑
i=1

ψ(yi − θ) ψ = ρ′

If {θn} is a sequence of solutions of sn(θ) = 0, then, by the foregoing,

L(
√
n(θ̂n − θ∗))→ N (0, Eψ2(Y − θ∗)/(Eψ′(Y − θ∗))2)

Here, H0 = Eψ′ and J0 = Eψ2 and everything is nice and simple: iid, scalar.

Two examples within the example

For the choice f = φ, i.e., standard normal we have ψ(u) = u so Eψ2/(Eψ′)2 = σ2G so the
variance of

√
n(µ̂−µ) tends to the variance of G for µ̂ chosen to be the sample mean. For

f Laplace, i.e., f(u) = 1
2e
−|u| we have ψ(u) = sgn (u) and Eψ2/(Eψ′)2 = 1/(2g(0))2 for

any symmetric G. Thus, comparing the mean vs. median for G = Φ yields

ARE = σ2G/(1/(2g(0)))2 =
2

π

so the median is about 36% less efficient asymptotically than the mean at the normal model.
In the Laplace case it is easy to see show that ARE = 2, so the median only needs half
as many observations as the mean to acheive the same precision. This case is the subject
of Kolmogorov’s first statistics paper in 1931 and was also investigated by Laplace. In a
dramatically different case, with G Cauchy, σ2G =∞ while 1/(2g(0))2 = π2/4 ≈ 2.46. The
Fisher Information for the standard Cauchy is 1/2 so the MLE, which achieves the CRLB
of 2, is again quite a bit better than the median, but both are “infinitely better” than the
mean.
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(3) In the strict mle case we ‘know’(!) that J0(θ
∗) = −H0(θ

∗) so H−1JH−1 = −H−1 = J−1

this is convenient, but undoubtedly overly utopian.

(4) If one is tempted to believe the mle fairy tale, then one can compute standard errors
by several different asymptotic approximations. Either (i) approximations to H−10 , (ii)
approximation to J−10 or the outer products matrix, or (iii) finally by approximation
H−10 J0H

−1
0 . The latter is undoubtedly superior, but more difficult.

(5) Discrepancies between these versions of the covariance matrix of θ̂, suggest that since such
discrepancies occur only under circumstances in which f , the model, and g, the process
generating the data, differ it becomes interesting to test for specification using the size
of the discrepancy. More interesting is the question: can we interpret the nature of the
discrepancy applications? This is the focus of White’s paper and subsequent work by
Chesher, Lancaster and many others. More on this later in the course.

Likelihoods from exponential family

Ref: McCulloch, “KLIC and LEF’s,” American Statistician, 1988, GM also has a good
discussion of some of these ideas based on a couple of Econometrica papers that they wrote with
Trognon, in the 1980’s.

In this section we explore briefly a special case of the foregoing general theory. Consider a model
based on X ∼ Pθ with exponential family density

p(x|θ) = exp{x′θ − c(θ)}g(x)dµ(x)

Recall that EX = ∇c(θ) and V X = ∇2c(θ). Now suppose that we have iid observations on
the random variable Y ∼ Q, some other “data generating process”. We would like to explore
the consequences of analysing Y as if it were X. We will assume that Q is absolutely continuous
with respect to µ so dQ = qdµ, and will also assume EY = m exists, i.e., m <∞. Consider the
KL divergence between Pθ and Q

K(Q,P ) =

∫
q log(q/p)dµ

Note that this relation is not symmetric K(Q,P ) 6= K(P,Q), but K(Q,P ) ≥ 0 with equality
iff Q = P , since by Jensen’s inequality

−K(Q,P ) =

∫
log(p/q)qdµ ≤ log(

∫
pdµ) = 0.

The model Pθ provides a “nice” family of densities since
(i) The parameter space Θ = {θ ∈ <P |p(x|θ) <∞} is convex, and
(ii) The loglikelihood is concave, i.e., ∇2c(θ) is positive definite.

Proposition 1: K(Q,Pθ) has a unique minimum, say θ∗, which is sometimes called the
“pseudo-true” value of θ. (It plays the role of θ0 is the strict MLE setup.) Further, if θ∗ ∈ int Θ,
then θ∗ = ∇c−1(m).
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Proof:

K(Q,Pθ) =

∫
q log(q/pθ)dµ

=

∫
q(x) log(q(x)/g(x))dµ+

∫
(c(θ)− x′θ)qdµ

= K(Q,P0) + c(θ)−m′θ

But ∇2c(θ) >> 0, so c(θ) −m′θ is strictly convex on Θ. This establishes uniqueness of θ∗.
If θ∗ ∈ int Θ, then ∇c(θ∗) = m, so θ∗ = (∇c)−1(m).

Remark: Since EX = ∇c(θ), we may interpret θ∗ as the value of θ which makes Pθ have
mean m, so we are really doing “moment matching,” or GMM.

Proposition 2: Let θ̂n be the qmle based on a random sample Y1, . . . , Yn from Q using Pθ as
the likelihood. Then, θ̂n → θ∗ a.s.

Proof: The log likelihood is denoting a generic constant by K

ln(θ) = K + n(Ȳ ′nθ − c(θ)).

By the KSLLN, Ȳn → m a.s. so n−1ln(θ) tends, uniformly in θ, to m′θ − c(θ) plus a term
independent of θ. But K(Q,Pθ) = c(θ) − m′θ + K ′ so the maximizer of ln(θ) tends to the
minimizer of K(Q,Pθ).

Proposition 3: Suppose V (Y ) = Ω exists and θ∗ ∈ int Θ and denote H = ∇2c(θ). Then

√
n(θ̂n − θ∗) ; N (0, H−1ΩH−1)

Proof: θ̂n = ∇c−1(Ȳn) for n sufficiently large, since θ∗ ∈ int Θ. And θ∗ = ∇c−1(m) by
Proposition 1. Thus,

√
n(θ̂n − θ∗) =

√
n(∇c−1(Ȳ )−∇c−1(m))

=
√
n(H−1(Ȳn −m)) + op(1)

Interpretation of KL-divergence via density estimation.

Given Y1, . . . , Yn we may construct the usual empirical df ,

Fn(y) = n−1
n∑
i=1

I(Yi < y)

Now we can smooth this step function by adding a little noise to it, e.g.,

Ŷ ∼ Fn(y)

Ỹ = Ŷ + U where U ∼ (G, g)

then
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fỸ (y) =

∫
f̂(x)g(y − x)dx

=

∫
g(y − x)dF̂ (x)

= n−1
∑

g(y −Xi)

so this is the usual kernel density estimator in which we use g(·) as the kernel. And it provides a
new interpretation of the kernel density estimation as smoothing the r.v. Ŷ ∼ Fn(y) by adding
a little random noise thus replacing its step function df, by something smoother.

Now, let Q̃n denote the df of the convolution, Ỹn. Note that the expectation.∫
xdQ̃n(x) =

∫
Q̃−1n dx = E(Ŷn + U) = EŶ = Ȳn.

where we have made the change of variable x = Q̃−1n . And we have also assumed that the noise
introduced by U has mean zero. We have also assumed that we haven’t altered the support of
the distribution by the smoothing operation. Now we can write

K(Q,Pθ) ≈ K(Q̃n, Pθ)

= K(Q̃n, gdµ) +

∫
(c(θ)− x′θ)q̃ndµ

= K(Q̃n, P0) + c(θ)− Ȳ ′nθ
= −nln(θ) +K

Thus the likelihood may be regarded as an estimate of the function mapping θ to K(Q,Pθ),
since we don’t know K(Q,Pθ) explicitly we compute θ∗ by maximizing the likelihood rather
than by minimizing K(Q,Pθ). The smoothing just facilitates the integration in a nice way.
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