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Preface

Francis Galton in a famous passage defending the \charms of statistics" against
its many detractors, chided his statistical colleagues

[who] limited their inquiries to Averages, and do not seem to revel in more
comprehensive views. Their souls seem as dull to the charm of variety
as that of a native of one of our 
at English counties, whose retrospect
of Switzerland was that, if the mountains could be thrown into its lakes,
two nuisances would be got rid of at once. [ Natural Inheritance, p. 62]

It is the fundamental task of statistics to bring order out of the diversity, at times
the apparent chaos, of scienti�c observation. And this task is often very e�ectively
accomplished by exploring how averages of certain variables depend upon the values
of other \conditioning" variables. The method of least squares which pervades sta-
tistics is admirably suited for this purpose. And yet, like Galton, one may question
whether the exclusive focus on conditional mean relations among variables, ignores
some \charm of variety" in matters statistical.

As residents of one of the 
attest American counties, our recollections of Switzer-
land and its attractive nuisances are quite di�erent from the ones described by Galton.
Not only the Swiss landscape, but many of its distinguished statisticians have in recent
years made us more aware of the charms and perils of the diversity of observations,
and the consequences of too-blindly limiting our inquiry to averages.

Quantile regression o�ers the opportunity for a more complete view of the statisti-
cal landscape and the relationships among stochastic variables. The simple expedient
of replacing the familiar notions of sorting and ranking observations in the most el-
ementary one-sample context by optimization enables us to extend these ideas to a
much broader class of statistical models. Just as minimizing sums of squares permits
us to estimate a wide variety of models for conditional mean functions, minimizing
a simple asymmetric version of absolute errors yields estimates for conditional quan-
tile functions. For linear parametric models computation is greatly facilitated by
the reformulation of our optimization problem as a parametric linear program. For-
mal duality results for linear programs yields a new approach to rank statistics and
rank-based inference for linear models.

We hope that this book can provide a comprehensive introduction to quantile
regression methods, and that it will serve to stimulate others to explore and further
develop these ideas in their own research. Since ultimately the test of any statistical
method must be its success in applications, we have sought to illustrate the applica-
tion of quantile regression methods throughout the book wherever possible. Formal
mathematical development, which in our view plays an indispensable role in clarify-
ing precise conditions under which statistical methods can be expected to perform
reliably and e�ciently, are generally downplayed, but Chapter 4 is devoted to an
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exposition of the basic asymptotic theory of quantile regression, and other chapters
include technical appendices which provide further mathematical details.

Statistical software for quantile regression is now widely available in many well-
known statistical packages including S, SAS, Shazam, and Stata. Fellow S users will
undoubtedly recognize by our graphics that we are S-ophiles and much of the software
described here may be obtained for S from http://www.econ.uiuc.edu.

We are grateful to many colleagues who have, over the years, collaborated with
us on various aspects of the work described here. Gib Bassett whose Ph.d. thesis on
l1-regression served as a springboard for much of the subsequent work in this area has
been a continuing source of insight and enthusiastic support. Jana Jure�ckov�a , who
took an early interest in this line of research, has made an enormous contribution to
the subject especially in developing the close connection between quantile regression
ideas and rank statistics in work with Cornelius Guttenbrunner. Independent work
by David Ruppert, Ray Carroll, Alan Welsh, Jim Powell, Gary Chamberlain, Probal
Chaudhuri, and Moshe Buchinsky among others, has also played a crucial role in
the development of these ideas. We have also collaborated in recent years with a
number of our students who have contributed signi�cantly to the development of
these ideas including: Jos�e Machado, Pin Ng, Lin-An Chen, Liji Shen, Qing Zhou,
Quanshui Zhao, Beum-Jo Park, and M. N. Hasan. Research support by the NSF
and the Center for Advanced Study at the University of Illinois has also been deeply
appreciated.

Urbana, June, 1999
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CHAPTER 1

Introduction

1. Means and Ends

Much of applied statistics may be viewed as an elaboration of the linear regression
model and associated estimation methods of least-squares. In beginning to describe
these techniques Mosteller and Tukey (1977) in their in
uential text remark:

What the regression curve does is give a grand summary for the aver-
ages of the distributions corresponding to the set of of x's. We could go
further and compute several di�erent regression curves corresponding to
the various percentage points of the distributions and thus get a more
complete picture of the set. Ordinarily this is not done, and so regres-
sion often gives a rather incomplete picture. Just as the mean gives an
incomplete picture of a single distribution, so the regression curve gives
a correspondingly incomplete picture for a set of distributions.

Our objective in the following pages is to describe explicitly how to \go further".
Quantile regression is intended to o�er a comprehensive strategy for completing the
regression picture.

Why does least-squares estimation of the linear regression model so pervade ap-
plied statistics? What makes it such a successful tool? Three possible answers suggest
themselves. We should not discount the obvious fact that the computational tractabil-
ity of linear estimators is extremely appealing. Surely this was the initial impetus for
their success. Secondly, if observational noise is normally distributed, i.e. Gaussian,
least squares methods are known to enjoy a certain optimality. But, as it was for
Gauss himself, this answer often appears to be an ex post rationalization designed to
replace our �rst response. More compelling is the relatively recent observation that
least squares methods provide a general approach to estimating conditional mean
functions.

And yet, as Mosteller and Tukey suggest, the mean is rarely a satisfactory end-
in-itself, even for statistical analysis of a single sample. Measures of spread, skew-
ness, kurtosis, boxplots, histograms and more sophisticated density estimation are
all frequently employed to gain further insight. Can something similar be done in
regression? A natural starting place for this would be to supplement the conditional
mean surfaces estimated by least squares with several estimated conditional quantile
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2 1. INTRODUCTION

surfaces. In the chapters that follow we describe methods to accomplish this. The
basic ideas go back to the earliest work on regression by Boscovich in the mid-18th
century, and to Edgeworth at the end of the 19th century.

2. The �rst regression: an historical prelude

It is ironic that the �rst faltering attempts to do regression are so closely tied to
the notions of quantile regression. Indeed, as we have written on a previous occasion,
the present enterprise might be viewed as an attempt to set statistics back 200 years
to the idyllic period before the discovery of least squares.

If least squares can be dated 1805 by the publication of Legendre's work on the
subject, then Boscovich's initial work on regression was half a century prior. The
problem that interested Boscovich was the ellipticity of the earth. Newton and others
had suggested that the earth's rotation could be expected to make it bulge at the
equator with a corresponding 
attening at the poles, making it an oblate spheroid,
more like a grapefruit than a lemon. To estimate the extent of this e�ect the �ve
measurements appearing in Table ?? had been made. Each represented a rather
arduous direct measurement of the arc-length of 1� of latitude at 5 quite dispersed
points { from Quito on the equator to Lapland at 66�190N. It was clear from these
measurements that arc-length was increasing as one moved toward the pole from
the equator, thus qualitatively con�rming Newton's conjecture. But how the �ve
measurements should be combined to produce one estimate of the earth's ellipticity
was unclear.

Location latitude sin2 (latitude) arc-length
Quito 0o 00 0 56751
Cape of Good Hope 33o 180 0.2987 57037
Rome 42o 590 0.4648 56979
Paris 49o 230 0.5762 57074
Lapland 66o 190 0.8386 57422

Table 1.1. Boscovich Ellipticity Data

For short arcs the approximation

y = a+ b sin2 �(1.2.1)

where y is the length of the arc and � is the latitude was known to be satisfactory. The
parameter a could be interpreted as the length of a degree of arc at the equator, and
b the excedence of a degree of arc at the pole over its value at the equator. Ellipticity
could then be computed as 1=ellipticity = � = 3a=b. Boscovich, noting that any pair
of observations could be used to compute an estimate of a and b, hence of �, began
by computing all 10 such estimates. These lines are illustrated in Figure 1.1. Some
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of these lines seemed quite implausible, especially perhaps the downward sloping one
through Rome and the Cape of Good Hope. Boscovich reported two �nal estimates:
one based on averaging all 10 distinct estimates of b, the other based on averaging all
but two of the pairwise slopes with the smallest implied exceedence. In both cases the
estimate of a was taken directly from the measured length of the arc at Quito. These
gave ellipticities of 1/155 and 1/198 respectively. A modern variant on this idea is
the median of pairwise slopes suggested by Theil(1950); which yields the somewhat
lower estimate 1/255.
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Figure 1.1. Boscovich Ellipticity Example. Boscovich computed all
the pairwise slopes and initially reported a trimmed mean of the pair-
wise slopes as a point estimate of the earth's ellipticity. Arc length is
measured as the excess over 56,700 toise per degree where one toise �
6.39 feet, or 1.95 meters.

It is a curiosity worth noting that the least squares estimator of (a; b) may also
be expressed as a weighted average of the pairwise slope estimates. Let h index the
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10 pairs, and write

b(h) = X(h)�1y(h)(1.2.2)

where for our simple bivariate model and h = (i; j),

X(h) =

�
1 xi
1 xj

�
y(h) =

�
yi
yj

�
;(1.2.3)

then we may write the least squares estimator as

b̂ =
X
h

w(h)b(h)(1.2.4)

where w(h) = jX(h)j2=Ph jX(h)j2. As shown by Subrahmanyam(1972) and elabo-
rated by Wu(1986) this representation of the least squares estimator extends imme-
diately to the general p-parameter linear regression model. In the bivariate example
the weights are obviously proportional to the distance between each pair of design
points, a fact that, in itself, portends the fragility of least squares to outliers in either
x or y observations.

Boscovich's second attack on the ellipticity problem formulated only two years
later brings us yet closer to quantile regression. In e�ect, he suggests estimating
(a; b) in 1.2.1 by minimizing the sum of absolute errors subject to the constraint that
the errors sum to zero. The constraint requires that the �tted line pass through
the centroid of the observations, (�x; �y). Boscovich provided a geometric algorithm to
compute the estimator which was remarkably simple. Having reduced the problem to
regression through the origin with the aid of the of the constraint, we may imagine
rotating a line through the new origin at (�x; �y) until the sum of absolute residuals
is minimized. This may be viewed algebraically, as noted later by Laplace, as the
computation of a weighted median. For each point we may compute

bi =
yi � �y

xi � �x
(1.2.5)

and associate with each slope the weight wi = jxi � �xj. Now let b(i) be the ordered
slopes and w(i) the associated weights, and �nd the smallest j, say j�, such that

jX
i=1

w(i) >
1

2

nX
i=1

w(i)(1.2.6)

The Boscovich estimator, �̂ = b(j�), was studied in detail by Laplace in 1789 and
later in his monumental Traite de M�echanique C�eleste. Boscovich's proposal, which
Laplace later called the \method of situation" is a curious blend of mean and median
ideas; in e�ect, the slope parameter b is estimated as a median, while the intercept
parameter a is estimated as a mean.
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This was clearly recognized by F.Y. Edgeworth, who revived these ideas in 1888
after nearly a century of neglect. In his early work on index numbers and weighted
averages Edgeworth had emphasized that the putative optimality of the sample mean
as an estimator of location was crucially dependent on the assumption that the obser-
vations came from a common normal distribution. If the observations were \discor-
dant", say from normals with di�erent variances, the median, he argued, could easily
be superior to the mean. Indeed, anticipating work of Tukey in the 1940's, Edge-
worth compares the asymptotic variances of the median and mean for observations
from scale mixtures of normals, concluding that for equally weighted mixtures with
relative scale greater than 2.25, the median had smaller asymptotic variance than the
mean.

Edgeworth's work on median methods for linear regression brings us directly to
quantile regression. Edgeworth(1888) discards the Boscovich-Laplace constraint that
the residuals sum to zero, and proposes to minimize the sum of absolute residuals
in both intercept and slope parameters, calling it a \double median" method, and
noting that it could be extended, in principle, to a \plural median" method. A
geometric algorithm was given for the bivariate case, and a discussion of conditions
under which one would prefer to minimize absolute error rather than the by then
well-established squared error is provided. Unfortunately, the geometric approach to
computing Edgeworth's new median regression estimator was rather awkward requir-
ing as he admitted later \the attention of a mathematician; and in the case of many
unknowns, some power of hypergeometrical conception." Only considerably later did
the advent of linear programming provide a conceptually simple and e�cient compu-
tational approach.

Once we have a median regression estimator it is natural to ask, \are there ana-
logues for regression of the other quantiles?" We begin to explore the answer to this
question in the next section.

3. Quantiles, Ranks, and Optimization

Any real valued random variable,X may be characterized by its (right-continuous)
distribution function,

F (x) = P (X � x)(1.3.1)

while for any 0 < � < 1

F�1(� ) = inffx : F (x) � �g(1.3.2)

is called the � th quantile of X. The median, F�1(1=2), plays the central role.
The quantiles arise from a simple optimization problem which is fundamental to

all that follows. Consider a simple decision theoretic problem: a point estimate is
required for a random variable with (posterior) distribution function F . If loss is
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 ττ−1

ρτ(u)

Figure 1.2. Quantile Regression � Function

described by the function

�� (u) = u(� � I(u < 0))(1.3.3)

for some � 2 (0; 1), �nd x̂ to minimize expected loss. This is a standard exercise in
many decision theory texts e.g. Ferguson (1967, p. 51). We seek to minimize

E�� (X � x̂) = (� � 1)

Z x̂

�1

(x� x̂)dF (x) + �

Z 1

x̂

(x� x̂)dF (x):(1.3.4)

Di�erentiating with respect to x̂, we have,

0 = (1� � )
Z x̂

�1

dF (x)� �
Z 1

x̂

dF (x) = F (x̂)� �:(1.3.5)

Since F is monotone, any element of fx : F (x) = �g minimizes expected loss. When
the solution is unique x̂ = F�1(� ), otherwise, we have an \interval of � th quantiles"
from which we may choose the smallest element { to adhere to the convention that
the empirical quantile function be left-continuous.

It is natural that our optimal point estimator for asymmetric linear loss should
lead us to the quantiles. In the symmetric case of absolute value loss it is well known to
yield the median. When loss is linear and asymmetric we prefer a point estimate more
likely to leave us on the 
atter of the two branches of marginal loss. Thus, for example
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if an underestimate is marginally three times more costly than an overestimate, we
will choose x̂ so that P (X � x̂) is three times greater than P (X > x̂) to compensate.
That is, we will choose x̂ to be the 75th percentile of F .

When F is replaced by the empirical distribution function,

Fn(x) = n�1
nX
i=1

I(Xi � x)(1.3.6)

we may still choose x̂ to minimize expected lossZ
��(x� x̂)dFn(x) = n�1

nX
i=1

�� (xi � x̂) = min!(1.3.7)

and doing so now yields the � th sample quantile. When �n is an integer there is
again some ambiguity in the solution, because we really have an interval of solutions,
fx : Fn(x) = �g, but we shall see that this is of little practical consequence.

Much more important is the fact that we have expressed the problem of �nding the
� th sample quantile, which might seem inherently tied to the notion of an ordering
of the sample observations, as the solution to a simple optimization problem. In
e�ect we have replaced sorting by optimizing. This will prove to be the key idea in
generalizing the quantiles to a much richer class of models in subsequent chapters.
Before we do this though, it is worth examining the simple case of the ordinary sample
quantiles in a bit more detail.

The problem of �nding the � th sample quantile, which we may now write as,

min
�2R

nX
i=1

��(yi � �);(1.3.8)

may be reformulated as a linear program by introducing 2n arti�cial, or \slack",
variables fui; vi : 1; :::; ng to represent the positive and negative parts of the vector of
residuals. This yields the new problem,

min
(�;u;v)2jR�jR2n

+

f�10nu+ (1 � � )10nvj10n� + u� v = yg(1.3.9)

where 1n denotes an n-vector of ones. Clearly, in (1.3.9) we are minimizing a linear
function on a polyhedral constraint set, consisting of the intersection of the (2n+1)-
dimensional hyperplane determined by the linear equality constraints and the set
jR � jR2n

+ Many features of the solution are immediately apparent from this simple
fact. For example, minfui; vig must be zero for all i, since otherwise, the objective
function may be reduced without violating the constraint by shrinking such a pair
toward zero. This is usually called complementary slackness in the terminology of
linear programming. Indeed, for this same reason we can restrict attention to \basic
solutions" of the form � = yi for some observation i. To see this consider Figure 1.3
which depicts the objective function (1.3.8) for three di�erent random samples of
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varying sizes. The graph of the objective function is convex and piecewise linear with
kinks at the observed yi's. When � passes through one of these yi's, the slope of the
objective function changes by exactly 1 since a contribution of � � 1 is replaced by �
or vice-versa.
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Figure 1.3. Quantile objective function with random data. The �gure
illustrates the objective function for the optimizaiton problem de�ning
the ordinary � = 1=3 quantile, for three di�erent random problems
with yi's drawn from the standard normal distribution, and sample
sizes 7, 12, and 23. The vertical dotted lines indicate the position of
the observations in each sample. Note that since 12 is divisible by
3, the objective function is 
at at its minimum in the middle �gure,
and we have an interval of solutions between the fourth and �fth order
statistics.

Optimality holds if the right and left derivatives,

R0(�;+1) = lim
h!0

(R(� + h) �R(�))=h =
nX
i=1

(I(yi < � + h)� � )

and

R0(�;�1) = lim
h!0

(R(� � h)�R(�))=h =
nX
i=1

(� � I(yi < � � h))

are both nonnegative, that is if n� lie in the closed interval [N�; N+] where

N� = ]fyi < ��0g:
When n� is not an integer there is a unique value of � which satis�es this condition.
Barring ties in the yi's, this value corresponds to a unique order statistic. When there
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are ties, � is still unique, but there may be several yi equal to �. If n� is an integer
then �̂� lies between two adjacent order statistics. It is unique only when these order
statistics coalesce at a single value.

The duality connecting the sample quantiles and the ranks of the order statistics is
further clari�ed through the formal duality of linear programming. The dual program
to (1.3.9) is

maxfy0aj10na = (1� � )n; a 2 [0; 1]ng(1.3.10)

While the former (primal) problem may be viewed as generating the sample quan-
tiles, the dual problem may be seen to generate the order statistics or perhaps more
precisely the ranks of the observations. What does the solution â(� ) look like for the
simple dual problem (1.3.10)?

Clearly at � = 0 feasibility requires that all of the âi(0) = 1, and similarly at
� = 1, âi(1) = 0 for all i = 1; :::; n. Starting at � = 0, consider increasing � . How
should we modify the âi's? Initially we should focus on y(1) = minfy1; :::; yng since
decreasing its weight has the least impact on the sum y0a. Thus, if y(1) = yj then as �
increases aj must decrease linearly to satisfy the equality constraint. This is �ne until
� reaches 1=n, but at this point aj has been driven to 0 and it is allowed to go no
further. Now y(2), being the smallest available response, is gradually downweighted,
and the process continues until all the observations have achieved weight ai = 0, at
which point � = 1. The functions âi(� ) take the form

âi(� ) =

8<
:

1 � � (Ri � 1)=n
Ri � �n (Ri � 1)=n < � � Ri=n
0 Ri=n < �

(1.3.11)

whereRi is the rank of yi among fy1; :::; yng. These functions coincide exactly with the
rankscore generating functions introduced by H�ajek and �Sid�ak (1967, V.3.5). They
provide a natural approach to the construction of the ranks and test statistics based
upon the ranks. Note for example that integrating with respect to the Wilcoxon score
function '(t) = 1 we have Z 1

0

âi(t)d'(t) = (Ri � 1=2)=n:

We will see that this approach to ranks generalizes naturally to the linear model,
yielding an elegant generalization of rank tests for the linear model.

4. Preview of Quantile Regression

The observation developed in Section 1.3 that the quantiles may be expressed
as the solution to a simple optimization problem leads, naturally, to more general
methods of estimating models of conditional quantile functions. Least-squares o�ers
a template for this development. Knowing that the sample mean solves the problem
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min
�2jR

nX
i=1

(yi � �)2(1.4.1)

suggests that if we are willing to express the conditional mean of y given x as �(x) =
x0� then we might estimate � by solving

min
�2jR

nX
i=1

(yi � x0i�)2:(1.4.2)

Similarly, since the � th sample quantile, �̂(� ) solves

min
�2jR

nX
i=1

�� (yi � �);(1.4.3)

we are led to specifying the � th conditional quantile function as Qy(� jx) = x0�(� ),

and to consideration of �̂(� ) solving,

min
�2jRp

nX
i=1

�� (yi � x0i�):(1.4.4)

This is the germ of the idea elaborated in Koenker and Bassett(1978).
The quantile regression problem (1.4.4) may be reformulated as a linear program

as in (1.3.9)

min
(�;u;v)2jRp

�jR2n
+

f�10nu+ (1 � � )10nvjX� + u� v = yg(1.4.5)

where X now denotes the usual n by p regression design matrix. Again, we see that
we are minimizing a linear function on a polyhedral constraint set, and most of the
important properties of the solutions, �̂(� ), which we call \regression quantiles" again
follow immediately from well-known properties of solutions of linear programs.

We can illustrate the regression quantiles in a very simple bivariate example by
reconsidering the Boscovich data. In Figure 1.4 we illustrate all of the distinct re-
gression quantile solutions for this data. Of the 10 lines passing through pairs of
points in Figure 1.1, quantile regression selects only 4. Solving (1.4.4) for any � in
the interval (0; :21) yields as a unique solution the line passing through Quito and
Rome. At � = :21 the solution jumps and throughout the interval (:21; :48) we have
the solution characterized by the line passing through Quito and Paris. The process
continues until we get to � = :78, where the solution through Lapland and the Cape
of Good Hope prevails up to � = 1.
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Figure 1.4. Regression Quantiles for Boscovich Ellipticity Example.
Only 4 of the full 10 pairs of points form quantile regression solutions.
The subintervals of (0; 1) for which each pair solves (1.4.4) are given in
the �gure.

In contrast to the ordinary sample quantiles which are equally spaced on the
interval [0,1], with each distinct order statistic occupying an interval of length exactly
1=n, the lengths of the regression quantile solution intervals for � 2 [0; 1] are irregular
and depend upon the con�guration of the design as well as the realized values of the
response variable. Pairs of points now play the role of order statistics, and serve to
de�ne the estimated linear conditional quantile functions. Again, in the terminology
of linear programming such solutions are \basic", and constitute extreme points of
the polyhedral constraint set. If we imagine the plane represented by the objective
function of (1.4.4) rotating as � increases, we may visualize the solutions of (1.4.4)
as passing from one vertex of the constraint set to another. Each vertex represents
an exact �t of a line to a pair of sample observations. At a few isolated � -points,
the plane will make contact with an entire edge of the constraint set and we will
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have a set-valued solution. It is easy to see, even in these cases, that the solution is
characterized as the convex hull of its \basic" solutions.

One occasionally encounters the view that quantile regression estimators must
\ignore sample information" since they are inherently determined by a small subset
of the observations. This view neglects the obvious fact that all the observations
participate in which \basic" observations are selected as basic.

We shall see that quantile regression does preserve an important robustness as-
pect of the ordinary sample quantiles: if we perturb the order statistics above (or
below) the median in such a way that they remain above (or below) the median, the
position of the median is unchanged. Similarly, for example, if we were to perturb the
the position of the Lapland observation upwards this would not a�ect the solutions
illustrated in the �gure for any � in the interval (0; :48).

The Boscovich example is a bit too small to convey the full 
avor of quantile
regression even in the bivariate setting, so we will conclude this chapter with two
other examples which exhibit various aspects of quantile regression in the bivariate
context where pictures are easily available to illustrate the results.

Consider an arti�cial sample in which we have a simple bivariate regression model
with independent and identically distributed errors,

yi = �0 + x0i�1 + ui

so the quantile functions of yi are

Q(� jx) = �0 + x0�1 + F�1
u (� )

where Fu denotes the common distribution function of the errors. In this simple case
the quantile functions are simply a vertical displacement of one another and �̂(� )
estimates the population parameters, (�0 + F�1(� ); �1)0

In Figure 1.5 we illustrate data and several �tted regression quantile lines from
such a model. The dots indicate 60 observations generated from the iid error model
with F selected to be Gaussian. The dotted lines represent the true f:05; :25; :50; :75; :95g
conditional quantile lines. The solid line in each panel depicts the estimated condi-
tional quantile line for the � interval indicated above the panel. As � increases we see
that these estimated lines move up through the data retaining in most cases a slope
close to that of the family of true conditional quantile functions. In this example there
are 66 distinct regression quantile solutions. Rather than illustrate all of them we
have chosen to illustrate only 12 spaced roughly evenly over the interval [0; 1]. Above
each panel we indicate the � -interval for which the illustrated solution is optimal.

If real data analysis were always as well-behaved as the iid linear model depicted
in Figure 1.5 there would be little need for quantile regression. The least squares
estimate of the conditional mean function and some associated measure of disper-
sion would (usually) su�ce. Robust alternatives to least squares could be used to
accommodate situations in which errors exhibited long tails.
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Figure 1.5. Regression Quantiles for iid-Error Bivariate Regression
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Figure 1.6. Regression Quantiles for Heteroscedastic Bivariate Regression
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In the next �gure we illustrate a somewhat more complicated situation. The
model now takes the heteroscedastic form,

yi = �0 + x0i�1 + �(xi)ui

where �(x) = 
x2 and the fuig are again iid. The quantile functions of yi are now
easily seen to be

Q(� jx) = �0 + x0�1 + �(x)F�1(� )

and can be consistently estimated by minimizingX
�� (yi � �0 � xi�1 � x2i�2)

so �̂(� ) converges to (�0; �1; 
F�1(� ))): Figure 1.6 illustrates an example of this form.
Again, the population conditional quantile functions are shown as dotted lines with the
observed sample of 60 points superimposed and a sequence of estimated quantile re-
gression curves appearing as the solid lines. The estimated quantile regression curves
provide a direct empirical analogue for the family of conditional quantile functions in
the population.

5. Bibliographic Notes

On the early history of regression and the contribution of Boscovitch in particular,
Stigler(1986) is the de�nitive introduction. Smith(1986) contains a detailed account
of the development of geodesy, focusing attention on the e�orts which culminated in
the data appearing in Table ??. Sheynin(1973) and Harter(1974) also o�er useful
accounts of the early history of regression. Edgeworth's (1887,1888) contributions to
the development of median regression were crucial to the continuing interest in these
methods in economics. Only with the emergence of the simplex algorithm for linear
programming in the late 1940's did `1 methods become practical on a large scale.
Papers by Charnes, Cooper and Ferguson (1955), Wagner (1959) and others provided
a foundation for modern implementations, such as Barrodale and Roberts (1974) and
Bartels and Conn (1980).
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CHAPTER 2

Fundamentals of Quantile Regression

In this Chapter we seek to provide a basic conceptual guide to quantile regression,
illustrating the ideas with a number of examples and stressing various aspects of
the interpretation of quantile regression. We will begin by illustrating the methods
in two simple examples. The �rst example involves earnings-experience pro�les for
academic salaries in statistics. The second is a somewhat more complicated analysis
of determinants of student course evaluation responses. The bivariate nature the
�rst example allows us to develop a close link between quantile regression methods
and the well-known boxplot. The basic objective of Tukey's boxplot is to provide an
e�cient graphical summary of the main features of an entire univariate distribution.
By aligning boxplots for neighboring conditional distributions, one can achieve { for
bivariate regression { the \completed picture" of regression alluded to by Mosteller
and Tukey, quoted in our introductory paragraph.

Quantile regression permits us to extend this link to more complicated situations
such as our second example where there are several covariates and o�ers an extensive
menu of possible formal inference strategies. The basic insight is exceedingly simple:
the notions of ordering, sorting and ranking traditionally associated with univariate
statistical analysis can be extended to regression by viewing these procedures as the
outcome of an elementary optimization process. The resulting optimization problems
not only yield a convenient computational strategy for quantile regression, but they
illuminate many important properties of the methods in a particularly convenient
way. In subsequent chapters these themes will be developed more fully.

1. Quantile Regression Treatment E�ects

The simplest formulation of regression is the classical two-sample treatment-
control model. We will begin by reconsidering a general model of two-sample treat-
ment response introduced by Lehmann and Doksum in the 1970's. This model pro-
vides a natural introduction to the interpretation of quantile regression models in
more general settings.

Lehmann (1974) proposed the following model of treatment response:

\Suppose the treatment adds the amount �(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment

17
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responses is that of the random variableX+�(X) whereX is distributed
according to F ."

Special cases obviously include the location shift model �(X) = �0, and the scale
shift model �(x) = �0X, If the treatment is bene�cial in the sense that,

�(x) � 0 for all x

then the distribution of treatment responses, G, is stochastically larger than the
distribution of control responses, F .

Doksum (1974) shows that if we de�ne �(x) as the \horizontal distance" between
F and G at x, so

F (x) = G(x+�(x))

then �(x) is uniquely de�ned and can be expressed as

�(x) = G�1(F (x))� x:(2.1.1)

Thus, on changing variables so � = F (x) we have the quantile treatment e�ect,

�(� ) = �(F�1(� )) = G�1(� )� F�1(� ):

Doksum provides a thorough axiomatic analysis of this formulation of treatment
response.

In the two sample setting the quantile treatment e�ect is naturally estimable by

�̂(� ) = Ĝ�1
n (� )� F̂�1

m (� )

where Gn and Fm denote the empirical distribution functions of the treatment and
control observations, based on n and m observations respectively. If we formulate the
quantile regression model for the binary treatment problem as,

QYi
(� jDi) = �(� ) + �(� )Di(2.1.2)

where Di denotes the treatment indicator, with Di = 1 indicating treatment, Di = 0,
control, then we may estimate the quantile treatment e�ect directly.

To illustrate, Doksum (1974) reconsiders a 1960 study by Bjerkedal of the e�ect
of injections of tubercle bacilli on guinea pigs. Survival times, following injection,
were recorded (in days) for 107 control subjects and 60 treatments subjects. Of the
control subjects, 42 lived longer than the experimental censoring threshold of 736
days. None of the treatment subjects survived more than 600 days. In Figure ?? we
plot the estimated functions �̂(� ) and �̂(� ). The plots are \censored" beyond � = :6
due to the censoring of the survival times of the control subjects. Con�dence bands
are indicated by the lightly shaded regions. The treatment e�ect in this example,
depicted in right panel, is evidently neither a location shift, which would appear as
a horizontal line, or a scale shift, which would appear as a proportional dilation of
the \control e�ect" depicted in the left (intercept) panel. Here, animals receiving the
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treatment injection of bacilli appear to bene�t from the treatment in the lower tail
of the distribution, while the upper tail the treatment shows a strongly signi�cantly
adverse e�ect on survival. The treatment thus appears to have an advantageous e�ect
on survival in the short-run, but seems very disadvantageous in the longer run.

Doksum suggests that we may wish interpret control subjects in terms of a latent
characteristic. Control subjects may be called frail if they are prone to die at an
early age, and robust if prone to die at an advanced age. This characteristic is
thus implicitly indexed by � , the quantile of the survival distribution at which the
subject would appear if untreated, i.e., (YijDi = 0) = �(� ): And the treatment, under
the Lehmann-Doksum model, is assumed to alter the subjects control response, �(� ),
making it �(� )+�(� ) under the treatment. If the latent characteristic, say, propensity
for longevity, were observable ex ante, then we might view the treatment e�ect �(� ) as
an explicit interaction with this observable variable. However, in the absence of such
an observable variable, the quantile treatment e�ect may be regarded as a natural
measure of the treatment response. Of course, there is no way of knowing whether the
treatment actually operates in the manner proscribed by �(� ): In fact, the treatment
may miraculously make weak subject especially robust, and turn the strong into jello.
All we can observe from experimental evidence, however, is the di�erence in the two
survival distributions, and it is natural to associate the treatment e�ect with the
di�erence in the corresponding quantiles of the two distributions. This is what the
quantile treatment e�ect does.

When the treatment variable takes more than two values, this interpretation re-
quires only slight adaptation. In the case of p distinct treatments, we can write

QYi
(� jDij) = �(� ) +

pX
j=1

�j(� )Dij

where Dij = 1 if observation i received the jth treatment and Dij = 0 otherwise.
Here �j(� ) constitutes the quantile treatment e�ect connecting the distribution of
control responses to the responses of subjects under treatment j. If the treatment
is continuous as, for example, in dose-response studies, then it is natural to consider
the assumption that the e�ect is linear, and write,

QYi
(� jxi) = �(� ) + �(� )xi:

We assume thereby that the treatment e�ect, �(� ), of changing x from x0 to x0+1 is
the same as the treatment e�ect of an alteration of x from x1 to x1 + 1: Interpreted
in this fashion the quantile treatment e�ect o�ers a natural extension to continuously
varying treatments of the Lehmann-Doksum formulation for the discrete case.

In economics, a common application of this type involves investigations of the
e�ect of years of schooling on observed wages. In this literature, it is common to
identify latent components of wage determination with unobserved characteristics
such as \spunk" or \ability" and thus these terms play the same role as \propensity
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Figure 2.1. This �gure illustrates quantile regression results for the
guinea pig example analyzed in Doksum (1974), and taken from
Bjerkedal (1960). The �tted model (2.1.2) for log survival times is
based on a sample of 107 controls and 60 treatment subjects injected
with the tubercle bacilli. In the left panel we plot the function �̂(� )
representing the empirical quantiles of the log survival time distribution
for the control sample. In the right panel we depict, �̂(� ), the estimated
quantile treatment e�ect. In this simple two sample setting, the quan-
tile treatment e�ect, �̂(� ), is just the horizontal distance between the
empirical cdfs of the control and treatment samples. Note that the
treatment has a positive e�ect on survival in the left tail, thus improv-
ing survival prospects for the weakest subjects. But the treatment has
a very adverse e�ect on survival times in the right tail, dramatically
reducing survival times for the stronger subjects. The lightly shaded
region illustrates a 90% con�dence band for the estimated e�ects.
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for longevity" in survival examples. The quantile treatment e�ect, �(� ), may be
interpreted as an interaction e�ect between unobserved \ability" and the level of
education. This interpretation has been recently explored in work of Arias, Hallock
and Sosa (1999) in a study of the earnings of identical twins.

Finally, it may be noted that the quantile treatment e�ect (2.1.1), is intimately
tied to the traditional two-sample QQ-plot which has a long history as a graphical
diagnostic device. Note that the function �̂(x) = G�1

n (Fm(x))� x is exactly what is
plotted in the traditional two sample QQ-plot. The connection between the Lehmann-
Doksum treatment e�ect and the QQ-plot is explored in Doksum and Sievers (1976),
Nair (1982) for the the p-sample problem. Quantile regression may be as a means of
extending the two-sample QQ plot and related methods to general regression settings
with continuous covariates. We will return to this observation and its implications
for inference in Chapter 3.

2. Two Examples

2.1. Salaries vs Experience. In Figure 2.1 we illustrate this with results of the
1995 survey of academic salaries in statistics conducted by the American Statistical
Association. The �gure is based on data from 99 departments in U.S. colleges and
universities on 370 full professors of statistics. The data is grouped into 3 year
experience categories de�ned as years since promotion to the rank of full professor.
The boxes appearing in the �gure represent the interquartile range of salaries for each
experience group. The upper limit of the box represents the 75th percentile of the
salary distribution in each experience group from the survey, while the lower limit
represents the 25th percentile. Thus, the central half of the surveyed salaries would
fall within the boxes. Median salary for each group is depicted by the horizontal line
drawn in each box. The width of the boxes is proportional to the square root of the
respective sample sizes of the groups.

What can we conclude from the boxes? There clearly seems to be a tendency for
salary to increase at a decreasing rate with \years in rank," with some suggestion
that salary may actually decline for the oldest group. There is also a pronounced
tendency for the dispersion of the salary distribution to increase with experience.
None of these �ndings are particularly surprising, but taken together they constitute
a much more complete description than would be available from conventional least-
squares regression analysis. The boxplot takes us much further than we are able to go
with only the conditional mean function. Of course we would like to go still further:
to estimate more quantiles of the distribution, to introduce additional covariates,
to disaggregate the experience groups, and so forth. However, each of these steps
diminish the viability of the boxplot approach which relies upon adequate sample
sizes for each of the groups, or cells, represented by the boxes. What could we do if
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Table 2.1 Since the estimated slope parameters, �̂ increase with the quantile, these

Quantile � Initial Professorial Salary �̂ Annual Increment �̂
0.75 21500 625
0.50 20000 485
0.25 18800 300

Table 2.1. Hogg's(1975) linear quantile regression results for the
1973-74 ASA academic salary survey of full professors of statistics in
U.S. colleges and universities. The monotone relation of the slope esti-
mates indicates heteroscedasticity, i.e. increasing salary dispersion with
experience.

estimates re
ect the same increasing dispersion, or heteroscedasticity, that we saw
in the boxplots of Figure 2.1 for the more recent salary data. In this case, with so
little data, it does not seem prudent to venture an opinion about the curvature of the
salary pro�le.

2.2. Student Course Evaluations and Class Size. Our second example il-
lustrates several advantages of the optimization approach to quantile regression intro-
duced in the previous chapter. The data consists of mean course evaluation scores for
1482 courses o�ered by large U.S. university over the period 1980-94 We are primarily
concerned with the e�ect of class size on course evaluation questionnaire CEQ-score,
but also of interest is the possibility of a time trend in the scores and any special
e�ects due the nature of particular types of courses.

In Figure 2.3 we illustrate the data for this example and plot �ve estimated quan-
tile regression curves. These curves are speci�ed as quadratic in the number of CEQ
respondents which we take as the relevant measure of class size. In addition to the
class size e�ect we have included a linear time trend and an indicator variable which
takes the value 1 for graduate courses, and 0 for undergraduate courses. The model
may thus be written as,

QY (� jx) = �0 + Trend�1 +Grad�2 + Size�3+ Size2�4

and can be estimated for any � 2 (0; 1) by solving the problem,

min
b2jR

nX
i=1

�� (yi � x0ib):(2.2.1)

The estimated quantile regression parameters and their con�dence intervals are given
in Table 2.2 Details on the construction of the con�dence intervals appear in in the
next chapter
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Figure 2.3. Course Evaluation Scores: Solid lines indicate estimated
quantiles of CEQ response for an undergraduate course in 1992 as a
function the class size measured by number of CEQ respondents.

From the table it can be seen that there is some evidence for a downward trend in
CEQ scores for the lower quantiles, on the order of .01 to .02 rating points per year,
but no evidence of a trend in the upper tail of the ratings distribution. Our tentative
conclusion from this is that ornery students are getting ornerier. Graduate courses
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� Intercept Trend Graduate Size Size2

0.050 4:749
( 4:123 ; 5:207 )

�0:032
( �0:041 ; �0:016 )

0:054
( �0:065 ; 0:169 )

�0:642
( �0:930 ; �0:233 )

0:069
( 0:013 ; 0:104 )

0.250 5:003
( 4:732 ; 5:206 )

�0:014
( �0:023 ; �0:008 )

0:132
( 0:054 ; 0:193 )

�0:537
( �0:604 ; �0:393 )

0:056
( 0:034 ; 0:066 )

0.500 5:110
( 4:934 ; 5:260 )

�0:014
( �0:018 ; �0:008 )

0:095
( 0:043 ; 0:157 )

�0:377
( �0:484 ; �0:274 )

0:031
( 0:014 ; 0:050 )

0.750 5:301
( 5:059 ; 5:379 )

�0:001
( �0:005 ; 0:005 )

0:111
( 0:027 ; 0:152 )

�0:418
( �0:462 ; �0:262 )

0:040
( 0:015 ; 0:050 )

0.950 5:169
( 5:026 ; 5:395 )

0:001
( �0:004 ; 0:006 )

0:054
( �0:001 ; 0:099 )

�0:159
( �0:323 ; �0:085 )

0:010
( �0:005 ; 0:035 )

Table 2.2. Quantile regression estimates for a model of student course
evaluation scores. Numbers in parentheses give a 95% con�dence inter-
val for each reported coe�cient.

have a fairly consistent tendency to be rated higher by about .10 rating points than
undergraduate courses.

In order to plot the curves illustrated in Figure 2.3 we have set the indicator vari-
able to zero to represent an undergraduate course and the trend variable to represent
the last year in the sample, 1994. The curves clearly show a tendency for larger classes
to receive lower ratings by students with this decline occurring at a decreasing rate.
The apparent tendency for scores to increase slightly for courses with more than 100
respondents may be entirely an artifact of the quadratic speci�cation of the curves,
but may also be partially attributed to a departmental policy of trying to allocate its
best teachers to the larger courses.

We could probably agree that the dotted curves connecting the boxplot salary
quartiles of Figure 2.1 appear somewhat undersmoothed. A parametric model for the
conditional quartiles might improve the appearance of the plot, if we could agree on
a transformation which would adequately capture the curvature of the salary pro�le.
One attempt to do this is illustrated in Figure 2.2 where we have chosen the parametric
model

Qlog(y)(� jx) = �+ � log x

for each of the quartiles, � 2 f1=4; 1=2; 3=4g: The curves shown in Figure 2.2 have been
estimated by median (`1) regression using only the respective grouped quartile data.
(The individual data collected by the ASA is protected by con�dentiality assurances.)
These curves, and the parameters that characterize them, have a straightforward
interpretation. The slope parameter in the log-linear quantile regression is simply a
rate of growth of salary with respect to experience. In our example, the �rst quartile
of the salary distribution has an estimated growth rate of 7.3% per year of tenure,
while the median and the upper quartile grow at 14 and 13 percent respectively. As for
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we have called the linear location-scale model,

yi = xi� + (x0i
)ui

with fuig iid from F. In this case the coe�cients of the � th quantile regression, �̂(� )
converge to � + 
F�1

u (� ), so all of the parameters would share the same monotone
behavior in � , governed by the quantile function of the errors F�1

u (� ). Clearly, this
too is an extremely restrictive model, and we often �nd very di�erent behavior (in � )
across slope coe�cients. Such �ndings should remind us that the theory of the linear
statistical model and its reliance on the hypothesis of a scalar iid error-process is only
a convenient �ction; life can be stranger, and more interesting.

In the course evaluation example we have seen that the downward time trend in
student evaluations is apparent at the median and lower quantiles but there is essen-
tially no trend in the upper conditional quantile estimates. In contrast, the estimated
disparity between graduate and undergraduate course ratings is positive and quite
large, .1 rating points, for the central quantiles, but negligible in the tails. This \-
shape for �̂j(� ) may seem strange at �rst, but it is easily reconciled by considering a
very simple two sample quantile regression problem.

Suppose, to continue the course evaluation example, that sample one of under-
graduate scores, supported on the interval [1; 5], were quite symmetric around its
median, while sample two of graduate ratings was skewed toward the upper bound of
5. If the two distributions have similar tail behavior, then the quantile regressions,
which in the two-sample case simply connect the the corresponding quantiles of the
two distributions, would also display a \-shaped pattern { central quantiles with a
signi�cant positive slope, extreme quantiles with negligible slope. The e�ect of class
size on the quantile regressions for CEQ-scores is illustrated in Figure 2.3. There is
some tendency for these curves to be initially more steeply sloped and to exhibit more
curvature at lower quantiles.

Taken together, it is di�cult to reconcile these observations with a conventional
scalar-error linear model, but they do o�er a much richer view of the data than the
one provided by a least squares analysis.

3. How does quantile regression work?

Much of our intuition about how ordinary regression \works" comes from the
geometry of least squares projection. The idea of minimizing the Euclidean distance
k y � ŷ k over all ŷ in the linear span of the columns of X is very appealing. We
may just imagine blowing up a beach ball centered at y until it touches the subspace
spanned by X. Replacing Euclidean beach balls by polyhedral diamonds of the �� -
distance,

d� (y; ŷ) =
nX
i=1

��(yi � ŷi);
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raises some new problems, but many nice features and insights persist. We do not
obtain an elegant \closed form" solution like

ŷ = X(X 0X)�1X 0y;

but the algorithm which leads us to the quantile regression estimates is really no more
esoteric than say, the Householder transformations which gives a QR decomposition
of X, and lead eventually to the \closed form" least squares estimate.

To minimize

k y � ŷ(�) k2= (y �X�)0(y �X�)
we di�erentiate to obtain the \normal equations"

r�jjy � ŷ(�)jj = X 0(y �X�) = 0

and solve for �̂. In quantile regression we proceed likewise. We di�erentiate,

R(�) = d� (y; ŷ(�)) =
nX
i=1

�� (yi � xi�);

but recognizing that these derivatives may depend upon the direction, when some
residuals are zero, we consider the directional derivatives,

rR(�;w) � d

dt
R(� + tw) jt=0

=
d

dt

nX
i=1

ui(� + tw)[� � I(ui(� + tw) < 0)] jt=0

= �
X

 �(yi � x0i�;�x0iw)x0iw

where

 �(u; v) =

�
� � I(u < 0) if u 6= 0
� � I(v < 0) if u = 0:

If rR(�̂; w) � 0 for all w 2 jRp with k w k= 1; then �̂ minimizes R(�). This is a
natural generalization of simply setting rR(�) = 0 when R is smooth.

One important feature of �̂(� ) that is immediately apparent from the geometry

of the problem of �nding the point ŷ = X�̂(� ) closest to y in d� -distance is that
the choice should keep as many coordinates of the residual vector u(�) = y � X�
equal to zero as possible. If we are estimating p parameters, i.e., � 2 jRp, then
we usually can not hope to have more than p zero u(�)-coordinates, but there is
no reason to tolerate fewer than p zero coordinates either. This is an immediate
consequence of the piecewise linearity of the objective function in the residuals, and
the polyhedral nature of the constraint set. Just as our search for the median leads
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us to a unique middle observation or a pair of adjacent middle observations either of
which serve to minimize the sum of absolute residuals, in quantile regression we are
led to seek subsets of p-observations which will serve to characterize the solution. We
have already commented on this feature in our discussion of Figure 1.1. Remarkably,
this feature was already noted by Gauss (1809) in his commentary on Boscovich's
estimator.

In the terminology of linear programming the class of these p-element subsets
are called basic solutions. They may be seen as extreme points of the polyhedral
constraint set, vertices of the polyhedron which constitutes the constraint set. Min-
imizing a linear function with respect to a constraint set of this form is the task of
linear programming. It is clear from the geometry that solutions must either occur
uniquely, when the plane representing the objective function touches only a single
vertex of the constraint set, or occur multiply when the objective function happens
to come to rest on an edge or on entire facet of the constraint set. We will have
more to say about non-uniqueness later, for now it will su�ce to observe that even
when it occurs the basic solutions play a fundamental role since any element of the
solution set can be constructed as a linear combination of solution of this form. They
necessarily constitute the vertices of the full solution set and thus must constitute a
polyhedral, convex set themselves. This is already familiar from the elementary case
of the median.

To facilitate our ability to consider these p-element subsets of observations we
will introduce a bit more notation. Let h 2 H index p-element subsets of the �rst n
integers, N = f1; 2; : : : ; ng, and X(h) denote the submatrix of X with rows fxi : i 2
hg: Likewise, let y(h) be a p-vector with coordinates fyi : i 2 hg: The complement
of h with respect to N , will be written as �h and X(�h) and y(�h) may be de�ned
accordingly.

With this notation in mind we can express any basic solution which passes through
the points f(xi; yi); i 2 hg as

�(h) = X(h)�1y(h)

presuming, of course, that the matrix X(h) is nonsingular. There are obviously too
many of these basic solutions,

�
n
p

�
= O(np); in fact, to simply search through them

like a drawer of old socks. What the simplex algorithm of linear programming �nally
provided was an e�cient way to conduct this search, essentially by traversing from
vertex to vertex of the constraint set always taking the direction of steepest descent.

3.1. The subgradient condition. We are now ready to introduce the basic
optimality condition which characterizes the regression quantiles. We have seen that
we can restrict attention to candidate solutions of the \basic" form

b(h) = X(h)�1y(h):
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For some h;X(h) may be singular. This needn't worry us, we can restrict attention
to b(h) with h 2 H� = fh 2 H : jX(h)j 6= 0g: We have also seen that our optimality
condition entails verifying that the directional derivatives are non-negative in all
directions. To check this at b(h) we must consider

rR(b(h); w) = �
nX
i=1

 ��(yi � x0ib(h);�x0iw)x0iw

Reparameterizing the directions, so v = X(h)w; we have optimality if and only if,

0 � �
nX
i=1

 ��(yi � x0ib(h);�xiX(h)�1v)x0iX(h)�1v

for all v 2 jRp. Now note that for i 2 h, we have e0i = x0iX(h)�1; the ith unit basis
vector of jRp, so we may rewrite this as

0 � �
X
i2h

 ��(0; vi)vi � �0v = �
X
i2h

(� � I(vi < 0))vi � �0v

where

�(vi) =
X
i2�h

 ��(yi � xib(h);�xiX(h)�1vi)x
0
iX(h)�1:

Finally, note that the space of \directions", v 2 jRp, are spanned by v = �ek; k =
1; : : : ; p: That is the directional derivative condition holds for all v 2 jRp if and only
if holds for the 2p canonical directions f�ei : i = 1; : : : ; pg: Thus for v = ei we have
the p-inequalities

0 < �(� � 1) + �i(ei) i = 1; : : : ; p

while for v = �ei we have,
0 < � � �i(�ei) i = 1; : : : ; p:

Combining these inequalities we have our optimality condition in its full generality.
If none of the residuals of the non-basic observations, i 2 �h, are zero, as would be
the case with probability one if the y's had a density with respect to Lesbesgue
measure, then the dependence of � on v disappears and we may combine the two sets
of inequalities to yield,

(� � 1)1p � �h � �1p:
Summarizing the foregoing discussion we may reformulate Theorem 3.3 of Koenker
and Bassett (1978) with the aid of the following de�nition introduced by Rousseeuw
and Leroy (1987).
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Definition 3.1. We will say that the regression observations (y;X) are in gen-
eral position if any p of them yield a unique exact �t, that is for any h 2 H�;

yi � xib(h) 6= 0 for any i 62 h:
Note that if the yi's have a density with respect to Lesbesgue measure then the

observations (y;X) will be in general position with probability one.

Theorem 2.1. If (y;X) are in general position, then there exists a solution to
the quantile regression problem (1.1) of the form b(h) = X(h)�1y(h) if and only if for
some h 2 H�

(� � 1)1p � �h � �1p(2.3.1)

where �h =
P

i2�h  � (yi � x0ib(h))x0iX(h)�1 and  � = � � I(u < 0): Furthermore, b(h)
is the unique solution if and only if the inequalities are strict, otherwise the solution
set is the convex hull of several solutions of the form b(h).

Remark: Several comments on degeneracy and multiple optimal solutions may be
useful at this point. Primal degeneracy in the quantile regression problem refers
to circumstances in which (y;X) are not in general position and therefore we have
more than p zero residuals { either at a solution, or more generally in exterior point
algorithms like simplex on the path to a solution. This is unusual, unless the yi's are
discrete. On the other hand multiple optimal solutions occur when the inequalities
(2.3.1) are satis�ed only weakly. This occurs, typically, when the x's are discrete, so
that sums of the xi's, weighted by � or (� � 1), sum exactly to � or � � 1. If the x's
have a component that has a density with respect to Lesbesgue measure, then for any
given � this occurs with probability zero. In the dual problem the roles of degeneracy
and multiple optimal solutions are reversed, degeneracy arising from discrete x's and
MOS from discrete y's.

It might be thought that such inequalities could not o�er the same essential an-
alytical services provided by the more conventional gradient conditions of smooth
(quasi-) maximum likelihood theory. Fortunately, as we shall see, that pessimism is
not justi�ed. Indeed, as we have already seen in Figure 1.3 the graph of the objective
function actually appears quite smooth as long as n is moderately large, relative to
p.

An important �nite sample implication of the optimality condition (2.3.1) is the
following result that shows, provided the design matrix \contains an intercept" that
there will be roughly n� negative residuals and n(1 � � ) positive ones.

Theorem 2.2. Let N+; N�; N0 denote the number of positive, negative, and zero
elements of the residual vector y � X 0�̂(� ): If X contains an intercept, i.e., if there

exists, � 2 jRp, such that X� = 1n, then for any �̂(� ) solving (1.4.4) we have

N� � n� � N� +N0
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and

N+ � n(1� � ) � N+ +N0

Proof: We have optimality of �̂(� ) if and only if

�
nX
i=1

 ��(yi � x0i�̂(� );�x0w)x0iw � 0

for all directions w 2 jRp. For w = �; such that X� = 1n we haveX
 ��(yi � x0i�̂(� );�1) � 0

which yields

�N+ � (1 � � )N� � (1� � )N0 � 0

similarly for w = �, we obtain

��N+ + (1� � )N� � �N0 � 0:

Combining these inequalities and using the fact that n = N� +N+ +N0 completes
the proof.

Corollary 2.1. As a consequence, if N0 = p; which occurs whenever there is
no degeneracy, then the proportion of negative residuals is approximately � ,

N�

n
� � � N� + p

n

and the number of positive residuals is approximately (1� � );
N+

n
� 1� � � N+ + p

n

Remark: In the special case that X � 1n, this result fully characterizes the � th
sample quantile. If �n is an integer, then we will have only weak satisfaction of
the inequalities, and consequently there will be an interval of � th sample quantiles
between two adjacent order statistics. If �n isn't an integer, then the � th sample
quantile is unique.

The foregoing remark can be extended to the two sample problem in the following
manner.

Corollary 2.2. Consider the two sample model where X takes the form

X =

�
1n1 0
0 1n2

�
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and write y = (y01; y
0
2)
0 to conform to X. Denote any � th sample quantile of the

subsample yi by �̂i(� ), then any regression quantile solution for this problem takes
form

�̂(� ) = (�̂1(� ); �̂2(� ))
0;

that is, the line characterizing a � th regression quantile solution in the two sample
problem simply connects two corresponding ordinary sample quantiles from the two
samples.

Proof: The result follows immediately by noting that the optimality condition

�
nX
i=1

 �(yi � b;�x0iw) x0iw) � 0; j = 1; 2;

for b 2 jR2 and w 2 jR2 separates into two independent conditions,

�
njX
i=1

 �(yij � bj;�wj) wj � 0; j = 1; 2:

where yij denotes the ith element of yi.
Our formulation of the optimality conditions for quantile regression in this section

is fully equivalent to the approach based on the subgradient introduced in Rockafel-
lar(1970) and developed by Clark(1983). To make this connection more explicit, recall
that the subgradient of a function f : X ! jR; at x, denoted @f(x) is the subset of
the dual space X� given by

@f(x) = f� 2 X�jrf(x; v) � �0v for all v 2 Xg:
It is then clear that rf(x; v) � 0 for all v 2 jRp if and only if 0 2 @f(x):

3.2. Equivariance. Several important features of the least squares regression
estimator are sometimes taken for granted in elementary treatments of regression,
but play an important role in enabling a coherent interpretation of regression results.
Suppose we have a model for the temperature of a liquid, y, but we decide to al-
ter the scale of our measurements from Fahrenheit to Centigrade. Or we decide to
reparametrize the e�ect of two covariates to investigate the e�ect of their sum and
their di�erence. We expect such changes to have no fundamental e�ect on our esti-
mates. When the data is altered in one of these entirely predictable ways we expect
the regression estimates also to change in a way that leaves our interpretation of the
results invariant. We group several such properties of quantile regression estima-
tors together under the heading of equivariance and treat them quite explicitly since
they are often an important aid in careful interpretation of statistical results. To
facilitate this treatment we will explicitly denote a � -th regression quantile based on
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observations (y;X) by �̂(� ; y;X): Four basic equivariance properties of �̂(� ; y;X) are
collected in the following result.

Theorem 2.3. (Koenker and Bassett (1978)) Let A be any p � p nonsingular
matrix, 
 2 jRp, and a > 0. Then for any � 2 [0; 1];

(i) �̂(� ; ay;X) = a�̂(� ; y;X)

(ii) �̂(� ;�ay;X) = a�̂(1 � � ; y;X)

(iii) �̂(� ; y +X
;X) = �̂(� ; y;X) + 


(iv) �̂(� ; y;XA) = A�1�̂(� ; y;X)

Remark: Properties (i) and (ii) imply a form of scale equivariance, (iii) is usually
called shift or regression equivariance, and (iv) is called equivariance to reparameter-
ization of design.

Presuming that X \contains an intercept" i.e., there exists a 
 2 jRp such that
X
 = 1n, the e�ect of our temperature scale change is simply to shift �̂(� ; y;X) to
5
9(�̂(� ; y;X)� 32
): Typically in this example 
 would be the �rst unit basis vector

e1 so the �rst column of X would be 1n. The �rst coordinate of �̂ would be shifted
by 32 and all the coordinates would be then rescaled by the factor 5

9 . In the second
example, the situation is even simpler. The result of reparameterizing the x's is that
the new coe�cients are now one half the sum and one half the di�erence of the old
pair of coe�cients, respectively. These equivariance properties are shared by the least
squares estimator but this is not universally true for other regression estimators.

Quantiles enjoy another equivariance property, one much stronger than those al-
ready discussed. This property which we may term equivariance to monotone trans-
formations is critical to an understanding of the full potential of quantile regression.
Let h(�) be a nondecreasing function on jR; then for any random variable Y ,

Qh(Y )(� ) = h(QY (� ));(2.3.2)

that is the quantiles of the transformed random variable h(Y ) are simply the trans-
formed quantiles of the original Y . Of course, the mean does not share this property:

Eh(Y ) 6= h(E(Y ));

except for a�ne h as we have considered above, or other exceptional circumstances.
Condition (2.3.2) follows immediately from the elementary fact that for any monotone
h,

P (Y � y) = P (h(Y ) � h(y));

but the property has many important implications.
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It is common in considering least-squares regression to posit a model of the form

h(yi; �) = x0i� + ui

where h(y; �) denotes a transformation of the original response variable, y, which
(mirable dictu!) achieves three objectives simultaneously:

(i) makes E(h(yi; �)jx) linear in the covariates, x,
(ii) makes V (h(yi; �)jx) independent of x, i.e., homoscedastic, and
(iii) makes ui = h(yi; �) � xi� Gaussian.

Frequently, in practice however, these objectives are con
icting, and we need a
more sophisticated strategy. There is certainly no a priori reason to expect that a
single transformation, even the celebrated Box-Cox transformation

h(y; �) = (y� � 1)=�

which is the archetypical choice in this context would be capable of so much. There
is also an associated di�culty that, having built a model for E(h(y; �)jx); we may
still wish to predict or interpret the model as if were constructed for E(yjx): One
often sees h�1(x0�̂) used in place of E(yjx) in such circumstances, exp(x0�̂) when the
model has been speci�ed as log(y) = x0�; for example, but this is di�cult to justify
formally.

Transformations are rather more straightforward to interpret in the context of
quantile regression than they are for ordinary, mean regression. Because of the equiv-
ariance property, having estimated a linear model, x0�̂, for the conditional median
of h(y) given x we are perfectly justi�ed in interpreting h�1(x0�̂) as an appropriate
estimate of the conditional median of y given x.

Furthermore, because we have focused on estimating a local feature of the con-
ditional distribution rather than a global feature like the conditional mean we may
concentrate on the primary objective of the transformation { achieving linearity of the
conditional quantile function { and leave the other objectives aside for the moment.

3.3. Censoring. A particularly instructive application of the foregoing equiv-
ariance results, and one which has proven extremely in
uential in the econometric
application of quantile regression, involves censoring of the observed response vari-
able. The simplest model of censoring may be formulated as follows. Let y�i denote a
latent (unobservable) response assumed to be generated from the linear model

y�i = x0i� + ui i = 1; : : : ; n(2.3.3)

with fuig iid from distribution function F. Due to censoring, we do not observe the
y�i 's directly, but instead we see

yi = maxf0; y�i g:
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This model may be estimated by maximum likelihood

�̂ = argmin�f
nY
i=1

(1� F (x0i�))�if(x0i�)
1��ig

where �i denotes the censoring indicator, �i = 1 if the ith observation is censored,
�i = 0 otherwise. For F Gaussian, this leads to an estimate of the conditional mean
function and has received intense scrutiny by Heckman (1979) and many subsequent
authors. However, another F yields another functional in place of the conditional
mean and consequently leads to a speci�cation bias for the Gaussian maximum like-
lihood estimator. See Goldberger (1983) for an discussion of this bias in some typical
cases.

Powell (1986) observed that the equivariance of the quantiles to monotone trans-
formations implied that in this model the conditional quantile functions of the re-
sponse depended only on the censoring point, but were independent of F . Formally,

we may express the � th conditional quantile function of the observed response, yi; in
the model (2.3.3) as

Qi(� jxi) = maxf0; x0i� + F�1
u (� )g(2.3.4)

The censoring transformation, by the prior equivariance result becomes, trans-
parently, the new conditional quantile function. The parameters of the conditional
quantile functions may now be estimated by replacing

min
b

nX
i=1

�� (yi � x0ib)

by

min
b

nX
i=1

��(yi �maxf0; x0ibg)(2.3.5)

where we assume, as usual, that the design vectors xi, contain an intercept to absorb
the additive e�ect of F�1

u (� ):
Generalizing the model (2.3.4) slightly to accommodate a linear scale (heteroscedas-

ticity) e�ect

y�i = x0i� + (x0i
)ui i = 1; : : : ; n(2.3.6)

with ui iid F , it is clear that the new conditional quantile functions

Qi(� jxi) = maxf0; x0i� + x0i
F
�1
u (� )g(2.3.7)

can also be estimated by solving (2.3.5). Since heteroscedasticity of this form is also
a source of speci�cation bias for the iid error maximum likelihood estimator, even in
the Gaussian case, its straightforward accommodation within the conditional quantile
formulation must be counted as a signi�cant advantage.
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A constant censoring point is typical of many econometric applications where 0
is a natural lower bound, or institutional arrangements dictate, for example, top-
coding of a speci�ed amount. However, it is also straightforward to accommodate
observation speci�c censoring from the right and left. Suppose, we observe

yi =

8<
:

�yi if y�i � �yi
y�i otherwise
y
i
y�i < y

i

then, by the same argument that led to (2.3.5), as in Fitzenberger (1996), we would
now have

min
b

nX
i=1

��(yi �maxfy
i
;minf�yi; x0ibgg)(2.3.8)

This framework provides a quite general treatment of �xed censoring for linear
model applications. We will defer the discussion of computational aspects of solv-
ing problems (2.3.5) and (2.3.8) until Chapter X. For computational purposes, the
nonlinear \kinks" in the response function created by the censoring require careful
attention, since they take us out of the strict linear programming formulation of the
original quantile regression problem. The linear equality constraints become, under
censoring, nonlinear equality constraints.

Censoring is also typical in survival analysis applications. Random censoring,
in which the censoring points are only observed for the censored observations, has
recently been considered within the quantile regression framework by Ying, Jung and
Wei (1991) and Powell (1994). Powell (1986) deals with the truncated regression
situation in which only the uncensored observations are available to the investigator.
It is an elementary point that censoring beyond a �xed threshold has no e�ect on the
uncensored quantiles but the extension of this idea to regression has proven to be one
of the most compelling rationales for the use of quantile regression in applied work.

[Perhaps more should be said about this here or elsewhere. For the moment,
this subsection is intended only as a simple illustration of the monotone equivariance
result. Further development of these ideas especially to more complicated Heck-
manesque sample selection models and random, but not independent, censoring re-
mains a challenging problem. It might also be reasonable to comment on some ap-
plications of these methods like Fitzenberger, Chamberlain, Buchinsky, Chay, Conley
and Galenson, etc.]

3.4. Robustness. The comparison of the relative merits of the mean and median
in statistical applications has a long, illustrious history. Since Gauss it has been
recognized that the mean enjoys a strong optimality if the \law of errors" happens
to be proportional to e�x

2
: On the other hand, if there are occasional, very large
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errors, as was commonly the case in early astronomical calculations, for example, the
performance of the median can be superior; a point stressed by Laplace and many
subsequent authors including, remarkably, Kolmogorov (1931).

The modern view of this, strongly in
uenced by Tukey, see e.g. Andrews, et al
(1972), is framed by the sensitivity curve, or in
uence function of the estimators, and
perhaps to a lesser degree, by their �nite sample breakdown points. The in
uence
function, introduced by Hampel (1974) is a population analogue of Tukey's empirical

sensitivity curve. It o�ers a concise description of how an estimator, �̂, evaluated at
a distribution F is a�ected by \contaminating" F . Formally, we may view �̂ as a
functional of F and write �̂(F ), and consider contaminating F by replacing a small
amount of mass " from F by an equivalent mass concentrated at y, allowing us to
write the contaminated distribution function as

F" = "�y + (1 � ")F
where �y denotes the df which assigns mass 1 to the point y. Now we may express

the in
uence function of �̂ at F as

IF�̂(y; F ) = lim
"!0

�̂(F") + �̂(F )

"
For the mean

�̂(F") =

Z
ydF" = "y + (1 � ")�̂(F )

so

IF�̂(y; F ) = y � �̂(F );
whereas for the sample median, see Problem 2.5,

~�(F") = F�1
" (1=2)

IF~�(y; F ) = sgn (y � ~�(F ))=f(F�1(1=2))(2.3.9)

presuming, of course, the existence, and positivity, of the density term in the denom-
inator.

There is a dramatic di�erence between the two in
uence functions. In the case of
the mean, the in
uence of contaminating F at y, is simply proportional to y implying
that a little contamination, however small at a point y su�ciently far from �(F )
can take the mean arbitrarily far away from its initial value at F . In contrast, the
in
uence of contamination at y on the median is bounded by the constant s(1=2) =
1=f(F�1(1=2)) which we will, following Tukey, call the \sparsity" at the median,
since it is simply the reciprocal of the density function evaluated at the median. The
sparsity is low where the density is high and vice-versa.

The comparison of the in
uence functions of the mean and median graphically
illustrates the fragility of the mean and the robustness of the median in withstanding
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the contamination of outlying observations. Much of what we have already said
extends immediately to the quantiles generally, and from there to quantile regression.
The in
uence function of the � th quantile is obtained simply by replacing the 1/2
in (2.3.9) by � . The boundedness of the quantile in
uence function is obviously
maintained provided that the sparsity at � is �nite. Extending the IF to regression
is straightforward, but we now need F to represent the joint distribution of the pairs
(x; y): Writing dF in the conditional form,

dF = dG(x)f(yjx)dy
and again assuming that f is continuous and strictly positive when needed we have,

IF�̂F (�)((y; x); F ) = Q�1x sgn (y � x0�̂F (� ))
where

Q =

Z
xx0f(x0�̂F (x))dG(x)

Again we see that the estimator has bounded in
uence in y since y appears only
clothed by the protective sgn (�) function. However, the naked x appearing in IF
should be a cause of some concern. It implies that introducing contamination at (x; y)
with x su�ciently deviant can have extremely deleterious consequences. We could
illustrate this e�ect with an example in which we gradually move a single outlier
further and further from the mass of the data until eventually all of the quantile
regression lines are forced to pass through this same o�ending point. There is nothing
surprising or unusual here; similar behavior of the least squares estimator is illustrated
in the lower panels. We will consider several proposals to robustify the behavior of
quantile regression to in
uential design observations in Section X.x where we deal
with the breakdown point of quantile regression estimators.

The robustness of the quantile regression estimator to outlying y's can be seen
clearly in the following thought-experiment. Imagine a data cloud with the �tted � th
quantile regression plane slicing through it. Now consider taking any point, say yi,
above that plane and moving it further way from the plane in the y direction. How
is the position of the �tted plane a�ected? A moment's re
ection on the subgradient
condition reveals that the contribution of the point to the subgradient is independent
of yi as long as sgn (yi � x0i�̂(� )) does not change. In other words, we are free to
move yi up and down at will provided we do not cross the �tted plane without altering
the �t. This clari�es somewhat our earlier remarks that (i) the in
uence function is
constant above the �tted quantile and (ii) observations are never \neglected", rather
they participate equally in electing the representative points. Unlike the sample mean
where in
uence is increasing in the discrepancy, y � �̂F , quantile in
uence depends
upon y only through the sign of this discrepancy.

This feature of quantile regression can be restated more formally as follows.



40 2. FUNDAMENTALS OF QUANTILE REGRESSION

Theorem 2.4. Let D be a diagonal matrix with nonnegative elements di, for
i = 1; : : : ; n, then

�̂(� ; y;X) = �̂(� ;X�̂(� ; y;X) +D(y �X�̂(� ; y;X));X)

As long as we don't alter the sign of the residuals any of the y observations may be
altered without altering the initial solution. While this may, at �rst thought, appear
astonishing, even bizarre, a second thought assures us that without it we couldn't
have a quantile. It is a crucial aspect of interpreting quantile regression. When a
mean dog wags its tail even its essential center moves. When the kinder, median dog
wags its tail its soul remains at rest.

The in
uence function is an indispensable tool, exquisitely designed to measure
the sensitivity of estimators to in�nitesimal perturbations of the nominal model. But
procedures can be in�nitesimally robust, but still highly sensitive to small, �nite
perturbations. Take, for example, the �-trimmed mean, which is capable of with-
standing a proportion 0 < � < � of contamination, but also capable of breaking down
completely when � > �.

The �nite sample breakdown point of Donoho and Huber (1983) has emerged as
the most successful notion of global robustness of estimators. Essentially, it measures
the smallest fraction of contamination of an initial sample that can cause an estima-
tor to take values arbitrarily far from its value at the initial sample. This concept
has played a crucial role in recent work on robust estimation and inference. It o�ers
an appealing, yet tractable, global quanti�cation of robustness, complementing the
local assessment captured by the in
uence function. Indeed a primary goal of re-
cent research in robustness has been the construction of so-called \high-breakdown"
methods exempli�ed by Rousseeuw's (1984) least-median-of-squares estimator for the
linear regression model which achieves asymptotic breakdown point one-half. Despite
the attention lavished on the breakdown point of estimators in recent years, it remains
a rather elusive concept. In particular, its non-probabilistic formulation poses cer-
tain inherent di�culties. In HJKP (1990) it is shown that the breakdown point of
regression estimators is closely tied to a measure of tail-performance introduced by
Jure�ckov�a (1981) for location estimators.

Let Tn = Tn(X1; :::;Xn) be an estimator of a location parameter �0, whereX1; :::;Xn

are independent and identically distributed with common, symmetric about zero, dis-
tribution function F (x). Jure�ckov�a considered the measure of performance,

B(a; Tn) =
� logP�(jTn � �j > a)

� log(1 � F (z))
for �xed n as a!1, and she showed that this rate is controlled by the tail behavior
of F . For any (reasonable) translation equivariant Tn, she showed that,

1 � lim inf
a!1

B(a; Tn) � lim sup
a!1

B(a; Tn) � n:
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For the sample mean, Tn = �Xn, and F with exponential tails, so

lim
a!1

� log(1� F (z))
car

= 1

for some c > 0 and r > 0, �Xn attains optimal tail performance with log of the
probability of a large error tending to zero n times faster than the log of the probability
that a single observation exceeding the bound a. While, on the contrary, for F with
algebraic tails, so

lim
a!1

� log(1� F (z))
m log a

= 1

for some m > 0, this ratio tends to one. In contrast the sample median has much
better tail behavior with the log P (jTn � �j > a) tending to zero as a ! 1 at
least n=2-times faster than the tails of the underlying error distribution, for either
exponential or algebraic tailed errors.

For location equivariant estimators, Tn(X1; :::;Xn) that are monotone in each
argument, it can be shown (Theorem 2.1 of HJKP(1990)) that Tn has a universal
breakdown point, m�, independent of the initial sample, and for any symmetric ab-
solutely continuous, F , having density, f(z) = f(�z) > 0, for z 2 jR, and such that
limz!1 log(1� F (z + c))= log(1� F (z)) = 1 for any c > 0,

m� � liminf B(a; Tn) � limsupB(a; Tn) � n �m� + 1:

This close link between breakdown and tail performance extends to regression, where
the least squares estimator is found to have lim(B(a; Tn) = �h�1, with �h = maxi hii
and hiix0i(X

0X)�1xi, for iid Gaussian errors, but again limB(a; Tn) = 1 for F 's with
algebraic tails. For quantile regression estimators a trivial upper bound on tail per-
formance and breakdown is given by limB(a; �̂(� )) � [minf�; 1 � �gn] + 1. But the
corresponding lower bound is more challenging.

Of course, �̂(� ) has breakdown point, m� = 1, if we consider contamination
of (x; y)-pairs; a single observation judiciously pulled to in�nity in both x and y
directions can force all of the quantile regression hyperplanes to pass through it. This
sensitivity to contamination of design observations is a well known defect of the entire
class of M-estimators. Before addressing this issue directly, it is revealing to consider
brie
y the question of breakdown and tail performance in the context of �xed design
observations.

For the regression median, �̂(1=2), the quantities,

gi = sup
jjbjj=1

jx0ibjP
i2N jx0ibj

play the role of in
uence diagnostics analogous to the hii = x0i(X
0X)�1xi in conven-

tional least squares theory. De�ne m� to be the largest integer m such that for any



42 2. FUNDAMENTALS OF QUANTILE REGRESSION

subset M of N = f1; 2; :::; ng of size m,

inf
jjbjj=1

P
i2NnM jx0ibjP
i2N jx0ibj

> 1=2:

Then limB(a; �̂(1=2)) � m� + 1 for algebraic tailed F , and the breakdown point,

m� of �̂(1=2) satis�es m� + 1 � m� � m� + 2. Although it is somewhat di�cult
to compute precisely the value of m� for designs in higher dimensions, for scalar,
regression through the origin it is quite easy. In this case, with xi iid U [0; 1], for
example,m�=n tends to 1�1=

p
2 � :29, a quite respectable breakdown point. Clearly,

for regression quantiles other than the median breakdown is determined by similar
considerations.

There have been several proposals for \robustifying" quantile regression with re-
spect to outlying design observations. Both DeJongh, DeWet and Welsh (1987) and
Antoch and Jure�ckov�a (1985?) have proposed bounded in
uence versions of the
quantile regression objective function, but unfortunately, there is little experience
with these approaches in applications. Recently, Rousseeuw and Hubert (1999) have
proposed a new, highly design robust variant of quantile regression based on the con-
cept of regression depth. We will brie
y describe this approach in the context of
bivariate regression.

Suppose we have data Zn = f(xi; yi) : i = 1; :::; ng 2 jR2 and the model

yi = �1xi + �2 + ui(2.3.10)

Rousseeuw and Hubert introduce the following de�nitions:

Definition 3.2. A candidate �t � = (�1; �2) to Zn is called a non�t i� there
exists a real number, v� = v which does not coincide with any xi and such that

ri(�) < 0 for all xi < v and ri(�) > 0 for all xi > v

or

ri(�) > 0 for all xi < v and ri(�) < 0 for all xi > v

where ri(�) = yi � �1xi � �2.
Definition 3.3. The regression depth of a �t � = (�1; �2) relative to a data set

Zn 2 jR2 is the smallest number of observations that need to be removed to make � a
non�t.

A mechanical description of regression depth in the \primal" or data-space plot
is also provided by Rousseeuw and Hubert: the existence of v� for any non�t �,
corresponds to a point on the line y = �1x+ �2 about which one could rotate the line
to the vertical without encountering any observations. However, the geometric notion
of \depth" is more clearly brought out by the fundamental concept of the dual plot.
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In the bivariate regression version of the dual plot, each point, (xi; yi) appears as
a line in parameter space, that is, all the points on the line

�2 = yi � �1xi
in (�1; �2)-space have ith residual zero, and intersections of such lines correspond to
points which have two zero residuals. Rousseeuw and Hubert observe,

The [regression depth] of a �t � is (in dual space) the smallest number
of lines Li that need to be removed to set � free, i.e. so that it lies in the
exterior of the remaining arrangement of lines.

In fact, this view brings us very close to several fascinating papers by F.Y. Edge-
worth on median regression, or what he called the \plural median." Edgeworth (1888)
contains an almost prescient description of the simplex algorithm for linear program-
ming:

The method may be illustrated thus:{Let C �R (where C is a constant,
[and R denotes the objective function]) represent the height of a surface,
which will resemble the roof of an irregularly built slated house. Get
on this roof somewhere near the top, and moving continually upwards
along some one of the edges, or arr�etes, climb up to the top. The highest
position will in general consist of a solitary pinnacle. But occasionally
there will be, instead of a single point, a horizontal ridge, or even a 
at
surface.

Supplemented by a more explicit rule for choosing the edges at each vertex, this de-
scription would �t nicely into modern textbooks of linear programming. In terms
of the dual plot this strategy can be described as starting from an arbitrary inter-
section corresponding to a basic feasible solution, �nding the directional derivatives
corresponding to all of the possible directions emanating from this point, choosing
the most favorable direction, and going in this direction until the objective function
stops decreasing. This turns out to be a concise description of the most commonly
used algorithm for quantile regression originally developed for the median case by
Barrodale and Roberts (1973) and modi�ed by Koenker and d'Orey(1983) for general
quantile regression. A more detailed discussion of this approach, and its alternatives
is provided in Chapter 6.

It is a curious irony that Edgeworth's long time collaborator A.L. Bowley in trying
to describe Edgeworth's geometric method for computing the \plural median", came
very close to the formulation of the maximumdepth regression estimator of Rousseeuw
and Hubert. Bowley (1902) speaking of the dual plot, suggests,

... we may with advantage apply Prof. Edgeworth's \double median"
method and �nd the point, line or small area, such that, whether we
proceed from it to the left, or right, or up, or down, we always intersect
the same number of lines before we are clear of the network.
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This is clearly not the same as �nding the \deepest point" in the network, as
formulated by Rousseeuw and Hubert, but if we interpret it a bit generously to
include all possible directions not just the canonical ones, we obtain something akin
to their \deepest point" and this \point" corresponds to the \deepest regression line".

Unlike the conventional median regression estimator which has a breakdown point
of 1=n in the (x; y)-contamination model, and only marginally better breakdown prop-
erties in the �xed-x, y-contamination model, as discussed in He, Jure�ckov�a , Koenker,
and Portnoy (1993) and Mizera and Muller (1997), the deepest line estimator has
breakdown point 1=3. It shares the equivariance properties of the `1 estimator, but
exhibits a somewhat greater tendency toward non-uniqueness. It is worth remarking
in this connection that one of Theil's (1950) earliest papers also deal with a variant
of this type which is usually described as the \median of pairwise slopes" and may
be viewed geometrically in the dual plot by projecting all the the intersections onto
the axis of the \slope" parameter and then choosing the median of these projected
values.

The contrast between the deepest line estimator and the usual median regression
estimator is, perhaps, most clearly seen in their asymptotic behavior, which has been
recently studied by He and Portnoy (1998). It is well known that

�̂ = arg min
�2jR2

X
jyi � �1xi � �2j

satis�es, under mild conditions given in Bassett and Koenker (1978) and related work
by numerous subsequent authors,

p
n(�̂ � �0); N (0; !2D�1)

where �0 = (�1; �2)0, !2 = 1=(4f2(0)) and

lim
n!1

n�1X 0X ! D

with X = (xi; 1)ni=1:
In contrast, the deepest line estimator may be formulated as

~�n = argmin max
x(1)�a�x(n)

jDn(b; a)j

where

Dn(b; a) =
X

sgn f(yi � �1xi � �2)(xi � a)g:
To formulate an asymptotic theory for the maximum regression depth estimator He
and Portnoy (1997) assume that the sequence fxig satis�es the conditions:

A1.)
P
x2i = O(n)

A2.) n�1
P
xi sgn (xi � x[tn]) ! g1(t) uniformly from t 2 (0; 1); with g001 (t) < 0

for all t.



3. HOW DOES QUANTILE REGRESSION WORK? 45

In addition, they assume, A3.) The fuig's are iid random variables with median zero,
bounded density f , f(0) > 0, and that f is Lipschitz in a neighborhood of zero.

When the fxig's are iid from distribution function G with positive density on its
entire support, they note that

g1(t) =

Z 1

t

G�1(u)du�
Z t

0

G�1(u)du

so g01(t) = �2G�1(t) and therefore, (A2) follows immediately from the Kolmogorov
strong law and the monotonicity of G�1. Now let g0(t) = 1 � 2t denote the limit of
n�1

P
sgn (zi�z[nt]) and set g(t) = (g0(t); g1(t))0: He and Portnoy prove the following

theorem.

Theorem 2.5. Under conditions A1 - 3,
p
n(�̂ � �) converges in distribution to

a random variable whose distribution is that of the unique minimizer of the function

h(�) = max
t
j2B(t)�B(1) + 2f(0)g(t)0�j

where B(t) is standard Brownian motion.

Unfortunately, it is rather di�cult to compare the asymptotic performance of the
maximal depth estimator with the more familiar median regression estimator even in
this simple iid-error bivariate setting. Even under non-iid error conditions, as long
as the conditional median function is linear in parameters, both approaches can be
shown to be

p
n-consistent for the same parameter; this is in itself quite remarkable.

We would expect that the improved robustness of the maximal depth estimator would
come at the price of some e�ciency loss under the idealized conditions A1-3 where
in
uential design observations are highly desirable. He and Portnoy provide a very
limited evaluation of the asymptotic relative e�ciency of the two estimates which is
reported in Table 2.1.

Given that the maximal depth estimator consistently estimates the linear condi-
tional median function under essentially similar conditions to those required by the
`1-estimator, it is natural to ask whether it is possible to estimate the parameters of
other linear conditional quantile models using similar methods. A simple reweighting
of the maximal depth objective function allows us to answer this question a�rma-
tively.

Asymmetrically reweighting positive and negative residuals suggests the quantile
regression depth function

d� (�) = min
t
fminf�L+(t) + (1 � � )R�(t); �R+(t) + (1� � )L�(t)gg

and essentially the same asymptotic analysis of He and Portnoy shows that the min-
imizer

�̂n(� ) = argmin d� (�)
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Design Intercept Slope
Uniform .90 .95
Normal .82 .87
t(3) .86 .62

Table 2.3. Asymptotic Relative E�ciencies of the Maximal Depth
and Median Regression Estimators: The Table reports He and Port-
noy's (1997) estimates of the relative asymptotic variances of the me-
dian (`1) estimator to Rousseeuw and Hubert's (1998) maximal depth
estimator for three design distributions: uniform, standard normal, and
Student's t on 3 degrees of freedom. In all cases the yi's were standard
normal. In all cases there is a non-trivial e�ciency loss which is accen-
tuated in the case of the slope estimator in the t model.

is a
p
n consistent estimator of the parameters of the linear � th conditional quantile

function.
Thus, regression depth provides an alternative \in
uence robust" approach to

quantile regression estimation which could be compared to the earlier GM-type weight-
ing proposals of Antoch and Jure�ckov�a (1985) and DeJongh, DeWet and Welsh (1988).
Extending the regression depth idea beyond the bivariate model poses some challenges
particularly on the asymptotic and algorithmic fronts, but the basic conceptual ap-
paratus is already provided by Rousseeuw and Hubert (1998), and Rousseeuw and
Struyf (1998), Mizera(1999) and He and Bai (1999).

4. Interpreting Quantile Regression Models

In the classical linear regression model where,

E(Y jX = x) = x0�;

we are used to interpreting the coe�cients, �, in terms of the partial derivatives,

@E(Y jX = x)

@xj
= �j:

Of course there are many caveats that must accompany this interpretation. For
instance, we may have several coe�cients associated with a single covariate in a
model with quadratic e�ects or interaction terms. In this case changes in a single
covariate induce changes in several coordinates of the vector, x, and derivatives must
be computed accordingly. For example, if we have

E(Y jZ = z) = �0 + �1z + �2z
2;
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it is clear that

@E(Y jZ = z)

@z
= �1 + 2�2z

and therefore the \e�ect" of a change in z on the conditional expectation of y now
depends upon both �1 and �2 and perhaps more signi�cantly the e�ect depends upon
the value of z, we choose to evaluate the derivative at, as well.

In the transformation model,

E(h(Y )jX = x) = x0�;

there is a strong temptation to write,

@E(Y jX = x)

@xj
=
@h�1(x0�)

@xj

This is a common practice in logarithmic models, i.e. where h(Y ) = log(Y ), but
this practice is subject to the famous Nixon dictum, \You can do it, but it would
be wrong." The di�culty is obviously that Eh(Y ) is not the same as h(EY ) except
in very exceptional circumstances, and this makes interpretation of mean regression
models somewhat trickier in practice than one might gather from some applied ac-
counts.

As we have already noted, the situation is somewhat simpler in this respect, in
the case of quantile regression. Since, as we have already noted,

Qh(Y )(� jX = x) = h(QY (� jX = x))

for any monotone transformation, h(�), we have immediately that, if

Qh(Y )(� jX = x) = x0�(� )

then

@QY (� jX = x)

@xj
=
@h�1(x0�)

@xj
:

So, for example, if we specify,

Qlog(Y )(� jX = x) = x0�(� )

then it follows that

@QY (� jX = x)

@xj
= exp(x0�)�j;

subject, of course to our initial quali�cations about the possible interdependence
among the components of x.

The interpretation of the partial derivative, @QY (� jX = x)=@xj, itself, often re-
quires considerable care. We have emphasized earlier in the context of the two sample
problem that the Lehmann-Doksum quantile treatment e�ect is simply the response
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necessary to keep a respondent at the same quantile under both control and treat-
ment regimes. Of course, this is not to say that for a particular subject who happens
to fall at the � th quantile initially, and then receives an increment, �xj, say another
year of education, will necessarily fall on the � th conditional quantile function fol-
lowing the increment. Indeed as much of the recent literature on treatment e�ects
has stressed, see, e.g. Angrist, Imbens, and Rubin (1997), we are typically unable to
identify features of the joint distribution of control and treatment responses since we
don't observe responses under both regimes for the same subjects. With longitudinal
data one may be able to explore in more detail the dynamics of response, but in many
applications this will prove impossible. This is certainly also the case in conventional
mean regression, where we are able to estimate the average response to treatment,
but its dynamics remain hidden.

4.1. Some Examples. At this stage it is useful to consider some examples in
an e�ort to clarify certain issues of interpretation.

4.1.1. The Union Wage Premium. Chamberlain (1994) considers the union wage
premium, that is the percentage wage premium that union workers receive over com-
parable non-union employees. Based on 1987 data from the U.S. Current Population
Survey, Chamberlain estimated a model of log hourly wages for 5338 men with 20-29
years of work experience. In addition to union status the model included several other
covariates that are conventionally included in earnings models of this type: years of
schooling, years of potential work experience, indicators of whether the respondent
was married, or living in a metropolitan area, and indicators of regional, occupational
and industrial categories.

Sector 0.1 0.25 0.5 0.75 0.9 OLS
Manufacturing 0:281

( 0:12 )
0:249
( 0:12 )

0:169
( 0:11 )

0:075
( 0:1 )

�0:003
( 0:11 )

0:158
( 0:14 )

Non-manufacturing 0:47
( 0:14 )

0:406
( 0:14 )

0:333
( 0:13 )

0:248
( 0:16 )

0:184
( 0:18 )

0:327
( 0:16 )

Table 2.4. The Union Wage Premium: Quantile regression estimates
of the union wage premium in the US as estimated by Chamberlain
(1994) based on 5358 observations from the 1987 CPS data on workers
with 20-29 years experience.

The results for the union wage e�ect are summarized in Table X.i, for manufac-
turing and non-manufacturing employees separately. In the last column of the Table
the conditional mean e�ect estimated by least squares is reported. It shows nearly a
16% wage premium for union workers in manufacturing and almost a 33% premium
for non-manufacturing employees. But is important to ask, how is this premium dis-
tributed? Is the union wage premium shared equally by all strata of workers, as would
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be the case if union membership induced a pure location shift in the distribution of
log wages, or do some strata bene�t more than others from union status.

The results clearly indicate that conditional on other labor market characteristics,
it is the lowest wage workers that bene�t most from union membership. If there were
a pure location shift e�ect, as we implicitly assume in the mean regression model,
we would expect to see that the coe�cients at each of the �ve estimated quantiles
would be the same as the 15.8% mean e�ect for manufacturing. Instead, we see that
workers at the �rst decile of the conditional wage distribution receive a 28% boost
in wages from union membership, and this �gure declines steadily as one moves up
through the conditional wage distribution until, at the upper decile, the union wage
premium has vanished. For non-manufacturing workers the picture is quite similar;
the mean shift of 32.7% is strongest at the lower quantiles, and essentially disappears
in the upper tail of the conditional wage distribution.

These �ndings should not, as Chamberlain comments, surprise students of union-
ism. Prior work had shown that the dispersion of wages conditional on covariates
similar to those used by Chamberlain was considerably smaller for union workers
than for non-union workers. And the pattern of observed quantile regression union
e�ects can be roughly anticipated from this dispersion e�ect. But the precise nature
of the pattern, its asymmetry, and the e�ect of other covariates on aspects of the
conditional distribution other than its location are all revealed more clearly by the
quantile regression analysis.

An important aspect of the union wage premium problem, one that is quite ex-
plicitly neglected in Chamberlain's work involves the causal interpretation of the
estimated model. There is a large econometric literature on this aspect of the inter-
pretation, which stresses the endogoneity of union status. Individuals are obviously
not randomly assigned to union, or non-union status, they are selected in a rather
complicated procedure that makes causal interpretation of estimated union e�ects
fraught with di�culties. We shall return to this important issue in Section 8.2.

4.1.2. Demand for Alcohol. Manning, Blumberg, and Moulton (1995) estimate
a model for the demand for alcohol based on a sample of 18,844 observations from
the U.S. National Helath Interview Survey. The model is a conventional log linear
demand equation,

log qi = �0 + �1 log pi + �2 log xi + ui

where qi denotes annual alcohol consumption as reported by individual i, log pi is a
price index for alcohol computed on the basis of the place of residence of individual
i, and xi is the annual income of the ith individual. Roughly 40 percent of the
respondents reported zero consumption so for quantiles with � < :4, we have no
demand response to either price or income. Results for � > :4 are illustrated in Figure
X.ii. The income elasticity is fairly constant at about �̂ � :25, with some evidence of a
somewhat less elastic response near � = :4 and � = 1. More interesting is the pattern
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function of several ecological covariates. They argue generally that in ecology it is
often of interest to formulate models for maximum sustainable population densities,
and they suggest that it may therefore be more informative to estimate the e�ect of
certain covariates on upper quantiles of the response, rather than focus on models
of conditional central tendency. Cade et al explore several models for the prevalence
of lily seedlings as a function of the number of 
owers observed in 256 contiguous 2
� 2 m quadrats of subalpine meadow in western Colorado. An index of rockiness of
the terrain and an index of gopher burrowing activity are also used as explanatory
variables.

As in the alcohol demand example there is a preponderance of observations with
zero response, making conventional least squares estimation of mean regression models
problematic. In a simple bivariate model in which the number of seedlings depends
solely on the number of 
owers observed, we illustrate several �tted log linear quantile
regression models in Figure X.iii. As can be seen in these �gures, the relationship
is very weak until we reach the upper tail. Only the .95 and .99 quantile regression
estimates exhibit a signi�cant slope. Note that in �tting the log linear model it was
necessary to deal with the fact that nearly half of the response observations were
zero. In mean regression it is occassionally suggested that one transform by log(y+�)
to account for this, but it is clear that the least squares �t can be quite sensitive to
the choice of epsilon. In contrast for the quantile regression model, as long as we
are interested in quantiles such that all the zero response observations fall below the
�tted relationship, the choice of � has no e�ect.

Regarding the strong negative relationship between the number of seedlings and
the number of observed 
owers in the upper tail of the conditional distribution, Cade
et al, comment,

\Negative slopes for upper regression quantiles were consistent with the
explanation provided by Thompson et al that sites where 
owers were
most numerous because of lack of pocket gophers (which eat lilies), were
rocky sites that provided poor moisture conditions for seed germination;
hence seedling numbers were lower."

Here we risk missing the primary relationship of interest by focusing too much
attention on the conditional central tendency. Fitting the upper quantile regressions
reveals a strong relationship posited in prior work. Cade et al go on to explore the
e�ect of other covariates and �nd that their measure of the rockiness of the terrain
plays a signi�cant role. After the inclusion of the index of rockiness, the number
of observed 
owers exert a more natural, statistically signi�cant, positive e�ect on
the presence of seedlings at the upper quantiles of the conditional distribution. This
reversal of sign for the 
ower e�ect further supports the view of Thompson et al cited
above.
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Figure 2.6. Glacial Lily Seedling Counts: The �gure plots observa-
tions on 
ower and seedling counts for 256 contiguous 2 by 2 meter
quadrats of subalpine meadow in western Colorado. As in Cade et al
one outlying count of 72 seedlings in a region with 16 
owers was omit-
ted from the plot, but included in the �tting. The four plotted curves
are estimates of the � 2 f:75; :9; :95; :99g conditional quantile functions.
Note that almost half, 127 of 256, of the observations have zero seedling
counts.

It is common in many disciplines that theory o�ers predictions about upper or
lower bounds of stochastic processes conditional on observable covariates. In these
cases it is valuable to be able to estimate these extreme regression quantiles directly
as we have suggested the foregoing example. Of course the theory of the most extreme
regression quantiles is considerably more complicated than the theory for more central
quantile regression, and we must balance considerations of robustness and e�ciency.
In Section 8.4 we o�er a more extensive review of the literature on extreme quantile
regression estimation.
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4.1.4. Daily Melbourne Temperatures. As a �nal example we will reconsider a
semi-parametric AR(1) model for daily temperature in Melbourne, Australia. Hyn-
dman, Bashtannyk, and Grunwald (1996) have recently analyzed these data using
the modal regression approach of Scott(1992). The quantile regression approach is
strongly complementary and o�ers a somewhat more complete view of the data. In
Figure X.iv we provide an AR(1) scatter plot of 10 years of daily temperature data.
Today's maximum daily temperature is plotted against yesterday's maximum. Not
surprisingly one's �rst impression from the plot suggests that a \unit-root" model
in which today's forecasted maximum is simply yesterday's maximum. But closer
examination of the plot reveals that this impression is based primarily on the left side
of the plot where the central tendency of the scatter follows the 45 degree line quite
closely. On the right side, however, corresponding to summer conditions, the pattern
is more complicated. There, it appears that either there is another hot day, falling
again along the 45 degree line, or there is a dramatic cooling o�. But a mild cooling
o� appears to be quite rare. In the language of conditional densities, if today is hot,
tomorrow's temperature appears to be bimodal with one mode roughly centered at
today's maximum, and the other mode centered at about 20�.

In Figure X.v we have superimposed 19 estimated quantile regression curves. Each
curve is speci�ed as a linear B-spline of the form,

QYt(� jYt�1) =
pX
i=1

�i(Yt�1)�i(� )

where f�i(�) : i = 1; :::; pg denote the basis functions of the spline. Having selected
the knot positions of the spline such models are linear in parameters and thus can
be easily estimated by the methods already introduced. Related smoothing spline
methods are discussed later in Chapter 7.

Given a family of estimated conditional quantile functions, it is straightforward to
estimate the conditional density of the response at various values of the conditioning
covariate. In Figure X.vi we illustrate this approach with several of density estimates
based on the Melbourne data. In the last panel of this Figure we see clearly the
bimodal form of the conditional density for the case in which we are conditioning on
a high value of yesterday's temperature.

The particular form of mean reversion illustrated in this example has a natural
meteorological explanation as high pressure systems bringing hot weather from the
interior of the continent, must eventually terminate with a cold front generated over
the Tasman Sea, generating a rapid drop in temperature. This sort of dynamic
does not seem entirely implausible in other time-series settings, including those in
economics and �nance, and yet the conventional time series models that we usually
consider are incapable of accommodating behavior of this type. Clearly, models in
which the conditioning covariates a�ect only the location of the response distribution
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Figure 2.7. Melbourne Maximum Daily Temperature: The plot il-
lustrates 10 years of daily maximum (centigrade) temperature data for
Melbourne, Australia as an AR(1) scatterplot. Note that conditional on
hot weather on the prior day, the distribution of maximumtemperature
on the following day appears to be bimodal.



4. INTERPRETING QUANTILE REGRESSION MODELS 55

.

.

.
.

.

.

. .

..

.

.

.

.
.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

..

.

.

.

.

.

.

.
. .

.

.

.

.

.

.

.
. .

.

.

..

.

. .

..
.

.

..

.

.

.

.

.

.

..
.

.

.

.

.
.

.
.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
..

.

.
.

.

.

.
.

.

.. . .

.

.

.
.

.

.

.

.
. ...

.

.
.

.
.

..

.

.

. .
. .

...
.

.
.

..

.
. .

. .

.
...

.

..

.
.

. ..
.

.
.

.

.

.

.

. .

.

.

.

.
...

.
.

.

. .
.

..

.
.

.

..

.

. .
.

.
.

.

.

.

.
.

.
.

.

.
. .

.

.

...

.

.
. .. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

..

.

.

.

..

.

. ..

.

..

.
.

.

.

..
.

.

.
.

.

.

..

.

.
.

.

.

.
.

.

.
.

.

. .

.

.

.

.

.
.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
..

. .
.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.
. .

.

.

.
.

.
.

.

.

.
.

.

.
.

.

.

..

.

.

. .

.

.

.

..

..

.
.

.

.

.

.
. .

..

.

.
.

. .

.

.

..
.

.
. .

. .

.

.
..

.
..

.

.

. .

.

.
.. .

.

..
.

.

. .

. .

.

.

.

.

. ..
.

. .
..

.

.

...
. ...

. .
.

.

...

.

.
. .

.
.

.
..

..

. .
.

.

.

.
.

.

.

. ...

.

.
.

. .

..
.

.

. . .

. .
.

.

.

.

.

.
.

.

.

...

.

.

.

.
. ..

.
.

.

.
..

.

.

.

.

.

.
.

.
.

.

.
.

.
.

.
.

..

.

.

.

.

.

.

..

. .

. ..

.

.

.

.
.

.
.

.
.

.

.

.
.

.

.
.

.

.

. .

.

.
.

.

.

.

.
.

.

.

.

.

..

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

..

.

..

.

.

.

.

.

.

.

.

.

..
.

.

. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
. .

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

..
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

..

..

.
.

... .

.

.
.

..
.

..

. .

. .

.

.

..
.

..

. .

.
.

.
.

..

..
.

..

.
..

.
..
.

.

.
.

.

.

.

.
.

.

.

.

.
. .

.

.
.

.

.

.

.
.

.

. .
. ..

. ..

...

.

. ...
...

. .

.
.

.
..

...

.

.

.
.

.

.

.
.

.
.

..
.

. .

. . .
.

.
.

.

.

.
.

.
.

.

.

.
.

......
. . .

.
.

. .
..

. . .
.

.
..

.

.

.

.
.

.

...

.

.

.
..

.

..

.
.

.
.

.
.

.

.

.

.

.

...
.

.

.

.

..

.
.

.
..

.

..

. .
.

.

.

.

.
. .

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .
. .

. .

.
.

.
.

.

.

.

. . .

.

.

.
.

. .
.

.

.

.

.

.

.

.
.

.

... .
.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.
.

.

.

..

.

.
.

.

..

.

.

.
.

.
.

.
.

.

.

.

.

.
.

..

. .

..

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

..
..

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.
.

.

.

.
.

.

.

.

.
.

.
.

.

. .

.

. .
.

.
....

.

.

.
.

.
.

.
.

..

.
.

..

. .
.

.

.

..
.

.
.

.

.

...
.

.

. ...

.

.
..

.

. ..

.

. .

.

.
.

. .
.

.

.
.

.. .
.

.
.

.

.
...

. .
. .

.
.

.
.

.
.

.

.

.

. .
.

.

.

.

.
.

.

..
.

.
..

.

.
.

.

.
.

.

.

.
.

.
.

.
.

.
.

.

.

.

.
.

..

...
.

. .

.

.

. ..

.
.

.

.

.

..

.

.

.

.. .

..

.

.

..

.

.

.

. .

.

.

.

.

.

..
. .

.

.
.

.

.
.

.

.

.

..
. .

.

.

.

.

.

.

..

.

..

.

.
..

.

.
.

.
.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.
. .

.
.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

..
.

.

. .
.

.

.

.

.

.

.

.

.

..

.

. .

.
.

.

.

.
.

.

.

.

.
.

.

.

...
.

..

.

.

.

.

.

.
. ..

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

. .

. ..

.

.
.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.
.

.
..

.
.

.
.

.

.

.

..
.

.. .

.

..
.

. .

.
.

.

.
.

.
.

.
.

.

.
. ..

.

.

.

. .

.

.
..

.
..

.
.

. .
.

..
.

..
.

. .
.

.
.

.

..
.

....
.

. .
.

.

.
. .

.

. .

.

.

.

.
.

..
.

.. .

.

.
...

.

.. ..
.

.

.
.

.
.

. .

.

.

.
. . .

.

.
.

.

..
..

. .

.

.

.

.. .

..

.

.

.
. .

.

.

..

.
.

...
..
.

.

. .

.

.

.

..
.

..
...

.
.

.

.

.

.

.
.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

. .

.

.
.

.

.

.

.

.
..

..

.

.

.
.

.

.

.

.

.

.

.
.

.

. .

.
..

.
.

.

.

.

.

.
.

.

. .

.

..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

..

.
.

.

.
.

.
.

.
..

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

...

..
.

.

. .
.

.

.
.

.

.

.

.
.

..
.

.

.

.

.

.

.
.

. .

.

..

.
.

.

.

.
.

.

.

.
.

.

.

.

.
.

.
. .

.

.
.

.

.

.

.
.

.

. .
.

.
.

.
.

..

.. ..

. .
.

..

.
. .

.
.

.

.

.
.

.
.

..

.
.

.

.

.

.

.
.

.

..
..

.
.

.

.
.

.
..

.
.

. .
..

.

.

.

..
. ..

.
. ..

.

. .

.

.
.

.
..

.
.

.

. .
.

.

.
.

.
..

.
.

. ..
.

.

.
.

. .
.

.

.
.

.

..
.

.

.
.

..

.

. .

..
.

.
.

.

.
.

.

.

.
.

.
.

.

.

. .

. .

.

.

..
.

.
.

.

. .
.

.

.. .

.

.

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

..

.

.

.

. .

.

. .

.

.

..

.

.
. .

..
.

.

.

.

.
..

.
.

.

.

.

.
.

.

..

.

.

.

.

.

.
.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
...

.
.

.

.

.

.

.

.
. .

.

.
.

. .

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

.

.

.
.

.
..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

. .

.

..

..

.

.

.

.
.

.

.

..

.

.

..
.

.

.

.

.

.

.
.

.

.

.
.

.
. .

.

.
.

.

.
.

.

.

.
.

.

.
.

.
. .

.

.

.

.
.

.
..

.

.
.

.

..
.

.
. .

..

.

.

..
..

.
. .

.
. .

..

.

.

.
.

..
.

.

..
. .

.

.

.

..

.

.

...

. .
.

.

..
.

.

. .
.. .

. .
.

. ..

.

..

..

.

.
...

. .

.
. ..

..
.

.

.

..

.

.
.

.

.
.

.
.

. .

.

. .

.

.

. .

.
.

. .
.

.

.

.

.
.

.

.
.

.

.

.

.
. .

. .

..

.

..

.

.
.

.
.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.
.

.
.

..

.

. .

.
.

.

.

.
.

..
.

.

.

.

.

..

.
..

.

.

.

.

.

..

. .

.
. .

.

.

.

.

.. .

.
.

.
.

.
.

.

.
.

. .

.

.

.
.

.
.

.

.
.

..

.

.

.
.

.
.

..
..

.

.

.
.

.

.
.

.

.

.

.

..

.

.

.
.

...

.

.

.

.

.

..
.

.

.

.

.

..

.

.

.

...
.

.

.

.

.. .

. .

.

.

.

...

.

.

.
. .

. .

.

.

.

. .

..
.

.

.

.

.

.

.

.

.

. .

.

.
..

.

.

.

. .
.

.
.

.
.

.

.

.

.

.

.

.
.

. .

..

.

.
.

.

.

.

.

. ..

..
.

.

.

..

.
.

. .

.
.

.
. .

.
.

.

.
.. .

.
. .

..

.
.

. .
.

.

..

...
.

.

.
..

..
.

.

.

.

. ..
.

.

.

.

.
. ...
..

.

.
. .
.

..
..

. .
.

.. ..
.

.

..

.

.

.

.
. .

.
. .. .

..
.

.

. ..

.

.
. .
. .

.
. .

...
.

.

...

.
.

. .

.
.

.

.

.

.

. .
..

..

. .

.

.
.

..

.

.

.

..

. .

..
.

.
.

.

..

.

.
.

..

.

.

.
.

.

.

.

. .

.

..

.

.

.

.

.

.
.

.
.

.

.

.

..

.

.
.

..
.

.

.

.

.

.
.

.

.

.

.

.

. .

.

..

.
.

.

.

.
.

.

.
.

.

.

.
.

..

.

.
.

. .

.

.

. .

. .

.

.

.

.

..

.

.

.

.
.

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

..
.

.

.
.

.

. . .

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.
.

.

.

.
..

.

.

.

.
.

. .

. .

.

.

.
.

.

. .

.

. .

.

..
.

.

.

.

. .

.

.

.
.

.
.

..

.

.

.

. .

.
.

.
.

.
.

. .

.

..

.

.
.

.

. .

..

.

.

. .
.

.

.
.

.
.

.

..

.
.

.

.

..

. .

..
.

.

.

.
.

.

....

. .
.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.
. .

.

.
. .

. .

.
.

.
.

.

. ... ..

...

.
..

.
.

..

.

...
.

..
.

.

.

.
.

.

. .

.

.

.

.
.

..

.

. ..

.

.
..

.

. .

..

.

.
.

.

.
.

. .

.

. . .

.
.

.
. .
. .

.

.
.

..

.

. .
..

.

.

.

..

.

.
.

.

...

.

.

.

.
.

.

.

.
.

.

..
.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.
. .

.

.

.

.

.

.

.
.

. .
. ..

.

..
.

.

. .

.

.

.

.

.

.
.

.

.

.

..

.

.
.

.

.

.

.

.

.

.
.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.
..

.

.

..

..

.

. .

.
.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

. .
.

.

.

.

.

.

.

.

.

..
.

.

.

.
.

.

..
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

. .

.

. . ..
.

..
...

.

.

.

..

..

.

.

.

.

.

.

...
. .

.

.
.

. .

.
.

. . .
.

.

..

.

.

.

.

.

.

.

.

.

.
.

.
.

.

...
.

.

.

.
.

.

.

.

.
.

.

.

. .

.
.

.

. .

.
...

..
.

.

.
. .

. .
. .

...

.

.

.

.

.

.
.

.

..

. ..
.

.
...

.

.
.

.
.

. ..

.
.

.
.

..
.

.

.
. .

.

.

..
....

. .
.

.
..

..

. .

.

.
.

...

. .

.

.

.

.

.
.

. . .

.
.

.
.

.

.

.

. .
.

.

.

.
.

.

.

.

.

.

.. ..

.

.

..

.

.

.
. .

.

.

.
.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

. .

.

.

.
.. .

. .

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
..

yesterday’s max temperature

to
da

y’
s 

m
ax

 te
m

pe
ra

tu
re

10 15 20 25 30 35 40

10
20

30
40

Figure 2.8. Melbourne Daily MaximumTemperature: Superimposed
on the AR(1) scatterplot of daily maximum temperatures are 12 esti-
mated conditional quantile functions. These functions support the view
that the conditional density of maximum temperature conditional on
prior warm weather is bimodal.
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Figure 2.9. Melbourne Daily Maximum Temperature: Conditional
density estimates of today's maximum temperature for several values
of yesterday's maximum temperature, based on the Melbourne data.
Note that today's temperature is bimodal when yesterday was hot.
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are inadequate, and the recent wave of models for conditional scale, variance, etc.
also are unsatisfactory. We must allow the entire shape of the conditional density to
change with x, and this is readily done within the scope of the quantile regression
formulation.

5. Interpreting Misspeci�ed Quantile Regression Models

In the classical least squares setting if we consider the model

yi = �(zi) + ui(2.5.11)

with the fuig iid from the distribution F , and Eu1 = 0; but, mistakenly, we estimate
the linear model,

yi = �0 + �1zi + vi;(2.5.12)

then the least squares estimator, �̂ = (X 0X)�1X 0y with X = (xi) = (1; zi) has the
property that,

�̂ = (X 0X)�1X 0�

where � = (�(zi))ni=1. Thus, in e�ect, we can view the misspeci�ed least squares
projection as occurring in two steps: in the �rst, the response, y is projected to obtain
its correct conditional mean vector �, and, in the second step, � is projected into the
linear subspace spanned by the columns ofX. We may thus interpret the least squares
estimator, �̂, as an estimator of the best L2 approximation of the true conditional
mean vector, � by a vector lying in the column space of X. This approximation is
clearly dependent on design points, fxig, since it minimizes the quantity

P
(�(xi)�

x0ib)
2.
In quantile regression the analysis of the consequences of misspeci�cation is some-

what more complicated due to the fact that we cannot decompose the analogous
\projection" in the same way. To see this, note that,

�̂(� ) = argmin
X

�� (yi � x0ib)
solves, asymptotically, the equations,

	(b) = n�1
X

 �(yi � x0ib)xi = 0:

Write,

	(b) = n�1
X

 �(ui + �(xi)� x0ib)xi
= n�1

X
(� � I(ui + �(xi) � x0ib < 0)xi

so

E	(b) = n�1
X

(� � F (x0ib� �(xi)))xi:
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And thus, we see that the solution, �̂(� ), that makes E	(b) = 0, depends not only
upon the function, �(�), and the observed, fxig, as in the least squares case, but also
upon the form of the distribution function, F .

An interesting, albeit rather implausible, special case is that of the uniform dis-
tribution for the fuig. In this case, we have simply,

E	(b) = n�1
X

(� + �(xi)� x0ib)xi:
so we can write the solution, �(� ), explicitly as,

�(� ) = (
X

xix
0
i)
�1
X

x0i(�(xi) + � ) = (X 0X)�1X 0(� + � )

Since, X, explicitly contains an intercept the e�ect of the � term appears only in the
intercept component of �(� ) and for the slope parameters we have the same projection
of the conditional mean function as we found for the least squares case. In general,
of course, the distribution function is nonlinear and thus enters the determination of
�(� ) in a more complicated manner.

6. Problems

1. Extend Corollary 2.2 to the p sample problem with design matrix

X =

2
664
1n1 0 : : : 0
0 1n2
...

. . .
0 1np

3
775 :

2. Suppose we have the reformulated p sample design matrix

X =

2
6664
1n1 ; 0 : : : 0

1n2 1n2
...

...
... 0

1np 0 1np

3
7775

express the regression quantile estimator �̂(� ) in this case as,

�̂(� ) = (�̂1(� ); �̂2(� ); : : : ; �̂p(� ))
0

where �̂i(� ) = �̂i(� )� �̂1(� ); and interpret.

3. Bo�nger (1975). Show using standard density estimation techniques that the
optimal bandwidth for minimum mean-squared error estimation of the sparsity func-
tion at � , is,

hn = n�1=5
�
4:5s2(t)

(s00(t))2

�1=5
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Of course, if we knew s(t) and s00(t) we wouldn't need hn, but fortunately s(t)=s00(t)
is not very sensitive to F . Show that hn is invariant to location and scale of F ,
for example. Compare hn for some typical distributional shapes - say, the Gaussian,
Student, and lognormal. Show

s(t)

s00(t)
=

f2

2(f 0=f)2 + [(f 0=f)2 � f 00=f ]
and, for example, if f is Gaussian, (f 0=f)(F�1(t)) = ���1(t) so the term in square
brackets is 1 , and the optimal bandwidth becomes,

hn = n�1=5
�

4:5�4(��1(t))

(2��1(t)2 + 1)2

�1=5

:

Plot this bandwidth, as a function of n for several quantiles, and compare the plots
across the distributions. Sheather and Maritz(1983) discuss preliminary estimation
of s and s00 as a means of estimating a plug-in hn.

4. Compare the Sheather-Hall bandwidth rule given in the text with the Bo�nger
bandwidth of the previous problem.

5. Let X1; : : : ;Xn be a random sample from a df F (x��0): Consider L-estimators
of location of the form

�̂0 =

Z 1

0

J(u)F�1
n (u)du

where Fn(�) denotes the empirical distribution function constructed from the Xi's.
If F has �nite Fisher information I(F ) and a twice continuously di�erentiable log
density, then the optimal L-estimator has weight function of the form

J�(F (x)) = �(log f(x))
00

I(F )

1. Explain the observation that �̂n is location equivariant, since,Z 1

�1

J�(F (y))dF (y) =

Z 1

0

J�(u)du = 1

2. The optimality of �̂n may be seen by computing the in
uence function of the
general L-estimator as follows:

I.: The IF of the uth sample quantile is

IF (x; F�1(u); F ) =
d

d"
F�1
" (u) =

u� �x(F�1(u))

f(F�1(u))

which may be shown by di�erentiating the identity

F"(F
�1
" (u)) = u
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where F"(y) = (1 � ")F (y) + "�x(y) to obtain

0 = �F (F�1
" (u)) + �x(F

�1
" (y)) + f"(F

�1
" (u))

d

d"
F�1
" (u)

and evaluating at " = 0:
II.: Thus

IF (x; �̂n; F ) =

Z 1

0

(J�(u)(u� �x(F�1(u)))=f(F�1(u))du

=

Z 1

�1

J�(F (y))(F (y)� �x(y))dy

=

Z x

�1

J�(F (y))dy �
Z 1

�1

(1� F (y))J�(F (y))dy

= �I(F )�1
Z x

�1

(log f)00(y)dy

= �I(F )�1(log f)0(x)
III.: Setting  (x) = �(log f)0(x) = �f 0(x)=f(x) we conclude that

p
n(�̂n�

�0); N (0; EIF 2) where

EIF 2 =

Z
( 2(x)=I(F )2)dF (x)

= I(F )�1

Explain brie
y the foregoing result. Focus on the following aspects

(i) How to compute �̂n.

(ii) How does �̂n di�er from the mle.

(iii) What does the IF tell us about �̂n.

6. Consider the mean squared error of the kernel smoothed quantile estimator,
~�n(� ), of (5.2.1). Show that the bias my be expressed as,

Bias( ~�n(� )) =
1

2
h2n�

2
k + o(h2) +O(n�1);

and the variance as,

V ( ~�n(� )) = n�1� (1 � � )s2(� )� n�1hns2(� )�k + o(h=n);

where �2k =
R
t2k(t)dt, and �k =

R
tk(t)K(t)dt. Conclude from this that the optimal

(mean-squared-error minimizing) bandwidth is of the form

h� = (�=n)1=3[s(� )=s0(� )]2=3

where � = 2�k=(�2k)
2. For the Epanechnikov kernel, show that � = :287494; and

illustrate them for few representative n's for the standard normal distribution. Even
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for quite large sample sizes these bandwidths are quite wide and we would be reluctant
to recommend such aggressive smoothing. See Sheather and Marron (1990) and Falk
(1984) for assistance on this problem.
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CHAPTER 3

Inference for Quantile Regression

In this chapter we will try to provide a practical guide to statistical inference for
quantile regression applications. There are a number of competing approaches in the
literature and we will o�er some guidance on their advantages and disadvantages.
Ideally, of course, we would aspire to provide a �nite-sample apparatus for statistical
inference about quantile regression like the elegant classical theory of least squares
inference under iid Gaussian errors. But we must recognize that even in the least
squares theory it is necessary to resort to asymptotic approximations as soon as we
depart signi�cantly from idealized Gaussian conditions.

Nevertheless, we will brie
y describe what is known about the �nite sample the-
ory of the quantile regression estimator and its connection to the classical theory
of inference for the univariate quantiles. We then introduce the asymptotic theory
of inference with a heuristic discussion of the scalar, regression-through-the-origin
model; a more detailed treatment of the asymptotic theory of quantile regression is
deferred to Chapter 4. We then describe several approaches to inference: Wald tests
and related problems of direct estimation of the asymptotic covariance matrix, rank
tests based on the dual quantile regression process, likelihood ratio type tests based
on the value of the objective function under null and alternative models and �nally
several resampling methods are introduced. The chapter concludes with a description
of a small Monte Carlo experiment designed to evaluate and compare the foregoing
methods.

1. Some Finite Sample Distribution Theory

Suppose Y1; :::; Yn are independent and identically distributed (iid) random vari-
ables with common distribution function F , and assume that F has a continuous
density, f , in a neighborhood of �� = F�1(� ) with f(�� ) > 0: The objective function
of � th sample quantile,

�̂� � inf
�
f� 2 jRj

X
��(Yi � �) = min!g

63
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is the sum of convex functions, hence is itself convex. Consequently by the mono-
tonicity of the gradient,

gn(�) =
nX
i=1

(I(Yi < �) � � );

we have,

Pf�̂� > �g = Pfgn(�) < 0g
= Pf

X
I(Yi < �) < n�g

= PfB(n;F (�)) < n�g;

where B(n; p) denotes a binomial random variable with parameters (n; p). Thus,
letting m = dn�e denote the smallest integer � n� , we may express the distribution

function, G(�) � Pf�̂� � �g, of �̂(� ), using the incomplete beta function, as,

G(�) = 1 �
nX

k=m

�
n

k

�
F (�)k(1 � F (�))n�k

= n

�
n� 1

m� 1

�Z F (�)

0

tm�1(1 � t)n�mdt:

Di�erentiating, yields the density function for �̂(� ),

g(�) = n

�
n� 1

m� 1

�
F (�)m�1(1� F (�))n�mf(�):(3.1.1)

This form of the density can be deduced directly, by noting that the event fx <
Y(m) < x + �g requires that m � 1 observations lie below x, n � m lie above x + �
and one lies in the interval (x; x+ �). The number of ways that this arrangement can
occur is

n!

(m� 1)!1!(n�m)!
= n

�
n� 1

m� 1

�
;

and each arrangement has the probability, F (�)m�1(1� F (�))n�m[F (� + �)� F (�))].
Thus,

Pfx < Y(m) < x+ �g = n

�
n� 1

m� 1

�
F (�)m�1(1� F (�))n�mf(�)� + o(�2);

and we obtain (3.1.1) by dividing both sides by � and letting it tend to zero.
This approach may also be used to construct con�dence intervals for �� of the

form,

Pf�̂�1 < �� < �̂�2g = 1� �
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where �1 and �2 are chosen to satisfy

Pfn�1 < B(n; � ) < n�2g = 1 � �:
In the case of continuous F these intervals have the remarkable property that they
are distribution-free, that is, they hold irrespective of F . In the case of discrete F ,
closely related distribution-free bounds for Pf�̂�1 < �� < �̂�2g and Pf�̂�1 � �� � �̂�2g
may be constructed.

The �nite sample density of the regression quantile estimator, �̂(� ), under iid er-
rors may be derived from the subgradient condition (2.2.1) introduced in the previous
chapter in a manner which much like the derivation of the density in the one-sample
case given above.

Theorem 3.1 (Bassett and Koenker (1978)). Consider the linear model

Yi = x0i� + ui i = 1; :::; n;

with iid errors fuig having common distribution function F and strictly positive den-

sity f at F�1(� ). Then the density of �̂(� ) takes the form,

g(b) =
X
h2H

Pf�h(b) 2 Cg
��X(h)

�� Y
i2h

f(x0i(b � �(� )) + F�1(� ))(3.1.2)

where �h(b) =
P

i2�h  �(yi � xib)x0iX(h)�1 and C denotes the cube [� � 1; � ]p.

Proof: From Theorem 2.1, �̂(� ) = b(h) � �X(h)
��1

Y (h) if and only if �h(b(h)) 2
C. For any b 2 jRp, let B(b; �) = b + [��=2; �=2]p denote the cube centered at b with
edges of length �, and write,

Pf�(� ) 2 B(b; �) =
X
h2H

Pfb(h) 2 B(b; �); �h(b(h)) 2 Cg(3.1.3)

=
X
h2H

EI(b(h) 2 B(b; �))Pf�h(b(h)) 2 CjY (h)g

where the expectation is taken with respect to the vector Y (h). The conditional
probability above is de�ned from the distribution of �h(b(h)) which is a discrete ran-
dom variable (taking on 2n�p values for each h 2 H). As � ! 0, this conditional
probability tends to Pf�h(b) 2 Cg this probability is independent of Y (h).

Now, divide both sides by Volume(B(b; �)) = �p, and let � ! 0 to put things
in density form. The conditional probability tends to Pf�h(b) 2 Cg which no longer
depends on Y (h). The other factor tends to the joint density of the vectorX(h)�1Y (h)
which since

fY (h)(y) =
Y
i2h

f
�
yi � x0i�

�
:
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can be written as,

f�
X(h)

�
�1

Y (h)
(b) =

��X(h)
�� Y
i2h

f

��
X(h)b

�
i
� x0i�(� ) + F�1(� )

�
(3.1.4)

=
��X(h)

�� Y
i2h

f

�
x0i
�
b � �(� )

�
+ F�1(� )

�
:

Note that h for which X(h) is singular contribute nothing to density. The result now
follows by reassembling the pieces.

Unfortunately, from a practical standpoint the
�
n
p

�
summands of (3.1.2) are not

very tractable in most applications and, as in the least squares theory, we must
resort to asymptotic approximations for a distribution theory adaptable to practical
statistical inference. In the next section we try to provide a heuristic introduction
to the asymptotic theory of quantile regression. A more detailed formal treatment of
the asymptotic theory of quantile regression may be found in Chapter 4.

2. Some Asymptotic Heuristics

The optimization view of the sample quantiles also a�ords an elementary approach
to their asymptotic theory. Suppose Y1; :::; Yn are independent and identically dis-
tributed (iid) from the distribution F and for some quantile �� = F�1(� ) assume that
F has a continuous density, f , at �� with f(�� ) > 0: The objective function of � th
sample quantile,

�̂� � inf
�
f� 2 jRj

X
��(Yi � �) = min!g

as we have already noted, this objective function is the sum of convex functions, hence
is itself convex. Consequently its gradient,

gn(�) = n�1
nX
i=1

(I(Yi < �) � � )

is monotone in �. Of course, when � equals one of the Yi then this \gradient" needs
the subgradient interpretation discussed above, but this is not crucial to the argument
that follows. By monotonicity, �̂� is greater than � if and only if gn(�) < 0. so

Pfpn(�̂� � �� ) > �g = Pfgn(�� + �=
p
n) < 0g

= Pfn�1
X

(I(Yi < �� + �=
p
n)� � ) < 0g:

Thus, we have reduced the behavior of �̂� to a DeMoivre-Laplace central limit theorem
problem in which we have a triangular array of Bernoulli random variables. The
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summands take the values (1 � � ) and �� with probabilities F (�� + �=
p
n) and

1 � F (�� + �=
p
n). Since

Egn(�� + �=
p
n) = (F (�� + �=

p
n)� � )! f(�� )�=

p
n;

and

V (n�1gn(�� + �=
p
n)) = F (�� + �=

p
n)(1� F (�� + �=

p
n))=n! � (1� � )=n:

we may set !2 = � (1� � )=f2(�� ) and write,

Pfpn(�̂� � �� ) > �g = P

(
gn(�� + �=

p
n)� f(�� )�=pnp

� (1 � � )=n < �!�1�
)

! 1� �(!�1�)

and therefore p
n(�̂� � �� ); N (0; !2):(3.2.1)

The � (1 � � ) e�ect tends to make �̂� more precise in the tails, but this would be

typically dominated by the e�ect of the density term which tends to make �̂� less
precise in regions of low density.

Extending the foregoing argument to consider the limiting form of the joint dis-
tribution of several quantiles, set �̂n = (�̂�1; :::; �̂�m) with �n = (��1 ; :::; ��m) and we
obtain, see Problem 3.1,

p
n(�̂n � �); N (0;
)(3.2.2)

where 
 = (!ij) = (�i ^ �j � �i�j)=(f(F�1(�i)f(F
�1(�j)). This result is the starting

point of the large sample theory for �nite linear combinations of order statistics (L-
statistics) which we have introduced in the previous chapter.

These results for the ordinary sample quantiles in the one-sample model generalize
nicely to the classical linear regression model

yi = x0i� + ui

with iid errors fuig. Suppose that the fuig have common distribution function F with
associated density f , with f(F�1(�i)) > 0 for i = 1; : : : ;m; and n�1

P
xix

0
i � Qn

converges to a positive de�nite matrix, Q0. Then the joint asymptotic distribution
of the m p-variate quantile regression estimators �̂n = (�̂n(�1)0; :::; �̂n(�m)0)0 takes the
form,

p
n(�̂n � �) = (

p
n(�̂n(�j)� �(�j)))mj=1 = N (0;
 
Q�1

0 ):(3.2.3)

In the iid error regression setting, the form of the �(�j) is particularly simple as we
have seen. The conditional quantile planes of yjx are parallel so presuming that the
�rst coordinate of � corresponds to the \intercept" parameter we have, �(� ) = �+��e1
where �� = F�1(� ) and e1 is the �rst unit basis vector of jR

p. Since 
 takes the same



68 3. INFERENCE FOR QUANTILE REGRESSION

form as in the one sample setting many of the classical results on L-statistics can be
directly carried forward to iid error regression using this result.

This result, which is essentially the content of Theorem 4.1 of KB(1978) a�ords
considerable scope for Wald-type inference in the quantile regression setting. Hy-
potheses which may be formulated as linear restrictions of the vector �, are immedi-
ately subject to test using the limiting normal theory and its chi-square adaptations.
We now turn to the problem of estimating the asymptotic covariance matrix required
for these tests.

3. Wald Tests

The classical theory of linear regression assumes that the conditional quantile
functions of the response variable, y, given covariates, x, are all parallel to one another,
implying that the slope coe�cients of distinct quantile regressions will be identical. In
applications, however, as we have seen, quantile regression slope estimates often vary
considerably across quantiles, so an immediate and fundamental problem of inference
in quantile regression involves testing for equality of slope parameters across quantiles.

Some simple tests designed for this purpose were suggested in Koenker and Bas-
sett(1982). For the two-sample problem they correspond to tests of equality between
the interquantile ranges of the two samples. Thus, they may be considered to be
tests of homogeneity of scale, or tests for heteroscedasticity. Consider the two-sample
model

Yi = �1 + �2xi + ui

where xi = 0 for n1 observations in the �rst sample and xi = 1 for n2 observations in
the second sample. The � th regression quantile estimate of the \slope" parameter �2
in this model is, simply the di�erence between the � th sample quantiles of the two
samples. See Problem 2.2. Thus a test of the equality of the slope parameters across
quantiles �1 and �2 is just a test of the hypothesis

�2(�2)� �1(�1) = (Q2(�2) �Q1(�2))� (Q2(�1)�Q1(�1))

= (Q2(�2) �Q2(�1))� (Q1(�2)�Q1(�1))

= 0;

i.e. that the (�2��1)-interquantile ranges are identical for the two samples. By (3.2.3)
the asymptotic variance of �̂2(�2)� �̂1(�1) is given by

�2(�1; �2) =

�
�1(1� �1)
f2(F�1(�1))

� 2
�1(1� �2)

f(F�1(�1))f(F�1(�2))
+

�2(1 � �2)
f2(F�1(�2))

� �
n

nn1 � n21

�
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and a test of the null hypothesis can be based on the asymptotic normality of the
statistic,

Tn = (�̂2(�2)� �̂1(�1))=�̂(�1; �2)
Of course, it is obvious from the form of �2(�1; �2) that it is necessary to estimate the
nuisance parameters, 1=f(F�1(�1)) and 1=f(F�1(�2)), a topic which is taken up in
the next subsection.

3.1. Sparsity Estimation. It is a somewhat unhappy fact of life that the as-
ymptotic precision of quantile estimates in general, and quantile regression estimates
in particular, depend upon the reciprocal of a density function evaluated at the quan-
tile of interest { a quantity Tukey(1965) has termed the \sparsity function" and
Parzen(1979) calls the quantile-density function. It is perfectly natural that the pre-
cision of quantile estimates should depend on this quantity since it re
ects the density
of observations near the quantile of interest, if the data is very sparse at the quantile
of interest it will be di�cult to estimate. On the other hand, when the sparsity is low,
so observations are very dense, then the quantile will be more precisely estimated.
Thus, to estimate the precision of the � th quantile regression estimate directly, the
nuisance quantity

s(� ) = [f(F�1(� ))]�1

must be estimated, and this leads us into the realm of density estimation and smooth-
ing. In fact, we shall see that it may be possible to pull oneself out of this swamp
by the bootstraps, or other statistical necromancy, but we defer the exploration of
these strategies a bit, and begin by exploring the direct approach to estimating the
asymptotic covariance matrix.

Luckily, there is a large literature on estimating s(� ) in the one-sample model,
including Siddiqui (1960), Bo�nger (1975), Sheather and Maritz (1983), Welsh (1986)
and Hall and Sheather (1988). Siddiqui's idea is simplest and has received the
most attention in the literature so we will focus on it. Di�erentiating the iden-
tity, F (F�1(t)) = t we �nd that the sparsity function is simply the derivative of the
quantile function, i.e.,

d

dt
F�1(t) = s(t):

So, just as di�erentiating the distribution function, F , yields he density function, f ,
di�erentiating the quantile function, F�1, yields the sparsity function s. It is therefore
natural, following Siddiqui, to estimate s(t) by using a simple di�erence quotient of
the empirical quantile function, i.e.,

ŝn(t) = [F̂�1
n (t+ hn) � F̂�1

n (t� hn)]=2hn
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where F̂�1 is an estimate of F�1 and hn is a bandwidth which tends to zero as
n!1. A bandwidth rule suggested Hall and Sheather (1988) based on Edgeworth
expansions for Studentized quantiles is

hn = n�1=3z2=3� [1:5s(t)=s00(t)]1=3

where z� satis�es �(z�) = 1� �=2 for the construction of 1� � con�dence intervals.
In the absence of other information about the form of s(�) we may use the Gaussian
model to select the bandwidth hn, which yields

hn = n�1=3z2=3� [1:5�2(��1(t))=(2(��1(t))2 + 1)]1=3

Having chosen a bandwidth hn the next question is: how should we compute F̂�1?
The simplest approach seems to be to use the residuals from the quantile regression
�t. Let ri : i = 1; :::; n be these residuals, and r(i) : i = 1; :::; n, be the corresponding

order statistics. One may de�ne the usual empirical quantile function, F̂�1(t) = r(j)
for t 2 [(j�1)=n; j=n ): Alternatively, one may wish to interpolate to get a piecewise
linear version

~F�1(t) =

8<
:

r(1) if t 2 [0; 1=2n)
�r(j+1) + (1 � �)r(j) if t 2 [(2j � 1)=2n; (2j + 1)=2n) j = 1; :::; n� 1
r(n) if t 2 [(2n� 1)=2n; 1]

where � = tn�j+1=2: Other schemes are obviously possible. A possible pitfall of the
residual-based estimates of F�1 is that if the number of parameters estimated, say p,
is large relative to n, then since there must be p residuals equal to zero at the �tted
model, we must make sure that the bandwidth is large enough to avoid these zero
residuals. The simplest approach seems to be to ignore the zero residuals entirely in
the construction of F̂�1 and ~F�1 and treat the e�ective sample size as n�p: We may
think of the deletion of these zero residuals as a direct analogue of the usual degrees
freedom adjustment made when computing an estimate of the regression variance in
least squares regression. In applications with discrete y's it is sometimes possible
to have more than p zero residuals, in the terminology of linear programming this
phenomenon is called degeneracy. It is prudent to delete all such residuals before
proceeding with the estimation of s(� ).

An alternative, perhaps less obvious, approach to estimating F�1 is to employ the
empirical quantile function suggested in Bassett and Koenker (1982). In e�ect this

amounts to using F̂�1
Y (t) = �x0�̂(t) where �̂(�) is the usual regression quantile process.

As we have emphasized already, the functions

Q̂Y (� jx) = x0�̂(� )

constitute a family of conditional quantile functions for the response variable Y . At
any �xed x we can regard Q̂Y (� jx) as a viable estimate of the conditional quantile
function of Y given x. Of course, the precision of this estimate depends upon the x
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at which we evaluate the expression, but the precision is maximized at x = �x. This
makes F̂�1

Y (t) = �x0�̂(t) an attractive choice, but we should verify that as a function
of � this function satis�es the fundamental monotonicity requirement of a quantile
function. It is clear from the examples that we have already seen that the estimated
conditional quantile functions �tted by quantile regression may cross { indeed this
is inevitable since the estimated slope coe�cients are not identical and therefore the
functions are not parallel. One might hope, and expect, that this crossing occurred
only in the remote regions of design space { near the centroid of the design, �x, crossing
should not occur. This \wishful thinking" is supported by the following result.

Theorem 3.2. The sample paths of Q̂Y (� j�x) are non-decreasing in � on [0; 1].

Proof: We will show that

�1 < �2 ) �x0�̂(�1) � �x0�̂(�2):(3.3.1)

We �rst note a simple property of the quantile regression objective function. For any
b 2 Rp,

nX
i=1

�
��2
�
Yi � x0ib

� � ��1
�
Yi � x0ib

��
= n(�2 � �1)( �Y � �x0b)(3.3.2)

This equation follows directly from the de�nition of �� :

��1
�
Yi � x0it

� � ��2
�
Yi � x0it

�
= (�2 � �1)

�
Yi � x0it

�+
+
�
(1� �2) � (1� �1)

��
Yi � x0it

��
=
�
�2 � �1

���
Yi � x0it

�+ � �Yi � x0it
���

(3.3.3)

=
�
�2 � �1

��
Yi � x0it

�
:
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Now, using the de�nition of �̂(� ) as a minimizer of �� , and applying (3.3.2) with

b = �x0�̂(�k) for k = 1; 2, we have

nX
i=1

��1
�
Yi � x0i�̂(�1)

�
+ n

�
�2 � �1

��
�Y � �x0�̂(�2)

�

�
nX
i=1

��1
�
Yi � x0i�̂(�2)

�
+ n

�
�2 � �1

��
�Y � �x0�̂(�2)

�

=

nX
i=1

��2
�
Yi � x0i�̂(�2)

�
(3.3.4)

�
nX
i=1

��2
�
Yi � x0i�̂(�1)

�

=
nX
i=1

��1
�
Yi � x0i�̂(�1)

�
+ n

�
�2 � �1

��
�Y � �x0�̂(�1)

�
:

Simplifying, we see that this is equivalent to

n
�
�2 � �1

��
�x0�̂(�2) � �x0�̂(�1)

� � 0;(3.3.5)

from which Theorem 3.2 follows immediately.
To illustrate the application of this approach consider the data depicted in Figure

3.1 This is a classical data set in economics and is based on 235 budget surveys of
19th century working class households. Household expenditure on food is measured
vertically, and household income is measured horizontally. The data was originally
presented by Ernst Engel(1857) to support his hypothesis that food expenditure con-
stitutes a declining share of household income. Following established custom we have
transformed both variables to the log-scale, so a slope less than unity is evidence for
Engel's Law. We have superimposed 6 estimated linear conditional quantile functions
for these data. The �tted lines look roughly parallel, but we might like a formal test of
the hypothesis of equality of slopes. Focusing on the inner two lines which represent
the �t for the �rst (� = :25) and third (� = :75) quartiles, we �nd that the di�erence
in the slopes is,

�̂2(3=4) � �̂2(1=4) = 0:915 � 0:849 = 0:0661:

In Figure 3.2 we illustrate the function Q̂Y (� j�x) for this dataset. The vertical scale
is the natural logarithm of food expenditure. The dotted lines forming triangles
illustrate the estimation of the sparsity function at the �rst and third quartiles. The
Hall-Sheather bandwidth for both estimates is .097, yielding sparsity estimates of
ŝ(1=4) = 0:543 and ŝ(3=4) = 0:330. The lower diagonal element of (X 0X)�1 is 0.022
so the test statistic for the equality of the two slopes is 1.93, which has a p-value of



3. WALD TESTS 73

•

•

•
•

•

••
•

• •

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•
• •

•

•
•

•

•
•

• •

•

•

•

••

•
•

•
•

•

•

•

•

•

•

•

•

•
•
•

•

•
•

•

•

••

•
•

•• ••
••

•

•

•

•

•

••
•

•

•

••
•

•

•

•

•

•

•

•

• •

•
•

••

•

•

•
•

•

•

• •

•
•

• •

•

•

•
•

•

•

•

• •

•

•

•
•

•

••
•

•

•

•

•

•

•

•

•

• • •
•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
••

•

•

•
•

•
•

•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

• •

•

•

•
•
• •

•

• •

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• • •

•
•

•

household income

fo
od

 e
xp

en
di

tu
re

500 1000 5000

50
0

10
00

Figure 3.1. Engel Curves for Food: This �gure plots data taken from
Ernst Engel's (1857) study of households' expenditure on food versus
annual income. The data consists of 235 observations on European
working class households. Superimposed on the plot are six estimated
quantile regression lines corresponding to the quantiles � 2
f:05; :1; :25; :75; :9; :95g.

.03 for a one-tailed test of the hypothesis of equality of the slopes. This result o�ers
very weak evidence of increasing dispersion in the logarithm of food expenditure with
income, a �nding which may seem suprising in view of Figure 3.1. In large samples
the formal statistical signi�cance of such tests is extremely common. The substantive
signi�cance of such heteroscedasticity is, of course, completely application dependent.

There are obviously a number of other possible approaches to the estimation
of the sparsity parameter. Welsh(1986) considers a kernel approach which may be
interpreted as a weighted average of Siddiqui estimates in which those with narrow
bandwidth are given greater weight. Another approach is suggested by simply �tting
a local polynomial to F̂�1(t) in the neighborhood of � , and using the slope of this
�tted function at � as an estimate of sparsity. In Koenker and Bassett (1982) the
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Figure 3.2. Sparsity Estimation for the Engel Data: This �gure plots
Q̂Y (� j�x) = �x0�̂(� ) for the Engel data. The vertical scale is logarithmic
in expenditure on food. The estimation of the sparsity function by
the Siddiqui method is illustrated by the dotted triangles which depict
the di�erence quotient estimator of the sparsity at the �rst and third
quartiles. The estimate of the sparsity is given by the slope of the
hypotenuse of the triangles. The Hall-Sheather bandwidth is .097 for
this example.

histospline methods of Boneva, Kendall, and Stefanov (1971) are employed to estimate
the sparsity function.

4. Inference in non-iid Error Models

The classical iid error linear regression model yields a particularly simple form for
the limiting distribution of the quantile regression estimator �̂(� ): However, it might
be argued that in the location shift form of the iid error model quantile regression
is really super
uous; in this case a reasonable estimator of the conditional central
tendency of the response given the covariates is perfectly adequate. In non-iid error
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settings like the conditional location-scale model introduced in Section 2.5, the as-
ymptotic theory of �̂(� ) is somewhat more complicated. As we shall show in Section

4.x the limiting covariance matrix of
p
n(�̂(� ) � �(� )) takes the form of a Huber

sandwich, i.e., p
n(�̂(� )� �(� )); N (0;H�1

n JnH
�1
n )

where

Jn(� ) = � (1� � )n�1
nX
i=1

xix
0
i

and

Hn(� ) = lim
n!1

n�1
nX
i=1

xix
0
ifi(�i(� )):

The term fi(�i(� )) denotes the conditional density of the response, yi, evaluated at
the � -th conditional quantile. In the iid case these fi are identical, and the sandwich
collapses to the expression we have already considered. We are then faced with
the relatively simple problem of estimating a density, or its reciprocal, at a point.
However, in the non-iid case we face a more challenging task.

We will describe two approaches to the estimation of the matrixHn. One is a nat-
ural extension of sparsity estimation methods described above, and was suggested by
Hendricks and Koenker (1992). The other which is based on kernel density estimation
ideas was proposed by Powell (1989).

The Hendricks-Koenker Sandwich
Provided that the � -th conditional quantile function of yjx is linear, then for

hn ! 0 we can consistently estimate the parameters of the ��hn conditional quantile
functions by �̂(��hn): And the density fi(�i) can thus be estimated by the di�erence
quotient

f̂i(�i(� )) = 2hn=x
0
i(�̂(� + hn) � �̂(� � hn));

using the same choice of bandwidth discussed above. Substituting this estimate in the
expression for Hn above yields an easily implementable estimator for the asymptotic
covariance matrix of �̂(� ) in the non-iid error model. Note that the matrix Jn involves
no nuisance parameters and thus is immediately computable.

A potential di�culty with the proposed estimator f̂i(�i(� )) is that there is no
guarantee of positivity for every observation in the sample. Indeed, as we have already
seen, the quantity

di = x0i(�̂(� + hn)� �̂(� � hn))
is necessarily positive only at x = �x = n�1

P
xi: Nevertheless, in practice we �nd

that problems due to \crossing" of the estimated conditional quantile planes occurs
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only infrequently and in the most extreme regions of the design space. In our imple-
mentation of this approach we simply replace f̂i by its positive part, i.e., we use

f̂+i = maxf0; 2hn=(di � ")g
where " > 0 is a small tolerance parameter intended to avoid dividing by zero in the
(rare) cases in which di = 0 because the ith observation is basic at both � � hn:

The foregoing approach may be extended easily to the problem of estimating
asymptotic covariance matrices for distinct vectors of quantile regression parameters.
In these cases we would like to estimate,

acov (
p
n(�̂(�1)� �(�1);

p
n(�̂(�2)� �(�2)) = Hn(�1)

�1Jn(�1; �2)Hn(�2)
�1

where now

Jn(�1; �2) = [� ^ �2 � �1�2]n�1
X

xix
0
i:

Thus, Wald tests, like the heteroscedasticity tests described above, that involve linear
restrictions across several quantile regression parameter vectors can be easily carried
out with the same machinery. It should be emphasized that this approach is com-
putationally extremely e�cient and thus is particularly attractive for large problems
where bootstrapping and the rank test inversion approaches discussed below are im-
practical.

The Powell Sandwich
Powell (1989) has suggested an alternative, and in some ways even simpler, way

to estimate the quantile regression sandwich. Noting that in estimating the matrix
Hn(� ) we are really after a matrix weighted density estimator, he proposes a kernel
estimator of the form

Ĥn(� ) = (nhn)
�1
X

K(ûi(� )=hn)xix
0
i

where ûi(� ) = yi � x0i�̂(� ) and hn is a bandwidth parameter satisfying hn ! 0 andp
nhn !1: He shows that under certain uniform Lipschitz continuity requirements

on the fi; Ĥn(� ) ! Hn(� ) in probability. In practice, of course, there remain a
number of nettlesome questions about the choice of the kernel function K and the
bandwidth parameter hn we will have more to say about this in Section 3.x where
we describe a small Monte-Carlo experiment designed to explore the performance of
various inference strategies for quantile regression.

4.1. Other Hypotheses. More general hypotheses are easily accommodated by
the Wald approach. For example, as in Koenker and Bassett (1982), we may consider
a general linear hypothesis on the vector � = (�(�1)0; :::; �(�m)0)0 of the form

H0 : H� = h
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and test statistic

Tn = (H�̂ � h)0[H(

 (X 0X)�1)H 0]�1(H�̂ � h)
which is asymptotically �2 under H0. This formulation accommodates a wide variety
of testing situations, from simple tests on a single quantile regression coe�cient to
joint tests involving several covariates and several distinct quantiles. Thus, for exam-
ple, we might test for the equality of several slope coe�cients across several quantiles;
such tests provide a robust alternative to conventional least-squares based tests of het-
eroscedasticity because they can be constructed to be insensitive to outlying response
observations. The same formulation can, of course, be adopted to accommodate non-
linear hypotheses on the vector, �, by interpreting H0 above as the Jacobian of the
nonlinear hypothesis. Newey and Powell(1987) discuss tests for symmetry employing
this approach.

The inherent di�culty of estimating the sparsity, which comes from the form of
the the asymptotic covariance matrix 
, can be avoided by adopting one of several
available strategies. One involves replacing hypotheses about a few discrete quantile
regression parameters by hypotheses about smoothly weighted functions of quantile
regression parameters, another strategy involves turning to the dual formulation of
the quantile regression problem and adopting a testing approach which is closely
connected to the classical theory of rank tests. We will brie
y consider the former
approach, before addressing rank tests in the next section.

Gutenbrunner (1994) considers tests based on L-statistics of the form,

Sn =

Z
�̂(� )d�:

If � has a \signed density" J of bounded variation with respect to Lebesgue measure,
then the asymptotic variance of Sn under the iid error model takes the form,

�2(�; F ) =

Z 1

0

Z 1

0

!(u; v)d�(u)d�(v)(3.4.6)

= �
Z Z

u<v

(F�1(u)� F�1(v))2d ~J(u)dJ(v)� (

Z 1

0

F�1(u)d ~J(u))2;

where !(u; v) = (u ^ v � uv)=f(F�1(u)f(F�1(v), and ~J(u) = uJ(u). The principal
advantage of tests based on smooth L-statistics like this is that their asymptotic
variance can be estimated at rateOp(n�1=2) in contrast to tests based on discrete linear
combinations of regression quantiles whose asymptotic covariance requires estimation
of the sparsity function at a point. Sparsity estimation is circumvented by the use
of the smooth weight function, and we can estimate �2(�; F ) at rate Op(n�1=2) by

simply plugging in Q̂Y (uj�x) = �x0�̂(u) for F�1(u) in (3.4.6).
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5. Rank Tests

The classical theory of rank tests as developed in the monograph of H�ajek and
�Sid�ak (1967) begins with the rankscore functions,

âni(t) =

8<
:

1 if t � (Ri � 1)=n
Ri � tn if (Ri � 1)=n < t � Ri=n
0 if Ri=n < t

(3.5.1)

where Ri is the rank of the ith observation, Yi; in the sample fY1; : : : ; Yng. Integrating
âni(t) with respect to various score generating functions ' yields vectors of rank-like
statistics which may be used for constructing tests. For example, integrating with
respect to Lebesgue measure yields the Wilcoxon scores,

bi =

Z 1

0

âni(t)dt = (Ri � 1=2)=n i = 1; :::; n;

while using '(t) = sgn(t � 1=2) yields the sign scores, bi = âni(1=2). Invariance of
the ranks to monotone transformations means that the Ri's may also be viewed as
the ranks of the uniform random sample fU1; :::; Ung with Ui = F (Yi), and the rank
generating functions âi(t) may be seen as replacing the indicator functions I(Yi >
F�1(t)) = I(Ui > t), by the smoother \trapezoidal" form given by (3.5.1) Thus the
rank generating functions behave like an empirical process as the following result
shows.

Theorem 3.3. (H�ajek and �Sid�ak (1967, Thm V.3.5) ) Let (c1n; :::; cnn) be a tri-
angular array of real numbers satisfying

max(cin � �cn)
2=

nX
i=1

(cin � �cn)
2! 0(3.5.2)

where �cn = n�1
P
cin, and assume that fY1; ::::; Yng constitute a random sample from

an absolutely continuous distribution F . Then, the process

Zn(t) = [
nX
i=1

(cin � �cn)
2]�1=2

nX
i=1

(cin � �cn)âi(t)

converges weakly to a Brownian Bridge process on C[0; 1].

In the two sample problem the cin's may be taken as simply the indicator of which
sample the observations belong to, and the \Lindeberg condition" (3.5.2) is satis�ed
as long as n1=n stays bounded away from 0 and 1. A limiting normal theory for a
broad class of linear rank statistics of the form

Sn = [
X

(cin � �cn)
2]�1=2

X
(cin � �cn)b̂i
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where b̂i = � R '(t)dâi(t) is immediate. In particular, for square integrable ' :
[0; 1]! jR we have the linear representation

Sn = [
X

(cin � �cn)
2]�1=2

X
(cin � �cn)'(Ui) + op(1);(3.5.3)

and consequently, Sn is asymptotically Gaussian under the null with mean 0 and
variance, A2(') =

R
('(t)� �')2dt, where �' =

R
'(t)dt.

Thus, for example, in the two-sample location shift model with local alternatives
Hn : �n = �0=

p
n we have Sn asymptotically Gaussian with mean !(';F )(

P
(cin �

�cn)2)1=2�0 and variance A2(') where

!(';F ) =

Z
f(F�1(t)d'(t):

An important virtue of such rank tests is that the test statistic and its limiting
behavior under the null hypothesis are independent of the distribution F generating
the observations. See Draper(1988) for a detailed discussion of the problems related
to the estimation the the nuisance parameter ! in the Wilcoxon case.

How can these ideas be extended to regression when, under the null, a nuisance
regression parameter is present? This question was answered by Gutenbrunner and
Jure�ckov�a(1992) who observed that the H�ajek-�Sid�ak rankscores may be viewed as a
special case of a more general formulation for the linear model in which the functions
âni(t) are de�ned in terms of the linear program

maxfy0ajX 0a = (1� t)X 01; a 2 [0; 1]ng(3.5.4)

This problem is formally dual to the linear program (1.3.9) de�ning the regression
quantiles. Algorithmic details are given in Koenker and d'Orey (1993). As developed
in Gutenbrunner, Jureckova, Koenker and Portnoy (1993), tests of the hypothesis
�2 = 0 2 jRq in the model y = X1�1 + X2�2 + u based on the regression rankscore
process may be constructed by �rst computing fâni(t)g at the restricted model,

y = X1�1 + u

computing the n-vector b with elements bi = �
R
'(t)dâni(t), forming the q-vector,

Sn = n�1=2X 0
2b;

and noting that, under the null Sn ; N (0; A2(')Q0) where A2(') =
R 1
0 '

2(t)dt,

Q0 = limn!1Qn, Qn = (X2� X̂2)0(X2� X̂2)=n and X̂2 = X1(X 0
1X1)�1X 0

1X2. So the
test statistic Tn = S0nQ

�1Sn=A
2(') has an asymptotic �2q null distribution.

In the special case that X1 is simply a column vector of ones this reduces to the
original formulation of H�ajek and �Sid�ak. When '(t) = sgn(t � 1=2) it specializes
to the score-test proposed for `1-regression in Koenker and Bassett (1982), with the
important added feature that it resolves the ambiguity about how to treat the (basic)
observations with zero residuals.
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An important advantage of these rank tests is that they require no estimation of
nuisance parameters, since the functional A(') depends only on the score function
and not on the (unknown) distribution of the vector u: This is familiar from the
theory of elementary rank tests, but stands in sharp contrast with other methods of
testing in the linear model where, typically, some estimation of a scale parameter is
needed. For example, in the case of least squares theory, �2, is needed. And in the
case of quantile regression an estimate the sparsity function is needed for Wald-type
tests.

Having found a testing strategy for quantile regression which avoids the estimation
of the sparsity function naturally raises the question: could we invert a rank test of this
form to provide a method of estimating a con�dence interval for quantile regression
parameters, thereby circumventing the problem of estimating s(t). Huskova(1994)
considers this problem in considerable generality establishing the validity of sequen-
tial �xed-width con�dence intervals based on rank test inversion for general score
functions '. Unfortunately, for general score functions these intervals are quite dif-
�cult to compute. However, in the case of a �xed quantile one particularly natural
choice of ' yields extremely tractible computations and we will focus on this case.

These regression rankscore tests may also be viewed as Rao-score tests, or LM
tests, since they are based on a restricted estimate of the model under the null hy-
pothesis and involve integrating the gradient of the unrestricted quantile regression
problem over the interval [0; 1]. This connection is particularly clear in the case of
the quantile score function described in the next section.

5.1. Con�dence Intervals for �̂(� ) by Inverting Rank Tests. Specializing
to the scalar �2 case and using the � -quantile score function

'� (t) = � � I(t < � )

and proceeding as above, we �nd that

b̂ni = �
Z 1

0

'�(t)dâni(t) = âni(� )� (1 � � )(3.5.5)

with

�' =

Z 1

0

'�(t)dt = 0

and

A2('�) =

Z 1

0

('� (t)� �')2dt = � (1 � � ):

Thus, a test of the hypothesis H0 : �2 = � may be based on ân from solving,

maxf(y � x2�)0ajX 0
1a = (1 � � )X 0

11; a 2 [0; 1]ng(3.5.6)
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and the fact that

Sn(�) = n�1=2x02b̂n(�); N (0; A2('�)q
2
n)(3.5.7)

under H0; where q2n = n�1x02(I �X1(X 0
1X1)�1X 0

1)x2. That is, we may compute

Tn(�) = Sn(�)=(A('� )qn)

and reject H0 if jTn(�)j > ��1(1� �=2):
0his takes us back to the linear program (3.5.6) which may now be viewed as a one

parameter parametric linear programming problem in �. In � the dual vector ân(�) is
piecewise constant; � may be altered without compromising the optimality of ân(�)
as long as the sign of the residuals in the primal quantile regression problem do not
change. When � gets to such a boundary the solution does change, but optimality
may be restored by taking one simplex pivot. The process may continue in this way
until Tn(�) exceeds the speci�ed critical value. Since Tn(�) is piecewise constant we
can interpolate in � to obtain the desired level for the con�dence interval. See Beran
and Hall (1993) for a detailed analysis of the e�ect of interpolation like this in the
case of con�dence intervals for ordinary quantiles. This interval, unlike the Wald
type sparsity intervals, is not symmetric; but it is centered on the point estimate
�̂2(� ) in the sense that Tn(�̂2(� )) = 0. This follows immediately from the constraint
X 0â = (1 � � )X 01 in the full problem.

The primary virtue of this approach is that it inherits the scale invariance of
the test statistic Tn and therefore circumvents the problem of estimating the spar-
sity function. Implemented in S, using an adaptation of the algorithm described in
Koenker and d'Orey (1993), it has essentially the same computational e�ciency as
the sparsity methods. A more detailed description of the computational aspects of
the parametric programming problem is provided in Section 6.3.

6. Likelihood Ratio Tests

Having now introduced variants of the Wald and score test for quantile regression,
it is natural to investigate analogues of the likelihood ratio test as well. In Koenker
and Bassett (1982) it was shown that for median regression a test of the hypothesis

H0 : R� = r(3.6.1)

in the iid-error linear model,

yi = x0i� + ui(3.6.2)

could be based on the statistic

Tn = 8(~V (12)� V̂ (12))=s(12)(3.6.3)
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where we will denote the value of the objective function at the unrestricted minimizer
�̂(12) by,

V̂ (� ) = min
fb2jRp

g

X
�� (yi � x0ib)(3.6.4)

and

~V (� ) = min
fb2jRp

jRb=rg

X
�� (yi � x0ib)(3.6.5)

denotes the value under the restricted estimator ~�(� ). It was shown that underH0, Tn
is asymptotically �2q where q = rank(R). That this statistic is related to a likelihood
ratio is easy to see. Consider the standard Laplace (double exponential) density,

f(u) = 1
4
exp(�1

2
juj):

Under the assumption that fuig in (??) comes from this density, we have the log-
likelihood,

`(�) = �n log(4)� 1
2

nX
i=1

jyi � xi�j

and the likelihood ratio statistic for testing H0 would be

2(`(�̂)� `( ~�)) = 2( ~V (1=2) � V̂ (1=2));
which we would expect to have a �2q asymptotic distribution under H0. How does
this relate to the result (??)? Where does the factor 8 come from? Note that in the
standard Laplace case s(1=2) = (f(0))�1 = 4; so the usual theory of the likelihood
ratio is vindicated { for this very special case, twice the log likelihood ratio converges
in distribution to �2q under H0. However, when the standard Laplace assumption fails
to hold, s(1=2) may be quite di�erent from 4 and the likelihood ratio statistic needs
to be modi�ed accordingly.

The simplest example of this, an example which yields another variant of the
likelihood ratio, is the Laplace density with free scale parameter, �. Now,

f(u) = 1
4� expf� 1

2� jujg:
so the log-likelihood is

`(�; �) = �n log(4�)� 1
2�

X
jyi � xi�j:

It is easily seen that the maximum likelihood estimator of � is

�̂ = n�1V̂ (12) =
1
2n

X
jyi � x0i�̂j

for the unrestricted model and similarly, ~� = n�1 ~V (1
2
) is the mle under H0. Concen-

trating the likelihood with respect to � we have

`(�̂; �̂) = �n log �̂ � n
2 � n log 4
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and with an analogous de�nition of `( ~�; ~�) the likelihood ratio statistic becomes,

2(`(�̂; �̂)� `( ~�; ~�)) = 2n log(~�=�̂)

Again, we are entitled to expect that the likelihood ratio statistic will have a limiting
�2q behavior. This can be easily checked using the earlier result by writing

log(~�=�̂) = log(1 + (~� � �̂)=�̂) � (~� � �̂)=�̂(3.6.6)

an approximation whose validity is easy to establish under the null. Dividing numer-
ator and denominator by � � Ejuj, and arguing that �̂=�! 1; we have

2n log(~�=�̂) = 2n(~� � �̂)=� + op(1) = 2(~V (1=2) � V̂ (1=2))=� + op(1)(3.6.7)

Noting that s(1=2) = 4� in this case completes the argument.
While the unknown-scale form of the Laplace model is certainly preferable to the

original, �xed-scale form, it is still unsatisfactory in that any departure from the
condition s = 4� wreaks havoc with the asymptotic behavior of test statistic under
the null. But this is easily recti�ed by de�ning the modi�ed likelihood ratio statistics,

Ln(1=2) = 8(~V (1=2) � V̂ (1=2))=s(1=2);(3.6.8)

or again using (3.6.6),

�n(1=2) = 8n� log(~�=�̂)=s(1=2);(3.6.9)

which may be shown to be asymptotically equivalent with limiting �2q behavior. By
directly evaluating the e�ect of the restriction on the mean absolute deviation from
the median regression estimate this result provides a useful complement to alterna-
tive Wald and score formulations of tests of H0. The modi�ed likelihood ratio tests
obviously require estimation of the nuisance parameters � and s, but this is quite
straightforward. For � we may simply use n�1V̂ (1=2), while for s we may use the
sparsity estimation methods described above.

The same approach we have elaborated for the median may be extended imme-
diately to other quantiles. De�ne V̂ (� ) and ~V (� ) as in Section 1, and let �̂(� ) =

n�1V̂ (� ); ~�(� ) = n�1 ~V (� ), and for the � th quantile consider the test statistics:

Ln(� ) =
2

�2(� )s(� )
[ ~Vn(� )� V̂n(� )]

and

�n(� ) =
2n�̂(� )

�2(� )s(� )
log(~�(� )=�̂(� ))

where �2(� ) = � (1 � � ). Tests of this sort based on the drop in the optimized value
of the objective function of an M-estimator when relaxing the restriction imposed
by the hypothesis, are termed �-tests by ?. Following this terminology, we will refer



84 3. INFERENCE FOR QUANTILE REGRESSION

below to tests based on Ln(� ) and �n(� ) as quantile �-tests, although the phrase
quasi-likelihood ratio tests would also be appropriate.

In some applications it may be useful to formulate joint hypotheses about the
relevance of certain groups of covariates with respect to several quantiles. For this
we require the joint asymptotic distribution of vectors of quantile �-test statistics
of the form, for example, (Ln(�1); Ln(�2); :::; Ln(�m)): Such results may be subsumed
in the following general theory for the �-test processes: fL(� ) : � 2 [�; 1 � �]g, and
f�(� ) : � 2 [�; 1� �]g.

We will adopt the following regularity conditions regarding the model (??) and
the hypothesis (??).

A.1: The error distribution F has continuous Lebesgue density, f , with f(u) > 0
on fu : 0 < F (u) < 1g:

A.2: The sequence of design matrices fXng = f(xi)ni=1g satisfy:
(i): xi1 = 1; i = 1; 2; : : :
(ii): Dn = n�1X 0

nXn ! D; a positive de�nite matrix.
(iii): n�1

P kxik4 = O(1)

(iv): maxi=1;::: ;n kxik = O(n
1
4= log n)

A.3: There exists a �xed, continuous function, 
(� ) : [0; 1] ! <q such that
R� � r = 
(� )=

p
n for samples of size n.

Remarks. Conditions A.1 and A.2 are by now rather standard in the quantile regres-
sion literature. Somewhat weaker conditions on both F and Xn are used in ? in an
e�ort to extend the theory into the tails, but this doesn't seem critical here so we have
reverted to conditions close to those used in ?. Condition A.3 is a direct analogue of
Condition A.3 in ? allowing us to explore the question of local asymptotic power of
tests.

To investigate the asymptotic behavior of Ln(� )and �n(� ) we require some rather
basic theory and notation regarding Bessel processes. Let Wq(t) denote a q-vector of
independent Brownian motions and thus, for t 2 [0; 1],

Bq(t) =Wq(t)� tWq(1)

will represent a q-vector of independent Brownian Bridges. Note that for any �xed
t 2 (0; 1),

Bq(t) � N (0; t(1� t)Iq):(3.6.10)

The normalized Euclidean norm of Bq(t),

Qq(t) = jjBq(t)jj=
p
t(1� t)

is generally referred to as a Bessel process of order q. Critical values for supQ2
q(t)

have been tabled by ? and, more extensively, by ? using simulation methods. The
seminal work on Bessel processes and their connection to K-sample goodness of �t
tests seems to be ?. Again, for any �xed t 2 (0; 1) we have, from (3.6.10), Q2

q(t) � �2q.
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Thus, we may interpret Q2
q(t) as a natural extension of the familiar univariate �2

random variable with q degrees of freedom. Note that in the special case q = 1,
supQ2

1(�) behaves asymptotically like a squared Kolmogorov-Smirnov statistic.
To characterize the behavior of the test statistic under local alternatives it is

helpful to de�ne a non-central version of the squared Bessel process as an extension
of the noncentral �2 distribution. Let �(t) be a �xed, bounded function from [0; 1] to
<q. The standardized squared norm

jj�(t) +Bq(t)jj2=(t(1� t))
will be referred to as a non-central Bessel process of order q with noncentrality func-
tion �(� ) = �(t)0�(t)=(t(1 � t)) and will be denoted by Q2

q;�(t). Of course, for any

�xed t 2 (0; 1), Q2
q;�(t) � �2q;�(t), a non-central �2q random variable with q degrees of

freedom and non-centrality parameter �(t). Finally, the symbol ) will denote weak
convergence,; convergence in distribution, and !, convergence in probability. The
following result appears in ?.

Theorem 3.4. Let T = [�; 1� �], for some � 2 (0; 1
2). Under conditions A.1-3,

Ln(� )) Q2
q;�(�)(� ) for � 2 T

where �(� ) = 
(� )0(RD�1R0)�1
(� )=!2(� ), and w(t) = �(� )s(� ). And, under the null
hypothesis (??)

sup
�2T

Ln(� ); sup
�2T

Q2
q(� )

The alternative form of the quantile �-process based on the location-scale form of
the �-test has the same asymptotic behavior.

Corollary 3.1. Under conditions A1-3, �n(� ) = Ln(� ) + op(1), uniformly on
T .

The foregoing results enable the investigator to test a broad range of hypotheses
regarding the joint e�ects of covariates while permitting one to restrict attention to
speci�ed ranges of the family of conditional quantile functions. Thus, for example,
we may focus attention on only one tail of the conditional density, or on just a
neighborhood of the median, without any prejudgment that e�ects should be constant
over the whole conditional density as in the conventional location shift version of the
regression model.

7. The Regression Rankscore Process Revisited

A disadvantage of the quantile �-tests proposed above is the required estimation
of the nuisance sparsity function, s(� ). Clearly, analogous Wald type tests would
share this disadvantage and consequently we will not pursue them here. However, an
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interesting connection can be drawn at this point with the theory of rank based tests
for linear models proposed in ?, which we will refer to hereafter as GJKP.

These tests, which may be regarded as considerably re�ned forms of the simple
score tests for median regression considered in ?, are based on the regression rank
score process, introduced by ?. To simplify the exposition we will, following GJKP,
consider the special \exclusion form" of the hypothesis (??), i.e.h

0
...Iq

i �
�1(� )
�2n(� )

�
= 0:(3.7.11)

with the understanding that, as noted in the proof of Theorem 2.1, the model may
always be reparameterized so that the hypothesis can be expressed in this form. The
regression rank score process for the restricted version of the model under H0 is,

ân(� ) = argmaxfy0ajX 0
1a = (1� � )X 0

1e; a 2 [0; 1]ng(3.7.12)

where e denotes an n-vector of ones, andX has been partitioned as [X1
...X2] to conform

with the partitioning of the hypothesis. We adopt the following standard notation
for partitioning the matrix D de�ned in Condition A.2.ii above: Dij i; j = 1; 2 will

denote the ijth block of D, and Dij will denote the ij block of D�1: To illustrate,
recall D22 = (D22�D21D

�1
11 D12)�1: The problem posed in (3.7.12) is the formal dual

problem corresponding to the (primal) quantile regression linear program. Theorem
5.1 of GJKP considers tests of the exclusion form of the null hypothesis (3.7.11) based
on the test statistic,

Tn = S0nD
22
n Sn=A

2(')

where

Sn = n�1=2(X2 � X̂2)
0b̂n;

X̂2 = X1(X
0
1X1)

�1X 0
1X2;

D22
n = ((X2 � X̂2)

0(X2 � X̂2)=n)
�1

b̂n = (�
Z
'(t)âin(t)dt)

n
i=1;

' is a score generating function of bounded variation and A2(') =
R 1

0 ('(t) � �')2dt

with �' =
R 1
0 '(t)dt. Here we restrict attention to the special quantile score function,

'�(t) = � � I(t < � ):

so �' = 0, and A2(') = �2(� ) = � (1� � ): The familiar special case is sign scores with
� = 1=2. The quantile score function which yields rankscores,

b̂n = ân(� )� (1� � );
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allows us to de�ne the rank test process

Tn(� ) = Sn(� )
0D22

n Sn(� )=�
2(� ):

For �xed � 2 T , Theorem 5.1 of GJKP implies that under the conditions A1-3
above, Tn(� ) ; �2q;�(�), where �(� ) = 
(� )0(D22)�1
(� )=!2(� ).Note that (s(� ))�1 =

� R 1
0
'� (t)df(F�1(t)) in (5.5) of GJKP in this case. This result may be extended to

the whole process for � 2 T providing a rank test link to the �-test processes already
introduced. We will refer to the process Tn(� ) form as the quantile score process in
the sequel. We summarize the foregoing discussion in the following result.

Theorem 3.5. Under the conditions A1-3, Tn(� ) = Ln(� ) + op(1), uniformly on
T .

A crucial feature of this form of the test which distinguishes it from the corre-
sponding �-test processes is that, since the rank score process an(� ) is scale invariant,
Tn does not require any estimate of the nuisance parameters s(� ) or �(� ). This is a
very substantial advantage over both the �-test and Wald approaches to testing in
quantile regression, as was already stressed in ?. Indeed, this observation leads to an
important extension of the theory to cover a much broader class of nulls than those
possible under the iid error assumption of model (1.1). In e�ect, the iid error as-
sumption requires that in the null model the e�ect of the covariates is a pure location
shift. However, the the theory for Tn can be extended to models in which under the
null the conditional quantile functions are linear, but are no longer required to be
parallel. This includes, but is by no means limited to, models with linear conditional
scale e�ects.

8. Resampling Methods

There has been considerable recent interest in resampling methods for estimating
con�dence intervals for quantile-type estimators. However, despite the fact that con-
�dence intervals for quantiles was one of the earliest success stories for the bootstrap
(in contrast to the delete-1 jackknife which fails in this case) recent results have been
considerably more guarded in their enthusiasm. Hall and Martin (1989) conclude:

It emerges from these results that the standard bootstrap techniques
perform poorly in constructing con�dence intervals for quantiles... The
percentile method does no more than reproduce a much older method
with poor coverage accuracy at a �xed level: bias corrections fail for the
same reason; bootstrap iteration fails to improve the order of coverage
accuracy; and percentile-t is hardly an e�cacious alternative because of
non-availability of suitable variance estimates.
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Nevertheless, there has been considerable recent interest, particularly among econo-
metricians, in using the bootstrap to compute standard errors in quantile regression
applications. See Buchinsky (1994), Hahn (1993), Fitzenberger (1996), and Horowitz
(1996) for recent examples.

There are several possible implementations of the bootstrap for quantile regression
applications. As in other regression applications we have a choice between the residual
bootstrap and the xy-pairs bootstrap. The former resamples with replacement from
the residual vector and adds this to the �tted vector X�̂n(� ) and reestimates, in
so doing it assumes that the error process is iid. The latter resamples xy pairs,
and therefore is able to accommodate some forms of heteroskedasticity. As in the
sparsity estimation approaches we may consider replacing the residual EQF by the
EQF obtained directly from the the regression quantile process, but this maintains
the iid error assumption. More interesting is the possibility of resampling directly
from the full regression quantile process which we will call the Heqf bootstrap. By
this we mean for each bootstrap realization of n observations we draw n p-vectors
from the estimated process �̂n(t). There are, say, J distinct such realizations

�̂n(t) = �̂n(tj) for tj � t < tj+1

j = 1; :::; J and each is drawn with probability �j = tj+1 � tj: For each design row
xi we associate the bootstrapped y observation which is the inner product of that
design row and the corresponding ith draw from the regression quantile process. This
procedure has the virtue that it is again capable of accommodating certain forms of
heteroskedastic regression models, in particular those with linear conditional quantile
functions.

Finally, we will describe a new resampling method due to Parzen, Wei and Ying
(1993) which is quite distinct from the bootstrap. It arises from the observation that
the function

S(b) = n�1=2
nX
i=1

xi(� � I(yi � x0ib))(3.8.1)

which is the estimating equation for the � th regression quantile is a pivotal quantity
for the true � th quantile regression parameter b = �� . That is, its distribution
may be generated exactly, irrespective of the true F generating the observations, by
generating a random vector U which is a weighted sum of independent, recentered
Bernoulli variables which play the role of the indicator function. They show further
that for large n the distribution of �̂n(� )��� can be approximated by the conditional

distribution of �̂U� �̂n(� ), where �̂U solves an augmented quantile regression problem
with n + 1 observations and xn+1 = �n1=2u=� and yn+1 is su�ciently large that
I(yn+1 � z0n+1b) is always zero. This is essentially the same as solving S(b) = �u for
given realization of u. This approach, by exploiting the asymptotically pivotal role
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of the quantile regression \gradient condition", also achieves a robustness to certain
heteroskedastic quantile regression models. In practice, one might be able to exploit
the fact that the solution to the augmented problems is close to the original one, since
they di�er by only one observation, but we have not tried to do this in our simulation
experiments which are reported in the next section.

9. Monte-Carlo Comparison of Methods

In this �nal subsection we report on a small Monte-Carlo experiment designed to
compare the performance of the methods described above. We focus primarily on the
computationally less demanding sparsity estimation and inverted rankscore methods,
but some results are reported for three of the resampling methods. Preliminary re-
sults indicated that the Hall and Sheather bandwidths performed considerably better
than the Bo�nger choice so we have restricted our reported results mainly to this form
of sparsity estimation. We also focus exclusively on the problem of con�dence inter-
vals for the median regression parameters, partly because this is the most common
practical problem, and also because it restricts the amount of computation and re-
porting required. In subsequent work, it is hoped to provide a much more exhaustive
Monte-Carlo experiment.

We considered �rst an iid error model in which both x's and y's were generated
from the Student t distribution. The degrees of freedom parameter varies over the set
f1; 3; 8g for both x's and y's. The �rst column of the design matrix is ones, all other
entries are iid draws from the speci�ed t distribution. For each cell of the experiment
the design matrix is drawn once, and 1000 replications of the response vector, y,
are associated with this �xed design matrix. Throughout, we have studied only the
sample size n = 50.

All of the computations were carried out in the `S' language of Becker, Chambers,
and Wilks(1988) on a Sun workstation.

In Table 1 we report observed Monte-Carlo coverage frequencies for nine situations
and three non-resampling methods. Con�dence intervals are computed for all three
slope coe�cients for each situation so in each cell we report the number of times the
interval covers the true parameter (zero in all cases) in 3000 trials. Throughout the
experiment the nominal size is .10. In these iid error situations we see that the size
of the rank inversion method is quite accurate throughout, as is the Hall-Sheather
sparsity estimate. However the Bo�nger results are considerably less satisfactory.
Generally, the rank-inversion intervals are shorter than the sparsity intervals except
for the anomalous cases of Cauchy design.

To compare the performance of the resampling methods we report in Table 2
results for 3 iid error situations and 5 methods. Since the resampling methods are
quite slow, 500 resamples are done for each of them, we restrict attention to only
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Table 3.1. Con�dence Interval Performance { IID Errors

coverage length
dfy= 1 dfy= 3 dfy= 8 dfy= 1 dfy= 3 dfy= 8

dfx= 1
rank-inverse 0.892 0.923 0.922 0.320 0.392 0.359
sparsity-HS 0.893 0.907 0.909 0.240 0.142 0.079
sparsity-BS 0.932 0.927 0.931 0.288 0.153 0.083
dfx= 3
rank-inverse 0.875 0.904 0.890 0.625 0.504 0.501
sparsity-HS 0.923 0.911 0.923 0.614 0.505 0.544
sparsity-BS 0.954 0.932 0.937 0.736 0.544 0.577
dfx= 8
rank-inverse 0.887 0.885 0.884 0.791 0.617 0.585
sparsity-HS 0.941 0.920 0.919 0.921 0.683 0.640
sparsity-BS 0.968 0.948 0.935 1.107 0.737 0.680

the diagonal cases of the previous table with the degrees of freedom parameter for
x's and y's equal. We are primarily interested in resampling as a means of achieving
consistent con�dence intervals in heteroskedastic situations so we restrict attention to
the Parzen-Wei-Ying (PWY) approach, the heteroskedastic empirical quantile func-
tion bootstrap (Heqf), and the xy-pairs bootstrap. It can be seen from the table that
again the rank-inversion method is quite reliable in terms of size, and also performs
well with respect to length. The PWY resampling method has empirical size less
than half the nominal 10 percent, while the xy-bootstrap is also undersized. The
Heqf-bootstrap is accurately sized except for the Cauchy situation. It is obviously
di�cult to compare the lengths achieved by various methods, given the discrepancies
in size, however the rank inversion approach seems to perform reasonably well in this
respect.

Table 3.2. Con�dence Interval Performance { IID Errors

coverage length
df= 1 df= 3 df= 8 df= 1 df= 3 df= 8

rank-inverse 0.900 0.893 0.879 0.335 0.427 0.558
sparsity-HS 0.872 0.922 0.915 0.217 0.455 0.613
PWY 0.961 0.957 0.957 0.411 0.520 0.680
Heqf-BS 0.802 0.881 0.895 0.220 0.380 0.512
XY-BS 0.929 0.948 0.945 0.331 0.486 0.640

A more challenging problem for estimation of con�dence intervals for quantile
regression problems involves heteroskedastic situations. We consider a simple case
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which bears a close resemblance to the previous iid error situations. Again, we gen-
erate 3 columns of the design matrix X as iid draws, this time from the lognormal
distribution. The response vectors are then drawn from a Student t distribution with
location 0 and scale given by �i =

P4
i=1 xi=5. For all i, x1i = 1. Again the design

is �xed for a given con�guration, and hence scale is �xed. In this model all the
conditional quantile functions are linear, so the Heqf-bootstrap is applicable, how-
ever the simple sparsity estimation approach is obviously not consistent under these
conditions.

Table 3.3. Con�dence Interval Performance { Heteroskastic Errors

coverage length
df= 1 df= 3 df= 8 df= 1 df= 3 df= 8

rank-inverse 0.887 0.902 0.878 1.196 0.793 0.621
sparsity-HS 0.763 0.717 0.656 0.702 0.552 0.357
PWY 0.953 0.950 0.946 1.557 0.907 0.715
Heqf-BS 0.754 0.813 0.804 0.971 0.655 0.486
XY-BS 0.907 0.911 0.897 1.332 0.799 0.612

Again the rank-inversion approach seems to perform well. As expected the spar-
sity approach fails miserably. The Parzen-Wei-Ying resampler is again substantially
undersized { a rather puzzling result. The xy bootstrap also performs very well, but
the Heqf version of the bootstrap has very poor coverage frequencies suggesting that
this approach is probably not reliable. Since the rank-inversion method is on the
order of 10 times faster than any of the bootstrap methods even for moderate sized
problems it appears to have a substantial advantage.

10. Problems

1. Suppose X1; :::Xn are iid from df F with f(x) = F 0(x) > 0 on the real line.
Generalize (3.2.1) for a single quantile to obtain the result (3.2.2) on the joint as-
ymptotic distribution of several sample quantiles.

2. Let X1; : : : ;Xn be iid from F , and denote the order statistics X(1); : : : ;X(n):
Show that the probability that random interval In(r) = [X(r);X(s)] for 1 � r � s =
n� r + 1 covers the � th quantile �� = F�1(� ) is,

P (�� 2 In(r)) � P (X(r) � �� � X(s))

= P (X(r) � �� )� P (X(s) < �� )

� Cn(r)

where Cn(r) =
Pn�r

i=r

�
n
i

�
� i(1 � � )n�1: Equality holds in the last line i� F is

continuous at �� :
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3. An interesting extension of Problem 2 is provided by Guilbaud (1979) who
shows that for intervals of the form

In(r; t) =

�
X(r) +X(r+t)

2
;
X(s) +X(s+t)

2

�
where 1 � r � s = n� r + 1; and 0 � t < s� r: we have for the median,

P (�1=2 2 In(r; t)) � 1

2
Cn(r) +

1

2
Cn(r + t)

for general F , and for continuous, strictly increasing F ,

P (�1=2 2 In(r; t)) � Cn�t(r)

with equality in the latter expression i� F is symmetric.

4. Show that the interval in Problem 1 may be interpreted as an inversion of the
following sign test of the hypothesis H0 : �� = �: let Qn be the number of observations
fX1; : : : ;Xng less than �; since Qn is Bin (n; � ); we can choose 
 2 (0; 1) and c�
such that under H0,

P (Qn < c�)) + 
P (Qn = c�) = �

and reject H0 when Qn < c� or with probability 
 when Qn = c�, for a one-sided al-
ternative. For a two-sided alternative we choose a corresponding upper critical value
as well. Note that for n moderate to large we can approximate the binominial proba-
bilities with their normal approximation. See e.g., Lehmann (1959, problem 3.28).

5. To explore the role of the condition f(0) > 0, reconsider Problem 1 assuming
instead that F (0) = 1=2; f(0) = 0, and f 0(0�) = �1: How does this alter a.) the
rate of convergence of �̂, and b.) the form of the limiting distribution?

6. To explore a simple version of the asymptotics for quantile regression consider
the scalar parameter (regression through the origin model)

yi = xi� + ui

where the ui's are iid and satisfy the F conditions of Problem 1. Formulate conditions
on the design sequence fxig which ensure that

�̂n = argmin
b2jR

nX
i=1

jyi � xibj

satis�es
p
n(�̂n � �); N(0; !2Q�1)

and Q = limn�1
P
x2i .



CHAPTER 4

Asymptotic Theory of Quantile Regression

While the �nite sample distributio theory of regression quantiles can be represented
explicitly as we have illustrated in Theorem 3.1 above, the practical application of
this theory would entail a host of hazardous assumptions and an exhausing com-
putational e�ort. It is generally conceded throughout statistics that approximation
methods involving local linearization and the central limit theorem play an indispen-
sible role in the analysis of the performance of statistical procedures and in rendering
such procedures practical tools of statistical inference. The zealous pursuit of these
objectives is inevitably met with accusations that we live in a cloud-cuckoo land of
\asymptopia", but life is full of necessary compromises and approximations. And it
is fair to say that those who try to live in the world of \exact results" in �nite sample
sample statistical distribution theory are exiled to an even more exotic territory.

Fortunately, there are many tools available to help us evaluate the adequacy of
our asymptotic approximations. As we have already seen, Monte-Carlo simulation
can be an extremely valuable tool. Higher ordre expansions, although particularly
challenging in the present context, may o�er useful assessments of the accuracy of
simpler aproximations and possible re�nement strategies. And the rapid development
of resampling methods for statistical inference o�er many new options for inference.

The fundamental task of asymptotic theory is to impose some discipline and rigor
on the process of developing statistical procedures. The natural enthusiasm that arises
from the �rst few \successful" applications of a new technique can be e�ectively tem-
pered by some precisely cast questions of the form: suppose data arose according the
conditions A, does the procedure produce a result that converges in some appropriate
sense to object B? Under what precise conditions does the procedure \work"? And,
if possible, how well does it \work" relative to other competing procedures.

As important virtue of of quantile regression, one that we have stressed thoughout,
is the natural interpretability of the conditional quantile functions, as an objective
for data analysis. Unlike the many obscure objects of desire introduced en masse
by the robustness literature, for example, the conditional quantile functions o�er an
easily interpretable target for statistical analysis. In this Chapter we will survey the
existing literature on the asymptotic theory of quantile regression and describe how
these results are used.
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1. Consistency

2. Bahadur Representation

3. Weak Convergence

4. Applications to Inference



CHAPTER 5

L-Statistics and Weighted Quantile Regression

1. L-Statistics for the Linear Model

Linear combinations of functions of a few sample quantiles often provide a sur-
prisingly e�cient, yet extremely simple, means of estimating salient characteristics
of a random variable. Weighted averages of the quartiles as an estimator of location,
interquantile ranges for scale, Hill's (1975) estimator of the tail exponent of a distri-
bution function are all of this form. In extreme cases such estimators can even be
optimal: the median as a estimator of location for the Laplace, or double exponential,
distribution, or the midrange for the location of the uniform distribution for example.
But generally, L-statistics with smoother weight functions are preferred for reasons
of both e�ciency and robustness.

The leading example of the \smooth" L-estimator is undoubtedly the trimmed
mean. Denoting the � th quantile by

�̂(� ) = argmin�
X

�� (yi � �)
we may express the � trimmed mean as

�̂� =

Z 1

0

'�(� )�̂(� )d�

where '�(� ) = I(� � � � 1��)=(1� 2�); which is simply the sample average of the
central [(1�2�)n] order statistics. This estimator has a long history of applications in
astronomy and other �elds, and has been singled out by several prominent authors as
the quintessential robust estimator of location. See, e.g., Bickel and Lehmann (1975)
and Stigler (1977).

L-statistics were initially regarded as \quick and dirty" substitutes when maxi-
mum likelihood estimation was either infeasible, because we were unsure about the
parametric form of the model, or intractable due to computational di�culties. But
it was quickly recognized that asymptotically fully e�cient L-statistics could be con-
structed to compete with maximum likelihood estimator on a equal footing. An
interesting example of the contrast between M- and L-estimators is the well-known
\least-favorable" density of Huber (1964) which takes the form,

f"(x) =

�
c exp(�x2=2) if jxj � k
c exp(k2=2 � kjxj) otherwise
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where c = (1 � ")=p2� and k satis�es 2�(k)=k � 2�(k) = "(1 � ") with �, and �
denoting the standard normal density and distribution function, respectively. This
density, which is Gaussian in the center with exponential tails, has minimal Fisher
information in the class

F = fF = (1 � ")� + "HjH 2 Hg
where H denotes the set of distribution functions symmetric about zero, and " is a
�xed number between zero and one. Given ", an M-estimator of location for this
\minimax" family of densities may be constructed by solving,

�̂" = argmin
X

�Hk(yi � �)
where �Hk(x) = [x2I(jxj � k) + k2I(jxj > k)]: Since scale is generally unknown, and
�̂" as formulated above is not scale equivariant, in practice we need to replace it by
something of the form

�̂" = argmin �

X
�Hk((yi � �)=�̂)

for some scale equivariant estimator �̂, or jointly minimize with respect to location
and scale parameters. A dramatically simpler, yet asymptotically fully e�cient, al-
ternative to such M-estimators for this least favorable model, is the � = "=2 trimmed
mean. The latter has the advantage of being automatically scale equivariant as well
as avoiding the necessity of computing the Huber constant k("): The form of the
�-trimmed mean weight function '�(�) re
ects clearly the form of the Huber least
favorable density with the central Gaussian, portion of the sample receiving constant
weight (1 � 2�)�1, and the exponential tail portion receiving weight zero. Since the
density was designed to minimize the information provided by the tails it seems hardly
surprising that he tail observations are uninformative about location.

Tukey (1965) posed the crucial question, \which part of the sample contains the
information?" For the Huber density the question is clearly answered at least in an
asymptotic sense by \the central [(1� 2�)n] order statistics." The tail observations
contribute nothing asymptotically to the design of an e�cient estimator of location
for this density. Other models are even more extreme in this respect. We have
already mentioned the Laplace density for which the sample median contains, again
we should stress { asymptotically, all the available sample information about location.
In general, the optimal L-estimator weight function provides a concise, asymptotic
answer to Tukey's question. For location, this weight function takes the form

'0(t) = �(log f)00(F�1(t)):

For scale, it takes the form,

'1(t) = [(log f)0 + x(log f)00](F�1(t)):
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In Figure 5.1 we illustrate these weight functions for a variety of familiar densities.
In addition, for purpose of comparison, we include a sketch of the in
uence function
of these estimators which can also be interpreted as the  -function which serves to
determine the optimal M-estimator in each case.

We note �rst that the Gaussian density is unique in its treatment of each obser-
vation as equally informative about location. For the logistic, Student-t and Huber
densities the location weights fall o� sharply in the tails. The Student densities illus-
trate a curious phenomenon. When, as in the Student cases, the tail behavior of the
density is heavier than exponential, then the optimal weight function can be negative
in the tails. This has the apparently paradoxical e�ect that, given a sample, if we
move observations, say in the right tail further to the right, we may actually move
our estimate to the left. Accentuating the outliers in the Student-t model increases
our willingness to discount them. This paradox is only a thinly disguised variant of
the familiar tendency for an enthusiastic movie review by a dubious reviewer to send
us in the opposite direction looking for another �lm.

Not surprisingly, virtually all the sample information about location in our asym-
metric densities is contained in the �rst few order statistics. However, note that for
the last Weibull example all of the order statistics receive positive weight. The L-
estimators of scale exhibit rather di�erent behavior than their corresponding location
estimators. For symmetric densities the weight functions for the optimal scale. L-
estimators are odd functions, thus assuring location invariance. In the Gaussian case
we have

'1(t) = ��1(t)

so our estimator is

�̂ =

Z 1

0

��1(t)�̂(t)dt

�̂(t)! �+ ���1(t), so we have, changing variables,

�̂! �

Z 1

0

(��1(t))2dt = �

Z 1

�1

x2d�(t) = �:

As in the case of location estimation, heavy tails in the model density induces a
downweighting of tail observations for scale L-estimators too. The �2 densities yield a
constant weighting for scale estimation, while for the Weibull model the corresponding
weight functions are sharply increasing in the tails re
ecting their \light" tails.

Most aspects of the theory of L-estimation in the univariate case can be carried
forward to the linear model directly via quantile regression. For example, consider
the linear location-scale model

yi = x0i� + (x0i
)ui(5.1.1)
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M-IF
location
 0

M-IF
scale
 1

L-score
location
'0

L-score
scale
'1

R-score
scale
'2

N(0; 1)

t10

t5

t2

t1(Cauchy)

Logistic(0; 1)

�25

�23

Weibull(1:5; 1)

Weibull(2:5; 1)

Figure 5.1. Comparative Anatomy of Score Functions. This �gure
illustrates the shapes of the optimal score functions for L-estimators of
location and scale for some representative distributions. In addition, we
provide the shapes of the optimal  -functions for optimal M-estimators
for these distributions, which can also be interpreted as the in
uence
functions for the corresponding L-estimators. Finally, we include the
optimal score functions for the rank test of scale for each distribution.
Table 1 of H�ajek and �Sid�ak (1967) provides analytic expressions for
many of these functions.
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with ui iid from F . Asymptotically e�cient estimators of � and 
 are available as

�̂ =

Z 1

0

'o(t)�̂(t)dt


̂ =

Z 1

0

'1(t)�̂(t)dt

where '0 and '1 are as de�ned above, and �̂(t) denotes the p-dimensional quan-
tile regression process. Obviously, the integrals should be interpreted as computed
coordinatewise in this case.

In some cases, such \e�cient" L-statistics are a bit surprising in their departure
from more familiar M-estimators. For example, in the Gaussian case the estimator

�̂ =

Z 1

0

�̂(t)dt

which simply averages each coordinate of the quantile regression process appears
quite di�erent from the familiar least-squares estimator. However, under Gaussian
conditions, it performs quite well in Monte-Carlo comparison with least-squares, see
Portnoy and Koenker (1989). In the case of the Gaussian scale estimator, we now
have, for F Gaussian,

�̂(t)! � + 
��1(t)

so


̂ =

Z 1

0

��1(t)(�̂)dt! 
:

Indeed, for general F we obtain


̂ =

Z 1

0

��1(t)�̂(t)dt! 


Z 1

0

��1(t)F�1(t)dt

so we estimate 
 \consistently up to scale," i.e., ratios of the coordinates of 
̂ are
consistent for corresponding ratios of the vector 
:

It is a signi�cant advantage of the L-statistic approach to the estimation of linear
models that in cases in which there is both heteroscedasticity and asymmetric inno-
vations it is possible to distinguish the location and scale e�ects of the covariates,
while with conventional least squares based methods this proves to be much more
di�cult. Consider, for example, the simple version of (5.1.1),

yi = �+ �xi + 
x2iui;

with ui iid from F , and F asymmetric so Eu1 = � 6= 0: Least squares estimation of
the quadratic model would estimate the parameters of the conditional mean function

E(yijxi) = � + �xi + �
x2i :
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Now, if we proceed conventionally, we would regress absolute residuals on the available
covariates, assuming,

Ejyi � ŷij = c0 + c1xi + c2x
2
i

it is easy to see that least squares estimation of this model would yield, ĉ0 ! 0; ĉ1 ! 0
and ĉ2 ! 
Ejui��j:However, if in the �rst step we estimated the simpler linear model
and then tried to introduce the quadratic e�ect in only the second step, we introduce
a bias resulting from the approximation of a quadratic function by something linear
and this misspeci�cation is then transmitted to the next step as well. In contrast,
the quantile regression estimation of the quadratic model yields, via the L-statistic
approach, a family of estimators of 
 which are all \consistent up to scale." In
addition, as we shall explore in more detail in Chapter 3, rank based tests for the
heteroscedasticity parameter, 
, may be based on preliminary quantile regression
estimation of the simpler linear model.

L-estimation also provides a convenient approach to adaptive estimation of the
linear model. By estimating the optimal score functions '0 and '1 we can achieve
full optimality for a broad class of location-scale models. This approach is developed
for the pure location version of the linear model in Koenker and Portnoy (1990).

Finally, we should add that the integrals which appear in the foregoing L-statistics
are usually quite simple to compute due to the piecewise constant form of the quantile
regression process. We can illustrate this for the case of scale estimation with the
Gaussian weight function, ��1(t),


̂ =

Z 1

0

��1(t)�̂(t)dt

=
JX
j=1

�̂(tj+1)

Z tj+1

tj

��1(t)dt

=
JX
j=1

�(tj+1)[�(�
�1(tj+1))� �(��1(tj))]:

Note that by the left-continuous convention for quantile functions, �̂(t) = �̂(tj+1) for
t 2 (tj; tj+1]:A robusti�ed version of this Gaussian scale estimator is easily adapted by
restricting the domain of the integration to avoid the tails, and possibly the center of
the unit interval. Welsh and Morrison (1990) discuss such estimators in considerable
detail.
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2. Kernel Smoothing for Quantile Regression

A number of recent papers have suggested that kernel smoothing may be used to
improve the performance of univariate quantile estimators. The idea is quite simple
and may be extended in a straightforward manner to regression using the L-estimation
approach of the previous section.

Let k(x) be a kernel function of some conventional form, for purposes of illustration
we may take the Epanechnikov kernel,

k(t) =
3

4
(1� 1

5
t2)I(jtj < p5)=p5:

We wish to consider replacing �̂n(� ) by the smoothed quantile regression process

~�n(� ) =

Z 1

0

�̂n(� )k((� � t)=hn(� ))=hn(� )dt(5.2.1)

The degree of smoothing is determined by the bandwidth function hn(� ): Since the

function �̂n(� ) is piecewise constant we can simplify the computation by an integration
by parts,

~�n(� ) =

Z 1

0

K((� � t)=hn(� ))d�̂(t)� �̂(t)K((� � t)=hn) j10

=
JX
i=1

K((� � ti)=hn(� ))��̂(ti) + �̂(0)

where K(t) =
R t
�1

k(s)ds; and the summation is over the jump points of the �̂n(� )
process. Since most of the popular kernel functions take the form of familiar densi-
ties, direct methods to evaluate the corresponding distribution functions are easily
available, and the computation can be carried out quite e�ciently.

In Table 5.1 we report the results of a small Monte Carlo experiment in which we
have generated data from several iid linear models and compared the performance of
several smoothed quantile regression estimators. Data for the linear model

yi = �1 + �2�
�1(i=(n+ 1)) + �3j��1(i=(n+ 1))j+ ui i = 1; : : : ; n;(5.2.2)

was generated with and yi iid F , with F chosen as Gaussian. This Gaussian iid
error setting is particularly favorable for kernel smoothing of the slope parameters
and we see considerable improvement due to smoothing for these parameters. For
the intercept parameter there is an obvious bias e�ect due to smoothing, but still the
smoothing has generally favorable consequences for experimental mean square errors.
This bias would extend to the estimation of slope parameters as well as the intercept
parameter in heteroscedastic models. We have observed earlier that the estimated
quantile regression surfaces may intersect near the boundary of the observed design
space. Some smoothing of the estimates o�ers a simple approach to ameliorating this
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quantile bandwidth �1 �2 �3
0.75 0.200 0.02674 0.00494 0.01498
0.75 0.100 0.02454 0.00743 0.02253
0.75 0.050 0.02515 0.00833 0.02477
0.75 0.020 0.02705 0.00908 0.02667
0.75 0.000 0.02910 0.00964 0.02879
0.90 0.080 0.04925 0.00813 0.02651
0.90 0.050 0.04057 0.01159 0.03742
0.90 0.020 0.04162 0.01335 0.04136
0.90 0.010 0.04336 0.01419 0.04311
0.90 0.000 0.04586 0.01515 0.04596
0.95 0.040 0.07829 0.01257 0.04114
0.95 0.020 0.06149 0.01826 0.05900
0.95 0.010 0.06286 0.01945 0.06149
0.95 0.005 0.06549 0.02017 0.06429
0.95 0.000 0.06975 0.02185 0.06950

Table 5.1. Monte-Carlo Mean Squared Errors for Kernel Smoothed
Quantile Regression Estimators. The table reports Monte-Carlo mean
squared errors for several kernel smoothed quantile regression estima-
tors. The data for the experiment was generated from the model (5.2.2)
with fuig iid standard normal, n = 200 and 1000 replications per cell of
the experiment. In each cell we compute 5 di�erent degrees of smooth-
ing, represented by the bandwidth parameter, hn. It can be seen that
more smoothing is advantageous for the slope parameters, since the
kernel is averaging estimates of a common quantity. However, for the
intercept, kernel smoothing introduces a bias, which is re
ected in the
poor performance of the largest bandwidth in each panel of the table.

e�ect. This lunch, of course, isn't free. Even in the iid error model there is inevitably
some bias introduced in the intercept estimation due to the smoothing, and in non-
iid models there may be bias in slope parameter estimation as well. Replacing the
\locally constant" model of smoothing implicit in the usual kernel approach by a
locally polynominal model as described for example in Hastie and Loader (1994) may
o�er further improvements.

3. Weighted Quantile Regression

The location-scale model of regression takes the form

Yi = �(xi) + �(xi)ui(5.3.1)
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with fuig independent and identically distributed (iid) as F . If the location and scale
functions could be parameterized by � 2 � � jRp then the conventional maximum
likelihood, M -estimation approach would suggest solving,

min
�2�

nX
i=1

[�((Yi � �(xi; �))=�(xi; �)) + log �(xi; �)];(5.3.2)

for some appropriate choice of �. Ideally, we would like to choose � = � log f when f
is the density of the ui's, but robustness considerations might suggest other choices
if f were unknown. Ruppert and Carroll (1988) o�er an excellent treatment of the
state of the art based on M -estimation in this parametric setting.

If we are only willing to assume some smoothness in �(x); �(x), not an explicit
parametric form, the situation is less clear. Various kernel and nearest neighbor
approaches have been suggested, but penalized likelihood seems very attractive. We
might begin by ignoring the scale heterogeneity and minimizeX

�(Yi � �(xi)) + ��

Z
(�00(x))2dx

over � in the say, the Sobolev space of functions with absolutely continuous �rst
derivative and square integrable second derivative. Having estimated �(x) in this
manner, we could proceed to estimate the scale function by minimizing,X

�(ûi=�(xi)) + log �(xi) + ��

Z
(�00(x))2dx

where, ûi = Yi � �̂(xi) and again ideally, � = � log f: Iteration of this scheme
would yield a penalized maximum likelihood estimator for the location-scale regres-
sion model.

An alternative approach based on L-estimation seems somewhat more 
exible.
Since the conditional quantile functions of Yi in the location-scale regression model
are simply

QY (� jx) = �(x) + �(x)Qu(� )

we may estimate these functions by minimizingX
�� (Yi � �(xi)) + ��

Z
(�00(x))2dx

where �� (u) = u(� � I(u < 0)); as usual, and �� denotes a penalty parameter that
governs the smoothness of the resulting estimate. However, now, as we will emphasize
in chapter X, the L2 roughness penalty may be more conveniently chosen to be the L1

or L1 norm of �00. Denoting the minimizer as Q̂Y (� jx); standard L-estimation ideas
may be employed to average over � thereby obtaining estimates of � and �: Again,
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optimality at a known f would suggest

�̂(x) =

Z 1

0

'0(t)Q̂Y (tjx)dt

�̂(x) =

Z 1

0

'1(t)Q̂Y (tjx)dt
where '0(t) � (log f)00(Q(t)) = (f 0=f)0(Q(t)), and '1(t) � (xf 0=f)0(Q(t))

A particularly simple example of the foregoing approach is o�ered by the case
where the functions �(x) and �(x) are assumed to be linear in parameters, so we may
rewrite (5.3.1) as

Yi = x0i� + (x0i
)ui:(5.3.3)

We should emphasize that linearity in the covariates is not essential, so this formula-
tion includes various \series-expansion" models in which the xi's may be interpreted
as basis functions evaluated at the observed values of the original covariates.

In model (5.3.3) the conditional quantile functions are simply

QY (� jx) = x0(� + 
Qu(� ))

and the linear quantile regression estimator

�̂(� ) = argmin
b2jRp

X
��(Yi � x0b)

converges under rather mild conditions to �(� ) = � + 
F�1(� ). Nevertheless, there
is something inherently unsatisfactory about �(� ) in this context. This is re
ected

clearly in the asymptotic covariance of �̂(� ).
As in the more familiar context of least squares estimation, the presence of

heteroscedasticity resulting from the dependence of x0
 on x in (5.3.3) introduces

no asymptotic bias in �̂(� ), but it does introduce a source of asymptotic ine�-

ciency. We shall see that the asymptotic covariance matrix of
p
n(�̂(� ) � �(� )) is

!(�; F )D�1
(1)D(0)D

�1
(1), an expression analogous to the famous Eicker-White sandwich

formula, where D(r) = limX 0��rX and � is the diagonal matrix with typical ele-
ment x0
 and !(�; F ) = � (1 � � )=f2(F�1(� )): Reweighting the quantile regression
minimization problem we may de�ne a weighted quantile regression estimator as,

�̂(�; 
) = argmin
b2jRp

nX
i=1

�� (Yi � x0ib)=(x0i
)

and show that
p
n(�̂(�; 
)��(� )) is asymptotically Gaussian with mean 0 and covari-

ance matrix � (1�� )D�1
(2): It is straightforward to show that D�1

(1)D(0)D
�1
(1)�D�1

(2) is non-

negative de�nite. Again, as in the least-squares case we may estimate 
; and �̂(�; 
̂)

will have the same asymptotic behavior as �̂(�; 
) for any
p
n consistent estimator
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̂: Simple
p
n consistent estimators of 
 may be easily constructed as interquantile

ranges, i.e.


̂n = �̂n(�1)� �̂n(�0):
It is evident that such estimators need only be consistent \up to scale" that is we
require only that


̂n = �
 +Op(n
�1=2)

for some scalar �, since � plays no role in the minimization problem de�ning �̂(�; 
):
For the interquantile range estimator we would have, for example,

��1 = Qu(�1)�Qu(�0):

Improved estimators of 
 may be constructed as L-estimators with smooth weight
functions along the lines described in Section 1.X. In practice there may be cases in
which x0i
̂n is negative for some indices i, and it may be reasonable to take absolute
values in these cases. Since we must assume that �(x) = x0
 is strictly positive over
the entire design space, this must occur with probability tending to zero.

Since �� (�) is piecewise linear, and �̂(x) = x0
̂n > 0, at least eventually, we may
rewrite the weighted quantile regression model as

~Yi = ~x0i� + ui

where ~Yi = Yi=�̂(xi); and ~xi = xi=�̂(xi): In these transformed variables we have

Q~Yi
(� jxi) = �̂�1i (xi)xi(� + 
Q�1(� )) = ~x0i� + �̂�1(xi)x

0
i
Q

�1(� );

and since �̂(xi)! x0i
; in probability it follows that the weighted quantile regression

estimator �̂(�; 
̂) converges to � � 
Q�1(� ) like its unweighted counterpart, but be-
cause the weighted model now has iid errors it achieves full e�ciency. This is the
basic message of Koenker and Zhao (1995) which provides a detailed analysis of this
approach. Newey and Powell (1990) study a related weighted quantile regression es-
timator in the censored case and show that the estimator attains a semiparametric
e�ciency bound.

Within the general class of linear quantile regression models, that is the class of
models with conditional quantile functions which are linear in parameters, the location
scale models (5.3.3) are quite special. Before plunging ahead with reweighting as we
have just described one may wish to test whether the location-scale hypothesis is
plausible. A simple test of this form could be based on the p-vector of ratios,

Tn = (Tni) =

 
�̂ni(�1)� �̂ni(�0)
�̂ni(� 01)� �̂ni(� 00)

!
:

Under the location scale hypothesis the components of Tn would all converge to

Qu(�1)�Qu(�0)

Qu(� 01)�Qu(� 00)
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Figure 5.2. Non-location-scale linear quantile regression: The 200
points plotted points are generated from a model with linear condi-
tional quantile functions illustrated by the solid lines in the �gure.
Corresponding unweighted quantile regression estimates appear as dot-
ted lines. Note that although all the conditional quantile functions are
linear, the model is not of the location scale form: the the conditional
distribution of the response is symmetric at x = 0 but quite asymmetric
at x = 1.

and consequently one could base a test on some measure of the maximal discrepancy
between the observed components. We will describe more sophisticated strategies for
carrying out tests of this type in Section X.x.

A simple example of a non-location-scale linear conditional quantile function
model is given in Figure 3. We have generated 200 observations from a model with
conditional quantile functions

QY (� jx) = ��1(� ) + exp(��1(� ))x
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with the x's generated as uniform on the interval [0; 10]. It is immediately apparent
that the shape of the conditional density of Y is very di�erent at x = 0 than it is at x =
10. At 0, Y is conditionally standard normal and the solid lines which indicate the true
conditional quantile functions are symmetric, while at x = 10 the conditional density
is quite asymmetric, re
ecting the e�ect of the lognormal component proportional
to x. The corresponding �tted quantile regression lines appear as dotted lines in
the �gure. It is easy to show that the coe�cients of these unweighted estimates are
consistent for their corresponding population parameters, but as in the location scale
model the question arises: Can we improve upon the unweighted estimators?

This question has a straightforward answer. The appropriate weights for the
� th quantile regression are the vector of conditional densities evaluated at the � th
quantile, wi = fY (QY (� jxi)) = (x0 _�(� ))�1 where _�(� ) = d�(� )=d� Estimating these
weights is quite straightforward given estimates of the of the entire unweighted quan-
tile regression process, using any of the sparsity estimation methods discussed in
Section S.x. In the location-scale case the situation is somewhat simpli�ed because
(x0 _�(� ))�1 = (x0
) _Qu(� ) for some p-vector 
 and consequently we can ignore the spar-
sity estimation problem because it would contribute the same factor to each weight.
In general, this isn't the case and we are required to estimate _�.
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CHAPTER 6

Computational Aspects of Quantile Regression

While early advocates of absolute error methods like Boscovitch, Laplace, and Edge-
worth all suggested ingenious methods for minimizing sums of absolute errors for
bivariate regression problems, it was not until the introduction of the simplex algo-
rithm in the late 1940's, and the formulation of the `1 regression problem as a linear
program somewhat later, that a practical, general method for computing absolute
error regression estimates was made available.

We have already seen that the linear programming formulation of quantile re-
gression is an indispensable tool for understanding its statistical behavior. Like the
Euclidean geometry of the least squares estimator, the polyhedral geometry of min-
imizing weighted sums of absolute errors plays a crucial role in understanding these
methods. This chapter begins with a brief account of the classical theory of linear pro-
gramming stressing its geometrical aspects and introducing the simplex method. The
simplex approach to computing quantile regression estimates will then be described
and we will emphasize the special role of simplex-based methods for \sensitivity anal-
ysis" or parametric programming in a variety of quantile regression contexts in Section
2.

In Section 3 we will describe some recent developments in computation which rely
on \interior point" methods for solving linear programs. These new techniques are es-
pecially valuable in large quantile regression applications where the simplex approach
becomes impractical. Interior point methods are also highly relevant for nonlinear
quantile regression problems, a topic addressed in Section 4. Some specialized top-
ics dealing with applications to non-parametric quantile regression are treated in the
�nal section of the chapter.

1. Introduction to Linear Programming

Problems which seek to optimize a linear function subject to linear constraints
are called linear programs. Such problems play an important role throughout applied
mathematics. One of the earliest explicit examples is the so-called diet problem: an
individual has a choice of n foods which he may consume in quantities x = (x1; :::; xn).

109
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The foods provide nutrients in varying degrees, and we may represent the require-
ments for such nutrients by the m linear constraints,

a11x1 + : : :+ a1nxn � b1
...

...
...

am1x1 + : : :+ amnxn � bm

(6.1.4)

where aij denotes the amount of nutrient i provided by food j, and b1; :::; bm denote
the annual requirements of each of the m nutrients. The cost of the diet x may be
represented as

c(x) = c1x1 + :::+ cnxn

so we may concisely formulate the problem of �nding the least expensive diet achieving
our nutritional requirements ashow do we know that

all these constraints will
be active at a solution?
Formally, this seems
only necessary when we
insist that Ax = b.

minfc0xjAx � b; x � 0g:(6.1.5)

The �rst formulation of this problem to be solved by formal linear programming
methods was that of Stigler (1945). The simplex method applied to Stigler's prob-
lem produced a rather appalling diet consisting of 
our, corn meal, evaporated milk,
peanut butter, lard, beef liver, cabbage, potatoes and spinach and achieved the stag-
gering annual cost of $39.47, a saving of almost 50 cents per year over a diet found
earlier by Stigler by somewhat less systematic methods. According to Dantzig(1951)
computing this simplex solution by hand in 1947 required 120 man hours.

Why were so few foods represented in the \optimal diet", when the original prob-
lem o�ered an enticing menu of 77 di�erent foods? The answer to this question is
fundamental to the basic understanding of linear programming so it is worth consid-
ering in some detail. Stigler's formulation of the diet problem involved nine di�erent
nutritional requirements. It is no coincidence that the optimal diet consisted of ex-
actly nine distinct foods.

1.1. Vertices. To see this we must delve a bit more deeply into the geometry of
the constraint set S = fxjAx � b; x � 0g. Since S is polyhedral and convex, being
the intersection of a �nite number of halfspaces, vertices of S have a special status.
The vertices of S are extreme points, or \corners", isolated points which do not lie on
a line connecting distinct points is S. To further characterize such vertices, consider
the augmented, n+m by n system of linear inequalities,�

A
In

�
x �

�
b
0

�
Associated with any point x 2 S, the active constraints will refer to the constraint
rows which hold with equality. Nonbinding constraints, which hold with strict in-
equality, will be called inactive. A vertex of S is a point x 2 S whose submatrix
of active constraints contains at least one subset of n linearly independent rows. It
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is this linear independence which prohibits vertices from being expressed as proper
linear combinations of two or more distinct points in S. The crucial role of vertices
in the theory of linear programming is revealed by the following proposition.

Proposition 6.1. If the linear program (6.1.5) has a bounded solution, then it
has a vertex solution.

This proposition has a rather self-evident geometric interpretation. Wemay regard
the constraint set S as an n-dimensional object like a cut diamond with 
at facets,
and linear edges connecting a �nite number of distinct vertices. Level surfaces of the
\cost", or objective, function c(x) are simply a family of parallel hyperplanes so the
solution may be envisioned as gradually \lowering" the cost planes until they just
touch the set S. This \tangency" may occur at a vertex, in which case the solution
is unique, or it may occur along an entire edge, or facet in higher dimensions, in
which case the solution consists of an entire convex set delimited by vertices. In
either case, the crucial role of vertex solutions is apparent. If the objective function
can be reduced without bound while maintaining feasibility, the notional solution \at
in�nity" does not occur at a vertex. A formal proof of this proposition, which is
somewhat more arduous than our geometric intuition, may be found for example in
Gill, Murray and Wright(1991, see Theorem 7.7.4)

Presuming that the m constraint rows de�ned by the matrix A are linearly inde-
pendent, we can form vertices of S by replacing m rows of In by the rows of A, and
setting the remaining n�m coordinates of x to zero. Let h denote the indices of the
active constraints thus selected, and partition the constraints, writing them as�

A(h) A(�h)
0 In�m

��
x(h)
x(�h)

�
=

�
b
0

�
;

where �h = f1; : : : ; ngnh; and A(h) denotes a submatrix of A consisting of the columns
corresponding to the active indices h. Solving, we have, presuming A(h)�1 exists,

x(h) = A(h)�1b(6.1.6)

x(�h) = 0:(6.1.7)

Provided x(h) � 0, this point is a vertex of S. Whether this vertex is optimal remains
to be seen, but the proposition assures us that we need only check the �nite number
of such vertices and pick the one that achieves the lowest cost. This comment may
not have come as a great solace to early pioneers of linear programming computation,
since there are

�
n
m

�
such vertices, each requiring the solution of an m�m linear system

of equations. Even for Stigler's problem
�
77
9

� � 1:6�1011 appears prohibitively large.
Fortunately, we need not visit every vertex. We need only to �nd an intelligent way
of passing from one vertex to the next; the convexity of the constraint set and the
linearity of the objective function assures us that starting at any vertex there is a
path through adjacent vertices along which the objective function decreases on each
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edge. To explore such strategies we need: a criterion for deciding that a vertex is
optimal, and a rule for choosing an adjacent vertex if the optimality condition is not
satis�ed.

1.2. Directions of Descent. Let x0 be an initial, not necessarily feasible point
and consider the the feasibility of a step of length � in the direction p with respect
to the ith constraint, a0ix � bi. Since

a0i(x0 + �p) = a0ix0 + �a0ip

we may write the step length to constraint i from x0 in direction p as,

�i =
a0ix0 � b
�a0ip

if a0ip 6= 0

If a0ip = 0, the step moves x0 parallel to the constraint and we regard the step length
to the constraint as in�nite with sign determined by the sign of the initial \residual"
associated with the constraint.

Given that x0 were feasible we need to know what directions are feasible in the
sense that the point x0 + �p remains feasible for some su�ciently small �: Suppose
�rst that constraint i is inactive at x0, so that a0ix0 > bi: In this case, any direction
p is feasible: if a0ip � 0, x0 + �p remains feasible for any � > 0. If a0ip < 0, both
numerator and denominator of the step length to the ith constraint are positive and
there is a strictly positive �i at which the constraint becomes active. We conclude
that inactive constraints do not restrict the set of feasible directions, only the length
of the feasible step is constrained.

For active constraints the situation is reversed. If a0ix0 = bi and a0ip < 0, even
the smallest step � > 0 violates the feasibility condition. On the other hand, if
a0ip � 0, feasibility is maintained for all � > 0: Thus, for active constraints, the
feasible directions are constrained, but once a direction is determined to be feasible
active constraints impose no further restriction on step length.

Feasible directions with respect to several constraints may be derived immediately
from this analysis of a single constraint. If p is feasible at x0 for the system of
constraints Ax � b, then for some � > 0; A(x0 + �p) � b and this requires, in
turn, that for the active constraints, i.e., the rows, h, such that A(h)x0 = b we have
A(h)p � 0:

Note that since equality constraints of the form Ax = b must be active, and since
they require both Ax � b and Ax � b; so �Ax � �b, the preceding argument implies
that any feasible direction p must satisfy both Ap � 0 and �Ap � 0, so for equality
constraints the only feasible directions are those that lie in the null space of A, i.e.,
such that Ap = 0.

This brings us to the existence of feasible directions of descent. Since

c0(x0 + �p) = c0x0 + �c0p
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a direction p is a direction of descent at x0 i� c0p < 0. Given an initial point, x0, how
do we determine whether we have a feasible direction of descent? Let S(A0) denote
the space spanned by the column vectors of A0,

S(A0) = fyjy = A0v for some vg
then if y 2 S(A0) and Ap = 0, there exists a v such that y0p = v0Ap = 0, so p is not
a descent direction. On the other hand, if y =2 S(A0), then there exists a p 2 <n such
that Ap = 0 and y0p < 0; and p is a direction of descent at x0.

1.3. Conditions for Optimality. In the special case of linear programs with
only equality constraints the conditions for optimality of a solution are quite simple.
Since this simple case illustrates certain aspects of the more general problem we may
begin by considering the problem

minfc0xjAx = bg
There are three possible situations:

1. The constraints Ax = b are inconsistent, so the feasible set is empty and no
optimal point exists.

2. The constraints Ax = b are consistent, so the feasible set is nonempty, and
either
(a) c 2 S(A0), so there exists v such c = A0v, and for any feasible point x,

c(x) = c0x = v0Ax = y0b

so any feasible point achieves the same value of the objective function.
Thus, all feasible points are optimal, or

(b) c =2 S(A0), so there exists a direction p such that Ap = 0, and c0p < 0.
This direction is feasible and thus starting from any feasible point, x, the
objective function can be driven to �1 by taking a step x + �p for �
arbitrarily large.

None of these options seem particularly attractive and together they illustrate the
crucial role of inequality constraints in determining vertex solutions in linear pro-
gramming.

The situation for problems with inequality constraints is somewhat more challeng-
ing. In this case we must carefully distinguish between active and inactive constraints
in determining feasible direction, and obviously sets of active and inactive constraints
may depend on the initial feasible point. Let h denote the index set of active con-
straints and �h the index set of inactive constraints at an initial (feasible) point x0: A
feasible direction of descent, p, exists if

A(h)p � 0 and c0p < 0

The point x0 is optimal i� no direction of descent exists.
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For equality constrained linear programs it was possible to provide a simple test
for the optimality of an initial feasible point based on whether c was contained in
the span of A0. For inequality constrained LP 's the situation is somewhat more
complicated and relies on the following classical result.

Lemma 6.2. (Farkas (1902)) Let B be a p by n matrix and c be a vector in <n,
then

c0p � 0 for all p such that Bp � 0

i�

c = B0v for some v � 0

Applying the lemma to obtain optimality conditions for the purely inequality
constrained linear program we have the following theorem.

Theorem 6.3. (GMW 1992, Theorem 7.7.2) For the problem,

minfc0xjAx � bg
either:

1. The constraints Ax � b are inconsistent and therefore the problem has no
solution, or

2. There is a feasible point x̂, and a vector v̂ such that

c = A(h)0v̂ with v̂ � 0

where A(h) denotes the submatrix of A corresponding to the active constraints
at x̂. In this case c(x̂) is the unique minimum value of c0x for fxjAx � bg and
x̂ is an optimizer, or,

3. The constraints Ax � b are consistent, but the conditions (�) are not satis�ed
for any feasible point x. In this case, the solution is unbounded from below.

1.4. Complementary Slackness. The optimality conditions (2) require that a
weighted sum of the m possible columns of the matrix A0 equals the cost vector c.
In the Theorem we have not speci�ed the dimension of the vector v̂, but we have
seen that if x̂ is a vertex, then A(h)0 must consist of at least n linearly independent
columns from the full set of m columns of A0. It is perhaps more convenient, and
obviously equivalent to take u 2 <m and let v = u(h), and set u(�h) = 0. We may
then express (2) as

c = A0u and u � 0

with the added \complementary slackness" condition that

riui = 0 i = 1; : : : ;m

where ri = a0ix0 � b: For i 2 h we are assured that riui = 0, because ri = 0, by
de�nition, for active constraints, while for i 2 �h; ui = 0. The vector u 2 <m may be
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regarded as a vector of Lagrange multipliers corresponding to the constraints Ax � b:
For binding constraints we expect these multipliers, which may be interpreted as
the \marginal costs" of their respective constraints, to be positive. For nonbinding
(inactive) constraints tightening the constraint in�nitesimally imposes no cost so the
multiplier is zero. mention KKT c

tions here?Combining the conclusions for equality and inequality constraints we have the
following result.

Theorem 6.4. Consider the linear program

minfc0xjAx = b; x � 0g
and suppose x̂ is a feasible point. The point x̂ is optimal i� there exists û 2 <n and
v̂ 2 <m, such that,

c = A0v̂ + û u � 0

with

x̂iûi = 0 i = 1; : : : ; n

The canonical form of LP given in Theorem 6.4 appears somewhat restrictive,
but apparently more general forms may be transformed into this canonical form by
the introduction of new variables. For example, consider the problem

minfc0xjAx = b;Dx � dg:
Rewriting this as

minf~c0zj ~Az = ~b; z � 0g
where ~c = (c; 0)0;~b = (b0; d0)0; z = (x0; y0)0 and

~A =

�
A 0
D �I

�

we are back to canonical form. The new variables y are usually called \slack" variables
connoting that they take the value zero when the original constraints are active, and
\take up the slack" associated with inactive constraints.

1.5. Duality. The Lagrange multiplier interpretation of the variables u in The-
orem Theorem 6.4 is our �rst hint of the elegant theory of duality rising in linear
programming and related contexts. Corresponding to any primal linear program we
may formulate a dual linear program, a re
ection of the original problem \through
the looking-glass" in which minimizing with respect to the original variables turns
into maximizing with respect to the Lagrange multipliers of the dual formulation.
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In the dual formulation of the diet problem, for example, we have seen Theorem 6.4
that at a solution x̂, there exists a vector of Lagrange multipliers, say, v̂ = (ŷ0; ẑ0)0;
such that

c = A0ŷ = ẑ

and such that aix̂i� bi)ŷi = 0; i = 1; :::;m and x̂iẑi = 0; i = 1; :::; n. At such a point,
note that

c0x̂ = ŷ0Ax̂+ ẑ0x̂ = ŷ0b:

This suggests that we might consider reformulating the original problem of �nding
the optimal diet, x̂, as a problem of �nding the vector of Lagrange multipliers, v,
solving the linear program,

maxfb0yjA0y + z = c; (y; z) � 0g:
Since the slack vector, z, is simply a \residual" immediately obtained from the con-
straint

A0y + z = c

once we have speci�ed y, we can view this dual problem as asking us to �nd a vector
of \shadow prices", y, corresponding to the m nutritional requirements. These prices
may be interpreted at a solution as the prices which consumers would be willing to pay
for dietary supplements corresponding to each of the m nutritional requirements. One
way to interpret the dual of the diet problem is as a search for a revenue maximizing
vector of these \diet supplement" shadow prices which would be sustainable given the
current prices of the available foods of the primal problem. Obviously, these prices are
constrained by the current levels of food prices and the quantities of each nutritional
requirement provided by the foods. Finding the optimal shadow prices is equivalent
to �nding the optimal diet for the original problem, because in e�ect it identi�es a
subset of active constraints, ones for which the dual constraints are binding, these
active constraints de�ne a basis h which in turm can be used to �nd the explicit
primal solution as in (6.1.6). Note also that the requirement that at a solution all the
nutrients have positive shadow prices ensures that all of the rows of A appear in the
active set of the primal solution and this is the essential requirement which ensures
that there will be precisely m foods in the optimal diet.

To examine this duality more generally consider the canonical (primal) LP ,

minfc0xjAx = b; x � 0g(6.1.8)

for which we have seen that a feasible point, x̂, is optimal i� there exist vectors û and
v̂ such that

c = A0v̂ + û; û � 0 with x̂iûi = 0 i = 1; : : : ; n:
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These optimality conditions suggest the following dual formulation of the problem:

maxfb0vjA0v � cg:
Note that at a solution (x̂; û; v̂) we have

c0x̂ = v̂0Ax̂+ û0x̂ = v̂0b

so at the optimum the primal and dual values of the objective function are equal. At
any other feasible point (x; u; v) we have

c0x� v0b = u0x � 0:

The left hand side is usually called the \duality gap", the discrepancy between the
primal and dual objective functions, and since it is equal to the inner product of
two nonnegative vectors, it can be taken as a direct measure of the departure from
the complementary slackness condition u0x = 0 which indicates optimality. This
relationship plays a central role in the theory of interior point algorithms for solving
linear programs.

An important observation regarding the dual problem is that the primal vector
x̂ may be regarded as the Lagrange multiplier vector corresponding to the dual con-
straints A0v � c; at the optimum. Thus, �nding the dual of the dual formulation
returns us to the primal formulation of the problem. The apparent symmetry be-
tween dual and primal formulations may be further accentuated by rewriting the
dual in the equivalent form

maxfb0vjA0v + u = 0; u � 0g:
In the next Section we explore the application of the foregoing ideas in the speci�c

context of the quantile regression optimization problem.

2. Quantile Regression

The primal formulation of the basic linear quantile regression problem,

min
b2jRp

nX
i=1

��(yi � x0ib)

may be written as,

minf�e0nu+ (1� � )e0nvjy�Xb = u+ v; b 2 jRp; (u; v) 2 jR2n
+ g;

which may be seen to be (almost) in canonical form (6.1.8) by making the following

identi�cations: c = (00p; �e
0
n; (1 � � )e0n)0, x = (b0; u0; v0)0, A = [X

...I
... � I] and b = y.

Full adherence to the canonical form would require the further decomposition of
the vector b into its positive and negative parts. As we have already noted, the
polyhedral nature of the constraint set and the linear objective function imply that
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we may focus attention on the vertices of the constraint set. These vertices, as we
observed in Chapter 2, may be indexed by the

�
n
p

�
elements h 2 H and take the form,

b(h) = X(h)�1y(h);

u(h) = v(h) = 0;

u(�h) = (y �Xb(h))+;
v(�h) = (y �Xb(h))�:

Clearly, at any such vertex, the complementary slackness conditions, uivi = 0 hold,
and there are at least p indices, i 2 h, with ui = vi = 0. Such points provide an exact
�t to the p observations in the subset h, and set the corresponding u and v vectors of
the solution equal to the positive and negative parts of the resulting residual vector.

The primal quantile regression problem has corresponding dual problem,

maxfy0djX 0d = 0; d 2 [� � 1; � ]ng
Equivalently, we may reparametrize the dual problem to solve for

a = d+ (1 � � )en
yielding the new problem,

maxfy0ajX 0a = (1� � )X 0en; a 2 [0; 1]ng:
In dual form, the problem may be seen to be one of optimizing with respect to a
vector that lies in a unit cube. Such \bounded variables" problems have received
considerable special attention in the linear programming literature. The dual also
provides a critical link to the theory of linear rank statistics, generalizing the rank
score functions of H�ajek , as described in Gutenbrunner and Jure�ckov�a (1992).

Since, at any solution, f(b̂; û; v̂); d̂g, we must have
�e0nû+ (1� � )e0nv̂ = y0d̂

we see that,

d̂i =

�
� if ûi > 0

(� � 1) if v̂i > 0

while for observations i 2 h with ûi = v̂i = 0, d̂(h) is determined from the equality
constraint, X 0d = 0, as,

d̂(h) = �[X(h)0]�1X(�h)0d̂(�h):

The dual vector d̂(h) at a solution corresponding to the basic observations h is thus

the same as the vector �h of Theorem 2.1. The fact that at a solution d̂(h) 2 [��1; � ]p
is precisely the optimality requirement that appears in that result.
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It is conventional in describing implementations of simplex-type algorithms for
solving linear programs to speak of a phase I of the algorithm in which an initial
feasible vertex of the problem is found, and then a phase II in which we proceed from
one such vertex to another until optimality is acheived. In some linear programs just
determining whether a feasible vertex exists can be quite di�cult, however in the
quantile regression problem we can choose any subset, h, and de�ne a basic feasible
point to the problem provided that the matrixX(h) is of full rank, thereby completing
phase I. Thus, we will focus attention below on Phase II of the computation, describing
an approach implemented in the path-breaking algorithm of Barrodale and Roberts
(1973).

Let h0 2 H denote the index set corresponding to an initial feasible vertex of the
constraint set. Consider the directional derivitive of the objective function,

R(b) =
nX
i=1

�� (yi � x0ib)

evaluated at b(h0) = X(h0)�1y(h0) in direction �, which we may write as in Section
2.2,

rR(b(h0); �) = �
nX
i=1

 ��(yi � x0ib(h0);�x0i�)x0i�;

where  �� (u;w) = � � I(u < 0) if u 6= 0 and  ��(u;w) = � � I(w < 0) if u = 0. Since
we are already at a vertex, and the constraint set is convex, we can restrict attention
to certain extreme directions, �, which correspond to moving away from the vertex
along the edges of the constraint set which intersect at the current vertex. These
edges may be represented algebraically as

d(�; h; �j) = b(h) + ��j(6.2.9)

where �j is the jth column of the matrixX(h)�1 and � is a scalar which controls where
we are along the edge. This representation of the edge is just the usual parametric
representation of a line through the point b(h) in direction �j. Here, �j, is the vector
orthogonal to the constraints formed by the remaining basic observations with the jth
removed. Note that � can be either positive or negative in (6.2.9) and the directional
derivitive will be di�erent for �j and ��j.

As in Theorem 2.1, let

�(h) = �
X
i2�h

 �� (yi � x0ib(h))x0iX(h)�1

and note that if �j is the jth column of X(h)�1, then for i 2 h, x0i�j = 0 for j 6= i and
equals one for i = j, so for such �j,

rR(b(h0); �j) = �j(h) + 1 � �
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and

rR(b(h0);��j) = ��j(h) + �:

If these directional derivitives are all non-negative for j = 1; :::; p, we have the opti-
mality condition of Theorem 2.1,

�(h) 2 [� � 1; � ]p;

otherwise there is an edge which is a direction of descent leading away from the point
b(h), and we can reduce R(b) by moving in this direction way from b(h).

Which edge should be chosen? The conventional choice, adopted by BR (?) is
the one of \steepest descent". This is the one for which the directional derivitive
rR(b(h);��j) is most negative. Having selected a direction �� = ��j for some j and
� 2 f�1; 1g we face the question: how far should we travel in this direction? BR
answered this question quite innovatively.

Rather than simply adopting the usual simplex strategy of traveling only as far as
the next vertex, that is only as far as needed to drive one of the non-basic observation's
residuals to zero, they proposed to continue in the original direction as long as doing
so continued to reduce the value of the objective function. Thus, as we travel in the
direction, ��, we encounter points at which observations not in the original basis have
residuals which are eventually driven to zero. Conventional simplex strategies, when
they encountered such a situation, would introduce the new observation into to the
basis, recompute a descent direction, and continue. Instead, BR elect to continue in
the originally determined direction as long as it remains a viable direction of descent.
In this way, they dramatically reduce the number of simplex pivot operations required
when the basis changes. At the intermediate points all that is required is a change of
sign in the contribution to the gradient of the observation whose residual is passing
through zero. In e�ect, this strategy constitutes what is sometimes called a Cauchy
algorithm in general nonlinear optimization theory. see e.g. Nazareth (1991). We
select a direction of steepest descent at each iteration and then do a one dimensional
line search, a minimization along a ray in the chosen direction.

The resulting line search has a simple interpretation which takes us back to the
discussion of the regression through the origin example of Chapter 1. In e�ect, at
each step, we are solving a problem of the form,

min
�2jR

nX
i=1

�� (yi � x0ib(h)� �x0i��)

which is just the regression through the origin quantile regression problem in � with
the response yi � x0ib(h) and a design consisting of the single variable x0i�

�. This sub-
problem is easily solved by �nding a weighted quantile, we simply need to generalize
slightly the weighted median characterization already described in Chapter 1. This
is done in Appendix A of this Chapter.
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The algorithm continues in this manner until there is no longer a direction of
descent at which point optimality has been acheived, and the algorithm terminates.
We will see that the BR algorithm provides an extremely e�cient approach to quan-
tile regression computations for problems of modest size. For problems with n up
to several hundred observations the modi�ed BR algorithm described in KO is com-
parable in speed to least squares estimation of the conditional mean regression as
implemented in current software packages like Splus and Stata. In very large prob-
lems, however, the simplex approach of BR, or perhaps more precisely, the exterior
point approach of BR { the path along the exterior of the constraint set { becomes
painfully slow, relative to least squares. In Section 4 we will describe some recent
developments which signi�cantly improve upon the performance of BR in large prob-
lems. But before introducing these new methods we will describe several applications
of parametric programming ideas, which o�er extremely e�ective exterior point com-
putational strategies for important families of quantile regression problems.

3. Parametric Programming for Quantile Regression Problems

The aspect of quantile regression computation which seems most puzzling to new-
comers to the subject is the idea that we can solve

min
b2jRp

nX
i=1

�� (yi � x0ib)

e�ciently for all � 2 [0; 1]. One solution to a linear programming problem for �xed
� seems bad enough, how is it possible to �nd a solution for a continuum of � 's? The
answer to this question again lies in the elementary geometry of linear programming.

Consider the primal version of the quantile regression LP and imagine that we are
at a vertex solution for some initial � = �0. What happens when we decide that we
would also like to know the solution for some �1 > �0? Geometrically, changing � tilts
the orientation of the (hyper-)planes representing the level surfaces of the objective
function, but has no e�ect on the constraint set of the primal problem. Thus if we are
at a unique vertex solution corresponding to �0, there is a neighborhood of �0 within
which the solution remains unperturbed. Eventually, of course, the plane tilts enough
so that not only the original solution at �0, but an entire edge of the constraint set
solves the perturbed problem. There will be a whole line segment of solutions in jRp

corresponding to the \tangency" of the plane representing the minimal attainable
level of the objective function on an edge of the constraint set.

Tilting the plane a bit beyond this �1 restores the uniqueness of the solution at the
opposite end of the line segment de�ning the edge. What has happened algebraically
is quite simple. The edge may be represented as in the previous subsection as

d(�; h; �j) = b(h) + ��j
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where b(h) is the initial vertex solution at �0 and �j is the jth column of X(h)�1. As
in our description of the BR algorithm we travel along this edge until we come to the
next adjacent vertex. At this new vertex we have driven a new residual, say the kth
to zero, and at this value �1 any point between b(h) and b(h0) with h0 = k [ h n j
solves the problem. For � > �1 the plane representing the objective function again
tilts away from the edge and we have a unique solution at b(h0).

Proceeding in this manner we identify breakpoints �j 2 f0 = �0; �1; :::; �J = 1g at
which the primal solution 
ips from one basis to another. (At these points we have
an interval of solutions, elsewhere the solution is unique.) Of course, in the simplestThis isn't quite right we

might need to mention
the pathology of inter-
vals of MOS....

one sample setting where xi � 1 we have exactly n of these breakpoints at �j = j=n.
However, in general the number and location of the �j's depends in a complicated way
on the design con�guration as well as the observed response. Under mild regularity
conditions which can be expected to hold in most quantile regression applications,
Portnoy (1989) has shown that the number of breakpoints J is Op(n log n). There isDo we need some empir-

ical evidence on this??? an extensive LP literature on related problems of this sort which are usually called
parametric programming problems or sensitivity analysis. See Gal () for a detailed
treatment of this literature.

An explicit formulation of the computations described above returns us to the
dual form of the problem. At the initial solution b(h), at � = �0 we have the dual
constraint,

X 0â(� ) = (1� � )X 0e

for some â(� ) 2 [0; 1]n, and for the non-basic observations, âi(� ) = I(ui > 0) for
i 2 �h. De�ne

� = (X(h)0)�1[X 0e�
X
i2�h

xiâi(� )]

and

� = (X(h)0)�1X 0e

so for � su�ciently close to �0,

âi(� ) = �i � �i� i 2 h:
To �nd the next � we need to �nd among all the � 's which solve either,

�i � �i� = 0;

or,

�i � �i� = 1;

the one that changes least. To accomplish this we simple examine the set of 2p
numbers,

T = f�i=�i; (�i � 1)=�i; i 2 hg:
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Presuming that we are looking for the next largest � , we select,

�1 = minf� 2 T j� > �0g:
This selection determines not only the length of the interval for which the point b(h)
remains optimal, but also ident�es which edge is optimal at the new breakpoint �1.
The direction of movement along this edge is given by

� =

�
1 if �1 = �i=�i i 2 h
�1 if �1 = (�i � 1)=�i i 2 h

Let the index of the minimizing edge be i0 2 h, then the parametric representation
of the edge is b(h) + ��i0 where �i0 is the i0 column of X(h)�1. Finally, to determine
how far we can go in this direction we de�ne the ratios,

S = fsj = rj=(�x
0
j�i0); j 2 �hg;

The smallest positive element of S identi�es the distance we may travel along our
selected edge before forcing one of the non-basic residuals to become zero. The j so
selected now replaces the deleted basic observation i0 in h and we proceed as from
the beginning. In this way we can �nd the entire quantile regression process f�̂(t) :
t 2 [0; 1]g and the corresponding dual process, fâ(t) : t 2 [0; 1]g, in roughly n log n
simplex pivots. For modest n this is extremely quick; for large n we suggest some
alternative computational strategies which can signi�cantly reduce the computational
e�ort without much sacri�ce in the informational content of the estimated processes.

3.1. Parametric Programming for Regression Rank Tests. Another im-
portant parametric family of quantile regression problems arises in the computation
of the inverted rank test con�dence intervals described in Chapter 3. In this case, we
begin with the solution to a p + 1 dimensional quantile regression problem. And we
would like to construct a con�dence interval for the jth parameter of the model by
inverting a particular form of the GJKP () rank test of the hypothesis,

H0 : �j = �

that is, we would like to �nd an interval (�̂Lj ; �̂
U
j ) with asymptotic coverage 1 � �.

Statistical aspects of this con�dence interval are described in Chapter 3, here we will
focus on describing the computational details of the procedure.

Let ~X denote the full (p + 1)-column design matrix of the problem and X, the

reduced design matrix with the jth column deleted. Let ĥ denote the index set of
the basic observations corresponding to the solution of the full problem, and let u
denote the jth row of the matrix ~X(ĥ)�1. Our �rst task is to reduce the basis ĥ by

one element, in e�ect �nding a new basis, ~h, for the dual problem,

maxfy �Xj�)
0ajX 0a = (1� � )X 0e; a 2 [0; 1]ng
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for � near �̂j. Here we denote the jth column of ~X by Xj . Clearly, this reduced
solution has ~ai = âi for i =2 h, but we must identify the observation to be removed
from the basic set. Consider the ratios, for i 2 ĥ,

si =

�
(âi � 1)=ui ifui < 0
âi=ui ifui � 0

and let k 2 ĥ denote the index of the minimal si, i.e.

w� = sk = mini2ĥfsi : i 2 ĥg:
The new dual solution is thus,

~ai = âi � w�ui i 2 ~h = ĥ n k:
Note that this modi�cation of the dual solution doesn't alter the primal solution, we
have simply reduced the rank of the porblem by one and incorporated the e�ect of
the jth covariate into the response variable.

Now we are ready to begin the parametric programming exercise. But in this
case we must focus attention on the dual form of the quantile regression problem. As
we change � in the dual problem we again may view this as tilting the plane of the
objective function, this time in the dual formulation, while the dual constraint set
remains �xed. And again we are looking for a sequence of steps around the exterior
of the constraint set; this time the path terminates at the value of � for which we �rst
reject H0.

Each step begins by identifying the nonbasic observation which will next enter
the basis. This is the observation whose residual is �rst driven to zero by the process
of increasing �. This is fundementally di�erent than the primal parametric problem
over � . In that case, the primal solution �̂(� )(� ), was piecewise constant in � and
the dual solution â(� ) was piecewise linear in � . Now the situation is reversed with
the dual solution, viewed as a function of �, â(�), piecewise constant and the primal

solution �̂(�), piecewise linear in �. If b(h) is the unique vertex solution to the reduced

problem at � = �̂j, then there is a neighborhood around this value for which the basic
observations, h, remain optimal and we can write the residual vector of the perturbed
problem as,

r(�) = y �Xj� �XX(h)�1(y(h)�Xj(h)�)

= y �XX(h)�1y(h)� (Xj �XX(h)�1Xj(h))�:

The incoming observation i is the minimal element corresponding to

�� = min
i
fyi � x0iX(h)�1y(h)=(xij � x0iX(h)�1Xj(h)) > 0g;
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presuming, of course that we are interested in increasing �. Finally, we must �nd
the observation leaving the basis. Let

v = X(h)�1xi(h):

If the incoming residual

ri� = yi� � x0i�X(h)�1(y(h)�Xj(h)�̂j)

is greater than zero set,

gi =

� �âi=vi if vi < 0
(1 � âi)=vi otherwise

or if ri� < 0, set

gi =

�
âi=vi if vi < 0
(âi � 1)=vi otherwise:

The outgoing observation is the one corresponding to the minimal value of the gi's.
We can now update the basis and continue the process, until we we reject H0. The
process may be repeated to �nd the other endpoint of the con�dence interval and
continued to determine the con�dence intervals for each parameter appearing in the
model. As can be seen, for example, in Table 2.2, these con�dence intervals are
asymmetric so they cannot be represented in the form of the usual "estimate � k�
standard deviation", so in this way they resemble the con�dence intervals one might
obtain from the bootstrap percentile method.

When sample sizes are large there are typically a large number vertices which must
be traversed to �nd solutions using the simplex approach we have described above.
Indeed, there are infamous examples, notably that of Klee and Minty (1972) which
have shown that in problems of dimension, n, simplex methods can take as many
as 2n pivots, each requiring O(n) e�ort. Such worst case examples are admittedly
pathological, and one of the great research challenges of recent decades in numerical
analysis has been to explain why simplex is so quick in more typical problems, see
Shamir (1993) for an excellent survey of this literature. Nonetheless, we will see that
for quantile regression problems with p �xed and n!1, the modi�ed algorithm of
Barrodale and Roberts exhibits O(n) behavior in the number of pivots and therefore
hasO(n2) growth in cpu-time. In the next section we introduce interior point methods
for solving linear programs which have been shown to dramatically improve upon the
computational e�ciency of simplex large quantile regression problems.

4. Interior Point Methods for Canonical LP's

Although prior work in the Soviet literature o�ered theoretical support for the
idea that linear programs could be solved in polynomial time, thus avoiding the
pathological exponential growth of the worst-case Klee-Minty examples, the paper of
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Karmarker (1984) constituted a watershed in the numerical analysis of linear pro-
gramming. It o�ered not only a cogent argument for the polynomiality of interior
point methods of solving LP 's, but also provided for the �rst time direct evidence
that interior point methods were demonstrably faster than simplex in speci�c, large,
practical problems.

The close connection between the interior point approach of Karmarkar (1984)
and earlier work on barrier methods for constrained optimization, notably Fiacco and
McCormick (1968) was observed by Gill, et al. (1986) and others, and has led to what
may be called without much fear of exaggeration a paradigm shift in the theory and
practice of linear and nonlinear programming. Remarkably, some of the fundamental
ideas required for this shift appeared already in the 1950's in a sequence of Oslo
working papers by the economist Ragnar Frisch. This work is summarized in Frisch
(1956). We will sketch the main outlines of the approach, with the understanding
that further details may be found in the excellent expository papers of Wright (1992),
Lustig, Marsden and Shanno (1994), and the references cited there.

Consider the canonical linear program

min fc0x j Ax = b; x � 0g;(6.4.10)

and associate with this problem the following logarithmic barrier (potential-function)
reformulation,

min fB(x; �) j Ax = bg(6.4.11)

where

B(x; �) = c0x� �
X

log xk:

In e�ect, (6.4.11) replaces the inequality constraints in (6.4.10) by the penalty term
of the log barrier. Solving (6.4.11) with a sequence of parameters � such that �! 0
we obtain in the limit a solution to the original problem (6.4.10). This approach was
elaborated in Fiacco and McCormick (1968) for general constrained optimization,
but was revived as a linear programming tool only after its close connection to the
approach of Karmarkar (1984) was pointed out by Gill, et al. (1986). The use of the
logarithmic potential function seems to have been introduced by Frisch (1956), who
described it in the following vivid terms,

My method is altogether di�erent than simplex. In this method we work
systematically from the interior of the admissible region and employ a
logarithmic potential as a guide { a sort of radar { in order to avoid
crossing the boundary.

Suppose that we have an initial feasible point, x0, for (6.4.10), and consider solving
(6.4.11) by the classical Newton method. Writing the gradient and Hessian of B with
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respect to x as

rB = c� �X�1e

r2B = �X�2

where X = diag (x) and e denotes an n-vector of ones, we have at each step the
Newton problem

min
p
fc0p � �p0X�1e+ 1

2
�p0X�2p j Ap = 0g:(6.4.12)

Solving this problem, and moving from x0 in the resulting direction p toward the
boundary of the constraint set maintains feasibility and is easily seen to improve the
objective function. The �rst order conditions for this problem may be written as

�X�2p+ c � �X�1e = A0y(6.4.13)

Ap = 0(6.4.14)

where y denotes an m-vector of Lagrange multipliers. Solving for y explicitly, by
multiplying through in the �rst equation byAX2 and using the constraint to eliminate
p, we have

AX2A0y = AX2c� �AXe:(6.4.15)

These normal equations may be recognized as generated from the linear least squares
problem

min
y
k XA0y �Xc � �e k22(6.4.16)

Solving for y, computing the Newton direction p from (6.4.13), taking a step in the
Newton direction toward the boundary constitute the essential features of the primal
log barrier method. A special case of this approach is the a�ne scaling algorithm in
which we take � = 0 at each step in (6.4.15), an approach anticipated by Dikin (1967)
and studied by Vanderbei, Meketon and Freedman (1986) and numerous subsequent
authors.

Recognizing that similar methods may be applied to the primal and dual formula-
tions simultaneously, recent theory and implementation of interior point methods for
linear programming have focused on attacking both formulations. The dual problem
corresponding to (6.4.10) may be written as

maxfb0y j A0y + z = c; z � 0g:(6.4.17)

Optimality in the primal implies

c� �X�1e = A0y(6.4.18)
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so setting z = �X�1e we have system

Ax = b x > 0

A0y + z = c z > 0(6.4.19)

Xz = �e:

Solutions (x(�); y(�); z(�)) of these equations constitute the central path of solutions
to the logarithmic barrier problem, which approach the classical complementary slack-
ness condition x0z = 0, as �! 0, while maintaining primal and dual feasibility along
the path.

If we now apply Newton's method to this system of equations, we obtain0
@ Z 0 X

A 0 0
O A0 I

1
A
0
@ px

py
pz

1
A =

0
@ �e�Xz

b�Ax
c�A0y � z

1
A(6.4.20)

which can be solved explicitly as,

py = (AZ�1XA0)�1[AZ�1X(c� �X�1e�A0y) + b�Ax]
px = XZ�1[A0py + �X�1e� c+A0y](6.4.21)

pz = �A0py + c�A0y � z:
Like the primal method, the real computational e�ort of computing this step is

the Choleski factorization of the diagonally weighted matrix AZ�1XA0: Note that
the consequence of moving from a purely primal view of the problem to one that
encompasses both the primal and dual is that AX�2A0 has been replaced byAZ�1XA0

and the right hand of the equation for the y-Newton step has altered somewhat. But
the computational e�ort is essentially identical. To complete the description of the
primal-dual algorithm we would need to specify how far to go in the Newton direction
p, how to adjust � as the iterations proceed, and how to stop.

In fact, the most prominent examples of implementations of the primal-dual log
barrier approach now employ a variant due to Mehrotra (1992), which resolves all of
these issues. We will brie
y describe this variant in the next section in the context of
a slightly more general class of linear programs But before doing so, we will illustrate
the ideas by describing a simple example of the foregoing theory.

4.1. Newton to the Max: An Elementary Example. To illustrate the short-
comings of the simplex method, or indeed of any strategy for solving linear programs
which relies on an iterative path along the exterior of the constraint set, consider the
problem depicted in Figure 6.1. We have a random polygon whose vertices lie on the
unit circle and our objective is to �nd a point in the polygon that maximizes the sum
of its coordinates, that is, the point furthest north-east in the �gure.
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Since any point in the polygon can be represented as a convex weighting of the
extreme points, the problem may be formulated as

maxfe0ujX 0d = u; e0d = 1; d 2 <n+g;(6.4.22)

where e denotes a (conformable) vector of ones, X is an n � 2 matrix with rows
representing the n vertices of the polygon and d is the vector of convex weights to be
determined. Eliminating u we may rewrite (6.4.22) somewhat more simply as

maxfs0dje0d = 1; d 2 <n+g;(6.4.23)

where s = Xe: This is an extremely simple linear program which serves as a convenient
geometric laboratory animal for studying various approaches to solving such problems.
Simplex is particularly simple in this context, because the constraint set is literally
a simplex. If we begin at a random vertex, and move around the polygon until
optimality is achieved, we pass through O(n) vertices in the process. Of course, a
random initial vertex is rather naive, and one could do much better with an intelligent
\Phase 1" approach that found a good initial vertex. In e�ect we can think of the
\interior point" approach we will now describe as a class of methods to accomplish
this, rendering unnecessary further travel around the outside of the polygon.

The log barrier formulation of Frisch is,

maxfs0d+ �

nX
i=1

log dije0d = 1g(6.4.24)

where the barrier term �
P

log di serves as a penalty which keeps us away from the
boundary of the positive orthant in the space of the dual vector d. By judicious choice
of a sequence �! 0 we might hope to converge to a solution of the original problem.

Restricting attention, for the moment, to the primal log-barrier formulation (6.4.24)
and de�ning,

B(d; u) = s0d + �
X

log di(6.4.25)

we have rB = s + �D�1e and r2B = ��D�2 where D = diag(d). Thus, at any
initial feasible, d, we have the associated Newton subproblem

max
p
f(s+ �D�1e)0p � �

2
p0D�2pje0p = 0g:

This problem has �rst order conditions

s+ �D�1e� �D�2p = ae

e0p = 0

and multiplying through by e0D2, and using the constraint, we have,

e0D2s+ �e0De = ae0D2e:
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Thus solving for the Lagrange multiplier â we obtain the Newton direction

p = ��1D2s+De� âe(6.4.26)

where â = (e0D2e)�1(e0D2s+�e0De). Pursuing the iteration d d+�p; thus de�ned,
with � �xed, yields the central path d(�) which describes a to the solution d� of the
original problem (6.4.22). We must be careful to keep the step lengths � small enough
to maintain the interior feasibility of d. Note that the initial feasible point d = e=n
represents d(1):

As emphasized by Gonzaga (1992) and others, this central path is a crucial con-
struct for the interior point approach. Algorithms may be usefully evaluated on the
basis of how well they are able to follow this path. Clearly, there is some tradeo�
between staying close to the path and moving along the path, thus trying to reduce �,
iteration by iteration. Improving upon existing techniques for balancing these objec-
tives is the subject of a vast outpouring of current research. Excellent introductions
to the subject are provided in the survey paper of Margaret Wright (1992) and the
recent monograph of Stephen Wright (1996).

Thus far, we have considered only the primal version of our simple polygonal
problem, but it is also advantageous to consider the primal and dual forms together.
The dual of (6.4.22) is very simple:

minfajea� z = s; z � 0g:(6.4.27)

The scalar, a, is the Lagrange multiplier on the equality constraint of the primal intro-
duced above, while z is a vector of \residuals," or slack variables in the terminology
of linear programming. This formulation of the dual exposes the real triviality of the
problem { we are simply looking for the maximal element of the vector s = Xe: This
is a very special case of the linear programming formulation of �nding any ordinary
quantile. But the latter would require us to split z into its positive and negative parts,
and would also introduce upper bounds on the variables, d, in the primal problem.

Another way to express the central path, one that nicely illuminates the symmetric
roles of the primal and dual formulations of the original problem, is to solve the
equations,

e0d = 1(6.4.28)

ea� z = s

Dz = �e:

That solving these equations is equivalent to solving (6.4.24) may be immediately
seen by writing the �rst order conditions for (6.4.24) as

e0d = 1

ea� �D�1e = s;
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and then appending the de�nition z = �D�1e: The equivalence then follows from
the negative de�niteness of the Hessian r2B. This formulation is also useful in
highlighting a crucial interpretation of the log-barrier penalty parameter, �. For any
feasible pair (z; d) we have

s0d = a� z0d;
so z0d is equal to the duality gap, the discrepancy between the primal and dual
objective functions at the point (z; d). At a solution, we have the complementary
slackness condition z0d = 0, thus implying a duality gap of zero. Multiplying through
by e0 in the last equation of (6.4.28), we may take � = z0d=n as a direct measure of
progress toward a solution.

Applying Newton's method to these equations yields0
@ Z 0 D

e0 0 0
0 e �I

1
A
0
@ pd
pa
pz

1
A =

0
@ �e�Dz

0
0

1
A ;(6.4.29)

where we have again presumed initial, feasible choices of d and z. Solving for pa we
have

p̂a = (e0Z�1De)�1e0Z�1(Dz � �e)
which yields the primal-dual Newton direction:

pd = Z�1(�e�Dz �Depa)(6.4.30)

pz = epa:(6.4.31)

It is of obvious interest to compare this primal-dual direction with the purely primal
step derived above. In order to do so, however, we need to specify an adjustment
mechanism for �.

To this end we will now describe an approach suggested by Mehrotra(1992) that
has been widely implemented by developers of interior point algorithms, includ-
ing the interior point algorithm for quantile regression described in Portnoy and
Koenker(1997). Given an initial feasible triple (d; a; z), consider the a�ne-scaling
Newton direction obtained by evaluating the �rst equation of (6.4.29) at � = 0. Now
compute the step lengths for the primal and dual variables respectively using

�d = argmaxf� 2 [0; 1]jd+ �pd � 0g

�z = argmaxf� 2 [0; 1]jz + �pz � 0g:
But rather than precipitously taking this step, Mehrotra suggests adapting the di-
rection somewhat to account for both the \recentering e�ect" introduced by the �e
term in (6.4.29) and also for the nonlinearity introduced by the last of the �rst order
conditions.
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Consider �rst the recentering e�ect. If we contemplate taking a full step in the
a�ne scaling direction we would have,

�̂ = (d+ �dpd)
0(z + �zpz)=n;

while at the current point we have,

� = d0z=n:

Now, if �̂ is considerably smaller than �, it means that the a�ne scaling direction
has brought us considerably closer to the optimality condition of complementary
slackness: z0d = 0. This suggests that the a�ne scaling direction is favorable, that
we should reduce �, in e�ect downplaying the contribution of the recentering term in
the gradient. If, on the other hand, �̂ isn't much di�erent than �, it suggests that the
a�ne-scaling direction is unfavorable and that we should leave � alone, taking a step
which attempts to bring us back closer to the central path. Repeated Newton steps
with � �xed put us exactly on this path. These heuristics are embodied in Mehrotra's
proposal to update � by

� �(�̂=�)3:

To deal with the nonlinearity, Mehrotra (1992) proposed the following \predictor-
corrector" approach. A full a�ne scaling step would entail

(d+ pd)
0(z + pz) = d0z + d0pz + p0dz + p0dpz :

The linearization implicit in the Newton step ignores the last term, in e�ect predicting
that since it is of O(�2) it can be neglected. But since we have already computed
a preliminary direction, we might as well reintroduce this term to correct for the
nonlinearity as well to accomplish the recentering. Thus, we compute the modi�ed
direction by solving0

@ Z 0 D
e0 0 0
0 e I

1
A
0
@ �d
�a
�z

1
A =

0
@ �e�Dz � Pdpz

0
0

1
A ;

where Pd = diag(pd): This modi�ed Newton direction is then subjected to the same
step-length computation and a step is �nally taken. It is important in more realistic
problem settings that the linear algebra required to compute the solution to the
modi�ed step has already been done for the a�ne scaling step. This usually entails a
Cholesky factorization of a matrix which happens to be scalar here, so the modi�ed
step can be computed by simply backsolving the same system of linear equations
already factored to compute the a�ne scaling step.

In Figure 6.1 we provide an example intended to illustrate the advantage of the
Mehrotra modi�ed step. The solid line indicates the central path. Starting from the
same initial point d = e=n, the dotted line represents the �rst a�ne scaling step. It is
successful in the limited sense that it stays very close to the central path, but it only
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Figure 6.1. A Simple Example of Interior Point Methods for Linear
Programming: The �gure illustrates a random pentagon of which we
would like to �nd the most northeast vertex. The central path begin-
ning with an equal weighting of the 5 extreme points of the polygon
is shown as the solid curved line. The dotted line emanating from the
this center is the �rst a�ne scaling step. The dashed line is the modi-
�ed Newton direction computed according to the proposal of Mehrotra.
Subsequent iterations are unfortunately obscured by the scale of the
�gure.
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Figure 6.2. Contours of the Log Barrier Objective Function for the
Simple Polygonal Linear Program: The �gure illustrates four di�erent
contour plots of the log barrier objective function (6.4.24) correspond-
ing to four di�erent choices of �. In the �rst panel, � = 1 and the
contours are centered in the polygon. As � is reduced the penalized ob-
jective function is less in
uenced by the penalty term and more strongly
in
uenced by the linear component of the original LP formulation of
the problem. Thus, for � = :1 we �nd that the unconstrained maximum
of the log barrier function occurs quite close to the optimal vertex of
the original LP. The locus of solutions to the log barrier problems for
various �'s is called the central path, and is illustrated in 6.1 by the
solid curved line.
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takes a short step toward our �nal destination. In contrast, the �rst modi�ed step,
indicated by the dashed line, takes us much further. By anticipating the curvature of
the central path, it takes a step more than twice the length of the unmodi�ed, a�ne-
scaling step. On the second step the initial a�ne-scaling step is almost on target, but
again somewhat short of the mark. The modi�ed step is more accurately pointed at
the desired vertex and is thus, again, able to take a longer step.

In Figure 6.2 we try to illustrate the log barrier approach by plotting 4 versions
of the contours corresponding to the penalized objective function for four distinct
values of the penalty parameter �. In the �rst panel, with � = 1 we are strongly
repelled from the boundary of the constraint set and the unconstrained maximum of
the barrier function occurs near the center of the polygon. In the next panel, with
� reduced to 1

2
the barrier penalty exerts a somewhat weaker e�ect and the contours

indicate that the unconstrained maximumoccurs somewhat closer to the upper vertex
of the polygon. This e�ect is further accentuated in the � = 1

4
�gure, and in the last

�gure with � = 1
10 we �nd that the maximum occurs quite close to the vertex. The

path connecting the maximum of the family of �xed-� problems is generally called
the central path. As emphasized by Gonzaga (1992) and others, this central path is
a crucial construct for the interior point approach. Competing algorithms may be
usefully evaluated on the basis of how well they are able to follow this path. Clearly,
there is some tradeo� between staying close to the path and moving along the path,
thus trying to reduce �, iteration by iteration. Improving upon existing techniques
for balancing these objectives is the subject of a vast outpouring of current research.
Excellent introductions to the subject are provided in the survey paper of Margaret
Wright (1992) and the recent monograph of Stephen Wright (1996).

It is di�cult in a single example like this to convey a sense of the overall per-
formance of these methods. After viewing a large number of realizations of these
examples, one comes away convinced that the Mehrotra modi�ed step consistently
improves upon the a�ne scaling step, a �nding that is completely consistent with the
theory.

5. Interior Point Methods for Quantile Regression

We have seen that the problem of solving

min
b2<p

nX
i=1

�� (yi � x0ib)(6.5.32)

where ��(r) = r(��I(r < 0)) for � 2 (0; 1): may be formulated as the linear program,

minf�e0u+ (1� � )e0v j y = Xb+ u� v; (u; v) 2 <2n
+ g;(6.5.33)

and has dual formulation,

maxfy0d j X 0d = 0; d 2 [� � 1; � ]ng(6.5.34)
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or, setting a = d+ 1 � �;
maxfy0a j X 0a = (1� � )X 0e; a 2 [0; 1]ng:(6.5.35)

The dual formulation of the quantile regression problem �ts nicely into the stan-
dard formulations of interior point methods for linear programs with bounded vari-
ables. The function a(� ) that maps [0; 1] to [0; 1]n plays a crucial role in connecting
the statistical theory of quantile regression to the classical theory of rank tests as
described in Gutenbrunner and Jure�ckov�a (1992) and Gutenbrunner, Jure�ckov�a ,
Koenker and Portnoy (1993). See Koenker and d'Orey (1987,1993) for a detailed
description of modi�cations of the Barrodale and Roberts(1974) simplex algorithm
for this problem.

Adding slack variables s, and the constraint a + s = e, we obtain the barrier
function

B(a; s; �) = y0a+ �

nX
i=1

(log ai + log si);(6.5.36)

which should be maximized subject to the constraints, X 0a = (1�� )X 0e and a+s = e.
The Newton step, �a; solving

maxy0�a + ��0a(A
�1 � S�1)e� 1

2
��0a(A

�2 + S�2)�a(6.5.37)

subject to X 0�a = 0; satis�es

y + �(A�1 � S�1)e� �(A�2 + S�2)�a = Xb(6.5.38)

for some b 2 <p, and �a such that X 0�a = 0: As before, multiplying through by
X 0(A�2 + S�2)�1 and using the constraint, we can solve explicitly for the vector b,

b = (X 0WX)�1X 0W (y + �(A�1 � S�1)e)(6.5.39)

whereW = (A�2+S�2)�1: This is a form of the primal log barrier algorithm described
above. Setting � = 0 in each step yields an a�ne scaling variant of the algorithm.
We should stress again that the basic linear algebra of each iteration is essentially
unchanged, only the form of the diagonal weighting matrixW has changed. We should
also emphasize that there is nothing especially sacred about the explicit form of the
barrier function used in (6.5.36). Indeed, one of the earliest proposed modi�cations
of Karmarkar's original work was the a�ne scaling algorithm of Vanderbei, Meketon
and Freedman (1986), which used, implicitly, �

Pn
i=1 log(min(ai; si)) in lieu of the

additive speci�cation.
Again, it is natural to ask if a primal-dual form of the algorithm could improve

performance. In the bounded variables formulation we have the Lagrangian,

L(a; s; b; u; �) = B(a; s; �)� b0(X 0a� (1� � )X 0e)� u0(a+ s� e);(6.5.40)
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and setting v = �A�1 we have the �rst order conditions, describing the central path,
see Gonzaga(1992),

X 0a = (1 � � )X 0e

a+ s = e

Xb + u� v = y(6.5.41)

USe = �e

AV e = �e;

yielding the Newton step,

�b = (X 0WX)�1((1� � )X 0e�X 0a+X 0W�(�))

�a =W (X�b + �(�))

�s = ��a(6.5.42)

�u = �A�1e� Ue�A�1U�a

�v = �S�1e� V e+ S�1V �s

where �(�) = y � Xb + �(S�1 � A�1)e: The most successful implementations of
this approach to date employ the predictor-corrector step of Mehrotra (1992) which
is described in the context of bounded variables problems in Lustig, Marsden and
Shanno (1992). A related earlier approach is described in Zhang(1992). In Mehrotra's
approach we proceed somewhat di�erently. Rather than solving for the Newton step
(6.5.42) directly, we substitute the step directly into (6.5.41), to obtain,

X 0(a+ �a) = (1� � )X 0e

(a+ �a) + (s+ �s) = e

X(b+ �b) + (u+ �u)� (v + �v) = y(6.5.43)

(U +�u)(S +�s) = �e

(A+�a)(V +�v) = �e;

where �a;�v;�u;�s denote the diagonal matrices with diagonals, �a; �v; �u; �s re-
spectively. As noted by Lustig, Marsden and Shanno, the primary di�erence between
solving this system and the prior Newton step is the presence of the nonlinear terms
�u�s; �a�v in the last two equations. To approximate a solution to these equations,
Mehrotra (1992) suggests �rst solving for an a�ne primal-dual direction by setting
� = 0 in (6.5.42). Given this preliminary direction, we may then compute the step
length using the following ratio test,


̂P = �minfmin
j
f�aj=�aj ; �ajg;min

j
f�sj=�sj ; �sjgg(6.5.44)


̂D = �minfmin
j
f�uj=�uj ; �ujg;min

j
f�vj=�vj ; �vjgg:(6.5.45)
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using scaling factor � = :99995, as in Lustig, Marsden, and Shanno. Then de�ning
the function,

ĝ(
̂P ; 
̂D) = (s+ 
̂P �s)
0(u+ 
̂D�u) + (a+ 
̂P �a)

0(v + 
̂D�v)(6.5.46)

the new � is taken as,

� =

�
ĝ(
̂P ; 
̂D)

ĝ(0; 0)

�3
ĝ(0; 0)

2n
:(6.5.47)

To interpret (6.5.46) we may use the �rst three equations of (6.5.41) to write, for any
primal-dual feasible point (u; v; s; a)

�e0u+ (1 � � )e0v � (a� (1� � )e)0y = u0s+ a0v:(6.5.48)

So the quantity u0s+a0v is equal to the duality gap, the di�erence between the primal
and dual objective function values at (u; v; s; a), and ĝ(
̂P ; 
̂D) is the duality gap after
the tentative a�ne scaling step. Note that the quantity a � (1 � � )e is simply the
vector d appearing in the dual formulation (6.5.34). At a solution, classical duality
theory implies that the duality gap vanishes, that is the values of the primal and dual
objective functions are equal and the complementary slackness condition, u0s+a0v = 0
holds. If, in addition to feasibility, (u; v; s; a) happened to lie on the central path, the
last two equations of (6.5.41) would imply that,

u0s+ a0v = 2�n:

Thus, the function ĝ in (6.5.46) may be seen as an attempt to adapt � to the current
iterate in such a way that for any given value of the duality gap, � is chosen to corre-
spond to the point on the central path with that gap. By de�nition, ĝ(
̂P ; 
̂D)=ĝ(0; 0)
is the ratio of the duality gap after the tentative a�ne-scaling step to the gap at the
current iterate. If this ratio is small the proposed step is favorable and we should
reduce � further, anticipating that the recentering and nonlinearity adjustment of
the modi�ed step will yield further progress. If, on the other hand, ĝ(
̂P ; 
̂D) isn't
much di�erent from ĝ(0; 0), the a�ne scaling direction is unfavorable, and further
reduction in � is ill-advised. Since leaving � �xed in the iteration brings us back to
the central path, such unfavorable steps are intended to enable better progress in sub-
sequent steps iy bringing the current iterate back to the vicinity of the central path.
The rationale for the cubic adjustment in (6.5.47) which implements these heuristics,
is based on the fact that the recentering of the Newton direction embodied in the
terms �A�1e and �S�1e of (6.5.42) and (6.5.49) accomodates the O(�) term in the
expansion of the duality gap function ĝ while the nonlinearity adjustment described
below accomodates the O(�2) e�ect of the �s�u and �a�v terms.

We compute the following approximation to the solution of the system (6.5.43)
with this � and the nonlinear terms �s�u and �a�v taken from the preliminary
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primal-dual a�ne direction:

�b = (X 0WX)�1((1� � )X 0e�X 0a+X 0W�(�))

�a =W (X�b + �(�))

�s = ��a(6.5.49)

�u = �A�1e� Ue�A�1U�a +A�1�s�ue

�v = �S�1e� V e+ S�1V �s + S�1�a�ve:

The iteration proceeds until the algorithm terminates when the duality gap y0a� (1�
� )e0Xb + e0v becomes smaller than a speci�ed �. Recall that the duality gap is zero
at a solution, and thus, this criterion o�ers a more direct indication of convergence
than is usually available in iterative algorithms.

6. Interior vs. Exterior: Some Computational Experience

Our expectations about satisfactory computational speed of regression estimators
are inevitably strongly conditioned by our experience with least squares. In Figure
4.1 we illustrate the results of a small experiment to compare the computational
speed of 3 `1 algorithms: the Barrodale and Roberts (1973) simplex algorithm which
is employed in many contemporary statistical packages, Meketon's a�ne scaling al-
gorithm, and our implementation of Mehrotra's (1992) predictor-corrector version of
the primal-dual log barrier algorithm. The former is indicated in the �gure as mek

and the latter as rqfn for regression quantiles via Frisch-Newton. The two interior
point algorithms were coded in Fortran employing Lapack, (Anderson, et al (1995)),
subroutines for the requisite linear algebra. They were then incorporated as functions
into Splus and timings are based on the Splus function unix-time(). The Barrodale
and Roberts timings are based on the Splus implementation l1fit(x,y). For com-
parison purposes we also illustrate timings for least squares estimation based on Splus
function lm(y � x).

Such comparisons are inevitably fraught with quali�cations about programming
style, system overhead, etc.. We have chosen to address the comparison within the
Splus environment because a.) it is the computing environment in which we feel most
comfortable, a view widely shared by the statistical research community, and b.) it
o�ers a convenient means of incorporating new functions in lower level languages,
like Fortran and C, providing a reasonably transparent and e�cient interface with
the rest of the language. We have considerable experience with the Barrodale and
Roberts (1974) Fortran code as implemented in Splus for l1fit. This code also
underlies the quantile regression routines described in Koenker and d'Orey (1987,
1993) and still represents the state-of-the-art after more than 20 years. The Splus
function l1fit incurs a modest overhead getting problems into and out of BR's
Fortran, but this overhead is quickly dwarfed by the time spent in the Fortran in
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large problems. Similarly, we have tried to write the interior point code to minimize
the Splus overhead, although some improvements are still possible in this respect.

Least-squares timings are also potentially controversial. The Splus function lm
as described by Chambers (1992) o�ers three method options: QR decomposition,
Cholesky, and singular value decomposition. All of our comparisons are based on the
default choice of the QRmethod. Again there is a modest overhead involved in getting
the problem descriptions into and the solutions out of the lower level Lapack routines
which underlie lm. We have run some very limited timing comparisons outside Splus
directly in Fortran to evaluate these overhead e�ects and our conclusion from this is
that any distortions in relative performance due to overhead e�ects are slight.

We would stress that the code underlying the least squares computations we report
is the product of decades of re�nement, while our interior point routines are still in
their infancy. There is still considerable scope for improvement in the latter.

Several features of the �gures are immediately striking. For small problems all the
`1 algorithms perform impressively. They are all faster than the QR implementation
of least squares which is generally employed in lm. For small problems the simplex im-
plementation of Barrodale and Roberts is the clear winner, but its roughly quadratic
(in sample size) growth over the illustrated range quickly dissipates its initial ad-
vantage. The interior point algorithms do considerably better than simplex at larger
sample sizes, exhibiting roughly linear growth, as does least-squares. Meketon's a�ne
scaling algorithm performs slightly better than the primal- dual algorithm, which is
somewhat surprising, but for larger p the di�erence is hardly noticeable.

Beyond the range of problem sizes illustrated here, the advantage of the interior
point method over simplex grows exorbitant, fully justifying the initial enthusiasm
with which Karmarkar (1984) was received. Nevertheless, there is still a signi�cant
gap between `1 and `2 performance in large samples. We explore this gap from the
probabilistic viewpoint of computational complexity in the next section.

7. Computational Complexity

In this section we investigate the computational complexity of the interior point
algorithms for quantile regression described above. We should stress at the outset,
however, that the probabilistic approach to complexity analysis adopted here is rather
di�erent than that employed in the rest of the interior-point literature where the focus
on worst case analysis has led to striking discrepancies between theoretical rates and
observed computational experience. The probabilistic approach has the virtue that
the derived rates are much sharper and consequently more consonant with observed
performance. A similar gap between worst-case theory and average practice can
be seen in the analysis of parametric linear programming via the simplex algorithm,
where it is known that in certain problems with an n by p constraint matrix there can
be as many as np distinct solutions. However, exploiting some special aspects of the
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Figure 6.3. Timing comparison of three `1-algorithms for median re-
gression: Times are in seconds for the median of �ve replications for iid
Gaussian data. The parametric dimension of the models is p + 1 with
p indicated above each plot, p columns are generated randomly and an
intercept parameter is appended to the resulting design. Timings were
made at 8 design points in n: 200, 400, 800, 1200, 2000, 4000, 8000,
12000. The solid line represents the results for the simplex-based Bar-
rodale and Roberts algorithm implemented in Splus as l1fit, the rqfn
dashed line represents a primal-dual interior point algorithm, mek uses
an a�ne scaling form of the interior point approach and the dotted line
represents least squares timings based on lm(y � x) as a benchmark

quantile regression problem and employing a probabilistic approach, Portnoy (1991)
was able to show that the number of distinct vertex solutions (in � ) is Op(n log n), a
rate which provides excellent agreement with empirical experience.

For interior point methods the crux of the complexity argument rests on showing
that at each iteration the algorithm reduces the duality gap by a proportion, say
�n < 1. Thus after K iterations, an initial duality gap of �0 has been reduced to
�Kn �0. Once the gap is su�ciently small, say, less than "; there is only one vertex
of the constraint set at which the duality gap can be smaller. This follows obviously
from the fact that the vertices are discrete. Thus, the vertex with the smaller duality
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gap must be the optimal one, and this vertex may be identi�ed by taking p simplex-
type steps. This process, called puri�cation in Gonzaga (1992, Lemma 4.7), requires
in our notation p steps involving O(np2) operations, or O(np3) operations. Hence,
the number of iterations, K, required to make, �Kn �0 < � is,

K < log(�0=�)=(� log �n):

In the worst-case analysis of the interior point literature, " is taken to be 2�L where
L is the total number of binary bits required to encode the entire data of the problem.
Thus, in our notation " would be O(np): Further, the conventional worst-case analysis
employs the bound �n < (1 � cn�1=2), and takes �0 independent of n so the number
of required iterations is O(pnL). Since each iteration requires a weighted least-
squares solutions of O(np2) operations, the complexity of the algorithm as a whole
would be O(n5=2p3), apparently hopelessly disadvantageous relative to least squares.
Fortunately, however, in the random problems for which quantile regression methods
are designed, the " bound on the duality gap at the second best vertex can be shown
to be considerably larger, at least with probability tending to 1, than this worst case
value of 2�L. Lemma A.1 of the appendix to Portnoy and Koenker (1997) provides
the bound log � = Op(p log n) under mild conditions on the underlying regression
model. This leads to a considerably more optimistic view of these methods for large
problems.

Renegar (1988) and numerous subsequent authors have established the existence
of a large class of interior point algorithms for solving linear programs which, start-
ing from an initially feasible primal-dual point with duality gap �0, can achieve
convergence to a prescribed accuracy � in O(pn log(�0=�)) iterations in the worst
case. More recently, Sonnevend, Stoer, and Zhao (1991) have shown under somewhat
stronger nondegeneracy conditions that this rate can be improved to O(na log(�0=�))
with a < 1=2. We will call an algorithm which achieves this rate an na-algorithm.
They give explicit conditions, which hold with probablity one if the the y's have a con-
tinuous density, for the case a = 1=4. The following result then follows immediately
from previously cited Lemma.

Theorem 6.5. In the linear model Yi = x0i� + ui i = 1; : : : ; n; assume:
(i) f(xi; Yi); i = 1; : : : ; ng are iid with a bounded continuous density in <p+1:
(ii) Ejxijjp <1 and EjYija <1; for some a > 0:
An na-algorithm for median regression converges in Op(nap log n) iterations. And

with O(np2) operations required per iteration and O(np3) operations required for the
�nal \puri�cation" process such an algorithm has complexity, Op(n1+ap3 log n).

Mizuno, Todd and Ye (1993) provide an alternative probabilistic approach to the
existence of an na-algorithm, with a < 1=2 and provide a heuristic argument for
a = 1=4. They also conjecture that na might be improvable to log n, by a more
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re�ned probabilistic approach. This would improve the overall complexity in the
above Theorem to Op(np3 log

2 n) and seems quite plausible in light of the empirical
evidence reported below, and elsewhere in the interior point literature. In either
case we are still faced with a theoretical gap between `1 and `2 performance that
substantiates the empirical experience reported in the previous section. We now
introduce a new form of preprocessing for `1 problems that has been successful in
further narrowing this gap.

8. Preprocessing for Quantile Regression

Many modern linear programming algorithms include an initial phase of prepro-
cessing which seeks to reduce problem dimensions by identifying redundant variables
and dominated constraints. See, for example, the discussion in Section 8.2 of Lustig,
Marsden, and Shanno(1993) and the remarks of the discussants. Bixby, in this dis-
cussion, reports reductions of 20-30% in the row and column dimensions of a sample
of standard commercial test problems due to \aggressive implementation" of prepro-
cessing. Standard preprocessing strategies for LP's are not, however, particularly
well-suited to the statistical applications which underlie quantile regression. In this
section we describe some new preprocessing ideas designed explicitly for quantile re-
gression, which can be used to reduce dramatically the e�ective sample sizes for these
problems.

The basic idea underlying our preprocessing step rests on the following elementary
observation. Consider the directional derivative of the median regression, `1, problem

min
b

nX
i=1

jyi � x0ibj

which may be written in direction w as

g(b; w) =

nX
i=1

x0iw sgn�(yi � x0ib; x0iw);

where

sgn�(u; v) =

(
sgn(u) if u 6= 0;

sgn(v) if u = 0:

Optimality may be characterized as a b� such that g(b�; w) � 0 for all w 2 <p.
Suppose for the moment that we \knew" that a certain subset JH of the observations
N = f1; : : : ng would fall above the optimal median plane and another subset JL
would fall below. Then consider the revised problem

min
b2<p

X
i2NnJL[JH

jyi � x0ibj+ jyL � x0Lbj+ jyH � x0Hbj
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where xK =
P

i2JK
xi, for K 2 fH;Lg and yL; yH can be chosen as arbitrarily small

and large enough, respectively, to ensure that the corresponding residuals remain
negative and positive. We will refer in what follows to these combined pseudo-
observations as \globs". The new problem, under our provisional hypothesis, has
exactly the same gradient condition as the original one, and therefore the same solu-
tions, but the revision has reduced e�ective sample size by #fJL; JHg� 2, i.e. by the
number of observations in the globs.

How might we know JL; JH? Consider computing a preliminary estimate �̂ based
on a subsample of m observations. Compute a simultaneous con�dence band for x0i�
based on this estimate for each i 2 N . Under plausible sampling assumptions we
will see that the length of each interval is proportional to p=

p
m, so if M denotes

the number of yi falling inside the band, M = Op(np=
p
m). Take JL; JH to be

composed of the indices of the observations falling outside the band. So we may
now create the \globbed" observations (yK; xK);K 2 fL;Hg and reestimate based
on M + 2 observations. Finally, we must check to verify that all the observations in
JH ; JL have the anticipated residual signs; if so, we are done, if not, we must repeat
the process. If the coverage probability of the bands is P , presumably near 1, then
the expected number of repetitions of this process is the expectation of a geometric
random variable, Z, with expectation P�1. We will call each repetition a cycle.

8.1. Implementation. In this subsection we will sketch some further details of
the preprocessing strategy. We should emphasize that there are many aspects of the
approach that deserve further research and re�nement. In an e�ort to encourage
others to contribute to this process we have made all of the code described below
available at the website http://www.econ.uiuc.edu/research/rqn/rqn.html. We
will refer in what follows to the Frisch-Newton quantile regression algorithm with
preprocessing as prqfn.

The basic structure of the current prqfn algorithm looks like this:

k  0
l 0
m [2n2=3]
while(k is small)f

k = k + 1
solve for initial rq using �rst m observations
compute con�dence interval for this solution
reorder globbed sample as �rst M observations
while(l is small)f

l = l + 1
solve for new rq using the globbed sample
check residual signs of globbed observations
if no bad signs: return optimal solution
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if only few bad: adjust globs, reorder sample, update M, continue
if too many bad: increase m and break to outer loop
g

g

The algorithm presumes that the data has undergone some initial randomization so
the �rst m observations may be considered representative of the sample as a whole.
In all of the experiments reported below we use the Mehrotra-Lustig-Marsden-Shanno
primal-dual algorithm to compute the subsample solutions. For some \intermediately
large" problems it would be preferable to use the simplex approach, but we postpone
this re�nement. Although the a�ne scaling algorithm of Meketon(1986) exhibited
excellent performance on certain subsets of our early test problems, like those rep-
resented in Figure 4.1, we found its performance inconsistent in other tests. It was
consequently abandoned in favor of the more reliable primal-dual formulation. This
choice is quite consistent with the general development of the broader literature on
interior point methods for linear programming, but probably also deserves further
exploration.

8.2. Con�dence Bands. The con�dence bands used in our reported computa-
tional experiments are of the standard Sche��e type. Under iid error assumptions the
covariance matrix of the initial solution is given by

V = !2(X 0X)�1

where !2 = � (1 � � )=f2(F�1(� )); the reciprocal of the error density at the � th
quantile is estimated using the Hall-Sheather (1986) bandwidth for Siddiqui's(1960)
estimator. Quantiles of the residuals from the initial �t are computed using the
Floyd-Rivest(1975) algorithm. We then pass through the entire sample computing
the intervals,

Bi = (x0i�̂ � �jjV̂ 1=2xijj; x0i�̂ + �jjV̂ 1=2xijj):
The parameter � is currently set naively, at 2, but could, more generally, be set as
� = (��1(1� �) +p2p � 1)=

p
2 = O(pp) to achieve (1 � �) coverage for the band,

and thus assures that the number of cycles is geometric. Since, under the moment
condition of the previous Theorem, if p ! 1, the quantity jjV̂ 1=2xijj also behaves
like the square-root of a �2 random variable, the width of the con�dence band is of
Op(p=

p
m).

Unfortunately, using the Sche��e bands requires O(np2) operations, a computation
of the same order as that required by least-squares estimation of the model. It
seems reasonable, therefore, to consider alternatives. One possibility, suggested by
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the Studentized range, is to base intervals on the inequality,

jx0i�̂j � max
j

n����̂j��� =sjo � pX
j=1

jxijj sj ;(6.8.50)

where sj is !̂ times the jth diagonal element of the (X 0X)�1 matrix, and !̂ is
computed as for the Sche��e intervals. This approach provides conservative (though
not \exact") con�dence bands with width cq

Pp
j=1 jxjj sj. Note that this requires

only O(np) operations, thus providing an improved rate. Choice of the constant,
cq, is somewhat problematic, but some experimentation with simulated data showed
that cq could be taken conservatively to be approximately one, and that the algo-
rithm was remarkably independent of the precise value of cq. For these bands the
width is again Op(p=

p
m), as for the Sche��e bands. Although these O(np) con�dence

bands worked well in simulation experiments, and thus merit further study, the com-
putational experience reported here is based entirely on the more traditional Sche��e
bands.

After creating the globbed sample, we again solve the quantile regression problem,
this timewith theM observations of the globbed sample. Finally we check the signs of
the globbed observations. If they all agree with the signs predicted by the con�dence
band we may declare victory and return the optimal solution. If there are only a
few incorrect signs we have found it expedient to adjust the globs, reintroduce these
observations into the new globbed sample and resolve. If there are too many incorrect
signs, we return to the initial phase, increasing the initial sample size somewhat, and
repeat the process. One or two repetitions of the inner (�xup) loop are not unusual;
more than two cycles of the outer loop is highly unusual given current settings of the
con�dence band parameters.

8.3. Choosing m. The choice of the initial subsample size, m, and its implica-
tions for the complexity of an interior point algorithm for quantile regression with
preprocessing is resolved by the next lemma.

Theorem 6.6. Under the conditions of Theorem 6.5, for any nonrecursive quan-
tile regression algorithm with complexity, Op(n�p� log n), for problems with dimension
(n; p), there exists a con�dence band construction based on an initial subsample of size
m with expected width, Op(p=

p
m), and consequently, the optimal initial subsample

size is m� = O((np)2=3). With this choice of m�, M is also O((np)2=3). Then, with
� = 1+ a, and � = 3, from Theorem 6.5, the overall complexity of the algorithm with
preprocessing is, for any na underlying interior point algorithm,

Op((np)
2(1+a)=3p3 log n) +Op(np):



8. PREPROCESSING FOR QUANTILE REGRESSION 147

For a < 1=2, n su�ciently large, and p �xed, this complexity is dominated by the
complexity of the con�dence band computation, and is strictly smaller than the O(np2)
complexity of least-squares.

Proof: Formally, we treat only the case of p �xed, but we have tried to indicate the
role of p in the determination of the constants, where possible. Thus, for example,
for p ! 1, we have suggested above that the width of both the Sche��e bands and
the Studentized range bands are Op(p=

p
m). For p �xed this condition is trivially

satis�ed. By independence we may conclude that the number of observations inside
such a con�dence band will be,

M = Op(np=
p
m);

and minimizing, for any constant c,

m�p� logm+ (cnp=
p
m)�p� log(cnp=

p
m)(6.8.51)

yields,

m� = O((np)2=3):
Substituting this m� back into (6.8.51), Theorem 6.5 implies that we have complexity,

O((np)2(1+a)=3p3 log n);
for each cycle of the preprocessing. The number of cycles required is bounded in
probability since it is a realization of a geometrically distributed random variable
with a �nite expectation. The complexity computation for the algorithm as a whole
is completed by observing that the required residual checking is O(np) for each cycle,
and employing the Studentized range con�dence bands also requiresO(np) operations
per cycle. Thus the contribution of the con�dence band construction and residual
checking is precisely Op(np), and for any a < 1=2 the complexity of the `1 algorithm
is therefore dominated by this term for any �xed p and n su�ciently large.

Remarks. (1.) Clearly these results above apply not only to median regression, but
to quantile regression in general. (2.) If the explicit rates in p of the Theorem hold
for p !1, and if the Mizuno-Todd-Ye conjecture that na can be improved to log n
holds, then the complexity of the algorithm becomes,

O(n2=3p3 log2 n) +Op(np):

The contribution of the �rst term in this expression would then assure an improvement
over least squares for n su�ciently large, provided p = o(n1=5), a rate approaching
the domain of nonparametric regression applications. (3.) It is tempting to consider
the recursive application of the preprocessing approach described above, and this
can be e�ective in reducing the complexity of the solution of the initial subsample
m problem, but it does not appear possible to make it e�ective in dealing with the
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globbed sample. This accounts for the quali�er \nonrecursive" in the statement of
the theorem.

9. More Computational Experience

In this section we provide some further evidence on the performance of our im-
plementation of the algorithm on both simulated and real data. In Figure 6.4 we
compare the performance of l1fit with the new prqfn, which combines the primal-
dual algorithm with preprocessing. With the range of sample sizes 20,000 - 120,000,
the clear superiority of prqfn is very striking. At n = 20; 000 prqfn is faster than
l1fit by a factor of about 10, and it is faster by a factor of 100 at n = 120; 000. The
quadratic growth in the l1fit timings is also quite apparent in this �gure.
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Figure 6.4. Timing comparison of two `1-algorithms for median
regression: Times are in seconds for the mean of �ve replications for iid
Gaussian data. The parametric dimension of the models is p + 1 with
p indicated above each plot, p columns are generated randomly and an
intercept parameter is appended to the resulting design. Timings were
made at 4 design points in n: 20000, 40000, 80000, 120000. The dotted
line represents the results for the simplex-based Barrodale and Roberts
algorithm l1fit, which increases roughly quadratically in n. The solid
line represents prqfn, the timings of the Frisch-Newton interior point
algorithm, with preprocessing,
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In Figure 6.5 we illustrate another small experiment to compare rqfn and prqfn

with lm for n up to 180,000. Patience, or more accurately the lack thereof, however,
doesn't permit us to include further comparisons with l1fit. Figure 6.5 displays the
improvement provided by preprocessing, and shows that prqfn is actually slightly
faster than lm at for p = 4 and quite close to least squares speed for p = 8 for this
range of sample sizes. It may be noted that internal Fortran timings of of prqfn have
shown that most of the time is spent in the primal-dual routine rqfn for n < 200; 000.
The results of Sections 5-6 suggest that the greatest value of preprocessing appears
when n is large enough that the time needed to create the globs and check residuals
is comparable to that spent in rqfn.
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Figure 6.5. Timing comparison of two `1-algorithms for median
regression: Times are in seconds for the mean of ten replications for iid
Gaussian data. The parametric dimension of the models is p + 1 with
p indicated above each plot, p columns are generated randomly and an
intercept parameter is appended to the resulting design. Timings were
made at 8 design points in n: 40,000, 60,000, 80,000, 100,000, 120,000,
140,000, 160,000, 180,000. The rqfn dashed line represents a primal-
dual interior point algorithm, prqfn is rqfn with preprocessing, and
the dotted line represents least squares timings based on lm(y � x) as
a benchmark.
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Finally, we report some experience with a moderately large econometric appli-
cation. This is a fairly typical wage equation as employed in the labor economics
literature. See Buchinsky (1994,1995) for a much more extensive discussion of related
results. The data are from the �ve percent sample of the 1990 U.S. Census, and
consists of annual salary and related characteristics on 113,547 men from the state of
Illinois who responded that they worked 40 or more weeks in the previous year and
who worked on average 35 or more hours per week.

covariate � =0.05 � =0.25 � =0.5 � =0.75 � =0.95 ols
intercept 7:60598

( 0:028468 )
7:95888
( 0:012609 )

8:27162
( 0:009886 )

8:52930
( 0:010909 )

8:54327
( 0:025368 )

8:21327
( 0:010672 )

exp 0:04596
( 0:001502 )

0:04839
( 0:000665 )

0:04676
( 0:000522 )

0:04461
( 0:000576 )

0:05062
( 0:001339 )

0:04582
( 0:000563 )

exp2 �0:00080
( 0:000031 )

�0:00075
( 0:000014 )

�0:00069
( 0:000011 )

�0:00062
( 0:000012 )

�0:00056
( 0:000028 )

�0:00067
( 0:000012 )

education 0:07034
( 0:001770 )

0:08423
( 0:000784 )

0:08780
( 0:000615 )

0:09269
( 0:000678 )

0:11953
( 0:001577 )

0:09007
( 0:000664 )

white 0:14202
( 0:014001 )

0:17084
( 0:006201 )

0:15655
( 0:004862 )

0:13930
( 0:005365 )

0:10262
( 0:012476 )

0:14694
( 0:005249 )

married 0:28577
( 0:011013 )

0:24069
( 0:004878 )

0:20120
( 0:003824 )

0:18083
( 0:004220 )

0:20773
( 0:009814 )

0:21624
( 0:004129 )

Table 6.1. Quantile Regression Results for a U.S. Wage Equation

We seek to investigate the determinants of the logarithm of individuals' reported
wage or salary income in 1989 based on their attained educational level, a quadratic
labor market experience e�ect, and other characteristics. Results are reported Table
6.1 for �ve distinct quantiles. Least squares results for the same model appear in
the �nal column of the table. The standard errors reported in parentheses were
computed by the sparsity method described in Koenker (1994) using the Hall-Sheather
bandwidth. There are a number of interesting �ndings. The experience pro�le of
salaries is quite consistent across quantiles, with salary increasing with experience
at a decreasing rate. There is a very moderate tendency toward more deceleration
in salary growth with experience at the lower quantiles. The white-nonwhite salary
gap is highest at the �rst quartile, with whites receiving a 17 percent premium over
non-whites with similar characteristics, but this appears to decline both in the lower
tail and for higher quantiles. Marriage appears to entail an enormous premium at
the lower quantiles, nearly a 30 percent premium at the �fth percentile for example,
but this premium declines somewhat as salary rises. The least squares results are
quite consistent with the median regession results, but we should emphasize that the
pattern of estimated quantile regression coe�cients in the table as a whole is quite
inconsistent with the classical iid-error linear model, or indeed, any of the conventional
models accomodating some form of parametric heteroscedasticity.
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method � =0.05 � =0.25 � =0.5 � =0.75 � =0.95
prqfn 9.92 9.78 19.91 7.68 8.64
rqfn 41.07 42.34 28.33 40.87 59.69
rq 565.97 2545.42 3907.42 3704.50 3410.49

Table 6.2. Timing Comparisons for 3 Methods in Wage Equation
Example: Results are given in seconds for three di�erent quantile re-
gression algorithms described in the text.

In Table 6.2 we report the time (in seconds) required to produce the estimates
in the previous table, using three alternative quantile regression algorithms. The
time required for the least squares estimates reported in the last column of Table 6.1
was 7.8 seconds, roughly comparable to the prqfn times. Again, the interior-point
approach with preprocessing as incorporated in prqfn, is considerably quicker than
the interior point algorithm applied to the full data set in rqfn. The simplex approach
to computing quantile regression estimates is represented here by the modi�cation of
the Barrodale and Roberts(1974) algorithm described in Koenker and d'Orey (1987),
and denoted by rq in the table. There is obviously a very substantial gain in moving
away from the simplex approach to computation in large problems of this type.

10. Conclusion

In 1887, six years after publishing his path breaking work in economicsMathemat-
ical Psychics, F.Y. Edgeworth began a series of papers \On a new method of reducing
observations relating to several quantities." Edgeworth's new method, which he called
the \plural median" was intended to revive the Boscovich/Laplace methode de situa-
tion as a direct competitor to the least squares approach championed by Galton and
others. Edgeworth (1888) proposed dropping the zero-mean constraint on residuals,
employed by his predecessors, arguing that it con
icted with the median intent of
the absolute error approach. And appealing to the univariate results of Laplace, he
conjectured that the plural median should be more accurate than the least squares
estimator when the observations were more \discordant" than those from the Gauss-
sian probability law. Finally, he proposed a rather arcane geometric algorithm for
computing the plural median and remarked rather cryptically:

...the probable error is increased by about 20 percent when we substitute
the Median for the Mean. On the other hand, the labour of extracting
the former is rather less: especially, I should think in the case of many
unknown variables. At the same time, that labour is more \skilled".
There may be needed the attention of a mathematician; and, in the case
of many unknowns, some power of hypergeometrical conception.
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The \20 percent" is a bit optimistic. At the normal model, for example, we know
that the median would have con�dence intervals which are about 25 percent wider
than those based on the mean. But many of the details of Edgeworth's conjectures
concerning the improvements achieveable by the plural median over comparable least
squares methods of inference in discordant situations have been �lled in over the
last 20 years. And we are now on the verge of fully vindicating Edgeworth's other
claim that the \plural median" is less laborious, as well as more robust, than its least
squares competitor. In the metaphor of Portnoy and Koenker (1997), the common
presumption that Laplace's old `1 tortoise was forever doomed to lag behind the
quicker Gaussian hare representing least squares, may �nally be overturned.
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Appendix A

1. Weighted Univariate Quantiles

Consider the through-the-origin quantile regression problem,

min
binjR

X
��(yi � xib)

Basic solutions, b(h), are of the simple form bi = yi=xi, Directional derivitives take
the form,

rR(b; �) = �
X

 �� (yi � xib;�xi�)xi�
and at a solution must be nonnegative for � 2 f�1; 1g. Adopting the temporary
convention that sgn(0) = 1 we may writeX

(� � I(yi < xib)xi =
X

(� � 1
2
� 1

2
sgn(yi � xib)xi

=
X

[� � 1
2
� 1

2
sgn(yi=xi � b)sgn(xi)]xi

= (� � 1
2)
X

xi � 1
2

X
jxij+ I(yi=xi < b)jxij

Thus, as with the somewhat simpler case of the median which we discussed in Chapter
1, we may order the candidate slopes bi = yi=xi as b(i) and look for the smallest index
j such that the corresponding sum of jxij's exceeds the quantity

�(� � 1
2
)
X

xi +
1
2

X
jxij:

This idea is, perhaps, best illustrated by the following simple S function which returns
the weighted quantile estimate b̂ and the index of the optimal basic observation pair.

> wquantile <- function(x, y, t = 0.5)
{

#weighted univariate quantile
#
ord <- order(y/x)
b <- (y/x)[ord]
wabs <- abs(x[ord])
k <- sum(cumsum(wabs) < ((t - 0.5) * sum(x) + 0.5 * sum(wabs)))
return(b = b[k + 1], k = ord[k + 1])
}
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APPENDIX A

Non-parametric Quantile Regression

1. Kernel Methods

Start with Stone and nearest neighbor ideas and then develop the Chaudhuri,
Welsh, et al work on locally polynomial QR.

2. Regression Splines

Again Stone plus Ng, He, etc.

3. Smoothing Splines

4. Multivariate Extensions
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APPENDIX B

Frontiers (Grab-Bag??!!)of Quantile Regression

1. Time Series

2. Endogoneity and Sample Selection Problems

3. Discrete Response Models

4. Extreme Regression Quantiles

5. Multivariate Quantile Regression
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